首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 377 毫秒
1.
This investigation was undertaken to determine the atrazine degradation by fungal enzyme extracts (FEEs) in a clay-loam soil microcosm contaminated at field application rate (5 μg g?1) and to study the influence of different soil microcosm conditions, including the effect of soil sterilization, water holding capacity, soil pH and type of FEEs used in atrazine degradation through a 24 factorial experimental design. The Trametes maximaPaecilomyces carneus co-culture extract contained more laccase activity and hydrogen peroxide (H2O2) content (laccase = 18956.0 U mg protein?1, H2O2 = 6.2 mg L?1) than the T. maxima monoculture extract (laccase = 12866.7 U mg protein?1, H2O2 = 4.0 mg L?1). Both extracts were able to degrade atrazine at 100%; however, the T. maxima monoculture extract (0.32 h) achieved a lower half-degradation time than its co-culture with P. carneus (1.2 h). The FEE type (p = 0.03) and soil pH (p = 0.01) significantly affected atrazine degradation. The best degradation rate was achieved by the T. maxima monoculture extract in an acid soil (pH = 4.86). This study demonstrated that both the monoculture extracts of the native strain T. maxima and its co-culture with P. carneus can efficiently and quickly degrade atrazine in clay-loam soils.  相似文献   

2.
Ultrasonic probe sonication (UPS) and microwave-assisted extraction (MAE) were used for rapid single extraction of Cd, Cr, Cu, Ni, Pb, and Zn from soils polluted by former mining activities (Mónica Mine, Bustarviejo, NW Madrid, Spain), using 0.01 mol L?1 calcium chloride (CaCl2), 0.43 mol L?1 acetic acid (CH3COOH), and 0.05 mol L?1 ethylenediaminetetraacetic acid (EDTA) at pH 7 as extracting agents. The optimum extraction conditions by UPS consisted of an extraction time of 2 min for both CaCl2 and EDTA extractions and 15 min for CH3COOH extraction, at 30% ultrasound (US) amplitude, whereas in the case of MAE, they consisted of 5 min at 50 °C for both CaCl2 and EDTA extractions and 15 min at 120 °C for CH3COOH extraction. Extractable concentrations were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES). The proposed methods were compared with a reduced version of the corresponding single extraction procedures proposed by the Standards, Measurements and Testing Programme (SM&T). The results obtained showed a great variability on extraction percentages, depending on the metal, the total concentration level and the soil sample, reaching high values in some areas. However, the correlation analysis showed that total concentration is the most relevant factor for element extractability in these soil samples. From the results obtained, the application of the accelerated extraction procedures, such as MAE and UPS, could be considered a useful approach to evaluate rapidly the extractability of the metals studied.  相似文献   

3.
When applied to agricultural soils, phosphate fertilizers and the mineral or organic compounds present in solid and/or liquid waste may raise phosphorus (P) content and increase soil P saturation. The degree of phosphorus saturation (DPS) is a good indicator of potential P loss from agricultural soils. The purpose of this study was to calculate the DPS of samples from an Oxisol amended for 5 years with biosolids and mineral fertilizer. DPS was calculated based on P, iron, and aluminum extracted by ammonium oxalate and oxalic acid (DPSox) or by Mehlich-1 solution (DPSM1). Treatments included NPK mineral fertilization (175 kg ha?1 of P), B1?=?19.02 t ha?1 of biosolids (350 kg ha?1 of P), B2?=?38.17 t ha?1 of biosolids (703 kg ha?1 of P), B3?=?76.26 t ha–1 of biosolids (1,405 kg ha?1 of P), and a control (no P added). Water-extractable P (WEP) was also measured. Critical levels of DPSox and DPSM1 (21 and 24 %, respectively) were only achieved in the topsoil (0–0.1 m) at the highest biosolid dose. Concentration of WEP was positively correlated to DPSox and DPSM1. The DPSM1 method may be an alternative to DPSox for assessing the environmental risk of P loss from soil into surface runoff.  相似文献   

4.
In this study, photocatalytic (photo-Fenton and H2O2/UV) and dark Fenton processes were used to remove ethylenethiourea (ETU) from water. The experiments were conducted in a photo-reactor with an 80 W mercury vapor lamp. The mineralization of ETU was determined by total organic carbon analysis, and ETU degradation was qualitatively monitored by the reduction of UV absorbance at 232 nm. A higher mineralization efficiency was obtained by using the photo-peroxidation process (UV/H2O2). Approximately 77% of ETU was mineralized within 120 min of the reaction using [H2O2]0 = 400 mg L?1. The photo-Fenton process mineralized 70% of the ETU with [H2O2]0 = 800 mg L?1 and [Fe2+] = 400 mg L?1, and there is evidence that hydrogen peroxide was the limiting reagent in the reaction because it was rapidly consumed. Moreover, increasing the concentration of H2O2 from 800 mg L?1 to 1200 mg L?1 did not enhance the degradation of ETU. Kinetics studies revealed that the pseudo-second-order model best fit the experimental conditions. The k values for the UV/H2O2 and photo-Fenton processes were determined to be 6.2 × 10?4 mg L?1 min?1 and 7.7 × 10?4 mg L?1 min?1, respectively. The mineralization of ETU in the absence of hydrogen peroxide has led to the conclusion that ETU transformation products are susceptible to photolysis by UV light. These are promising results for further research. The processes that were investigated can be used to remove pesticide metabolites from drinking water sources and wastewater in developing countries.  相似文献   

5.
Although the attention for vanadium (V) as a potentially harmful element is growing and some countries adopted threshold values for V in soils, sediments, groundwater, or surface water, V is generally of little importance in environmental legislation and the knowledge about the behavior of V in the environment is still limited. In the present study, the release of V from oxidized sediments, sediment-derived soils, and certified reference materials was investigated by means of several types of leaching tests and extractions that are frequently used for soil and sediment characterization. The pHstat leaching tests and single and sequential extractions applied in this study show that V generally displays a very limited actual and potential mobility in sediment. “Mobile” V concentrations, as estimated by the amount of V released by a single extraction with CaCl2 0.01 mol L?1, were low, even in the most contaminated sediment samples. Only under strongly acidifying conditions (pH 2), such as in the case of ingestion of soil or sediment or in accidental spills, a substantial release of V can be expected.  相似文献   

6.
The increasing use of nanoparticles (NPs) worldwide has raised some concerns about their impact on the environment. The aim of the study was to assess the toxicity of metal oxide nanoparticles, singly or combined, in a freshwater fish (Carassius auratus). The fish were exposed for 7, 14, and 21 days to different concentrations of NPs (10 μg Al2O3.L?1, 10 μg ZnO.L?1, 10 μg Al2O3.L?1 plus 10 μg ZnO.L?1, 100 μg Al2O3.L?1, 100 μg ZnO.L?1, and 100 μg Al2O3.L?1 plus 100 μg ZnO.L?1). At the end of each exposure period, antioxidant enzyme activity (catalase, glutathione-S-transferase, and superoxide dismutase), lipid peroxidation, and histopathology were assessed in the gills and livers of C. auratus. The results show an increase in catalase (CAT) and superoxide dismutase (SOD) activity in the gills and livers of fish, especially after 14 days of exposure to single and combined NPs, followed by a reduction at 21 days. An increase in glutathione S-transferase (GST) was observed in gills after 7 days for all tested NP concentrations (single and combined); while in livers, a significant increase was determined after 14 days of exposure to 100 μg.L?1 of both single ZnO and Al2O3 NPs. Lipid peroxidation (LPO) significantly increased in gills after 7 days of exposure to 100 μg.L?1 Al2O3 NPs (single or combined). In livers, LPO increased significantly after 7 days of exposure to all tested concentrations of both single ZnO and Al2O3 (except for 10 μg Al2O3.L?1), and after 14 days of exposure to ZnO (10 and 100 μg.L?1) and Al2O3 (100 μg.L?1). The results from histological observations suggest that exposure to metal oxide NPs affected both livers and gills, presenting alterations such as gill hyperplasia and liver degeneration. However, the most pronounced effects were found in gills. In general, this study shows that the tested NPs, single or combined, are capable of causing sub-lethal effects on C. auratus, but when combined, NPs seem to be slightly more toxic than when added alone.  相似文献   

7.

Stable isotope analysis of15N/14N and18O/16O - nitrate was used to investigate the nitrate dynamics and potential groundwater pollution in an Alpine forest stand in Tyrol/Austria. The dynamics of δ15−Nnitrate values were followed in a forest ecosystem. The stable isotopic values of the throughfall are comparable with other studies. The completely decoupled dynamics of the δ15−Nnitrate of the precipitation and the surface water was observed. High variations in δ15-N - nitrate values in rainfall indicate that nitrate of different sources is deposited at that site. A significant correlation between the δ15Nnitrate values of the surface water and soil water was obtained, while no significant correlation between the δ15Nnitrate values of any precipitation sample with the surface water could be found. This suggests that the main source of nitrate in soil water originates from microbiological activity such as nitrification reactions and less from nitrate input by deposition. The results of δ18Onitrate measurements strongly supported the microbiological origin of nitrate in the surface and soil water. In an additional lysimeter experiment,15N - labelled nitrate was applied to study nitrate transport in soil. After 130 days and the collection of 300 L leachate, a total of 52% of the applied nitrate was detected in seepage water.

  相似文献   

8.
The sulfur–limestone autotrophic denitrification (SLAD) biofilter was able to remove phosphorous from wastewater during autotrophic denitrification. Parameters influencing autotrophic denitrification in the SLAD biofilter, such as hydraulic retention time (HRT), influent nitrate (NO3 ?), and influent PO4 3? concentrations, had significant effects on P removal. P removal was well correlated with total oxidized nitrogen (TON) removed in the SLAD biofilter; the more TON removed, the more efficient P removal was achieved. When treating the synthetic wastewater containing NO3 ?-N of 30 mg L?1 and PO4 3?-P of 15 mg L?1, the SLAD biofilter removed phosphorus of 45 % when the HRT was 6 h, in addition with TN removal of nearly 100 %. The optimal phosphorus removal in the SLAD biofilter was around 60 %. For the synthetic wastewater containing a PO4 3?-P concentration of 15 mg L?1, the main mechanism of phosphorus removal was the formation of calcium phosphate precipitates.  相似文献   

9.
Abstract

Copper (Cu) input to agricultural soils results from Cu containing pesticides and/or that in soil amendments, such as manure or sewage sludge. Soil and soil solution properties influence the adsorption and desorption of Cu by the soil, which in turn determines its plant availability and/or phytotoxicities. Effects of different anion enrichment in the equilibrium solution on Cu adsorption by different soils (pH range of 6.2–9.9) were investigated in this study over a range of Cu concentrations. With Cu concentrations in the range of 0–100 mg L?1 in the equilibration solution, 95–99% of applied Cu was adsorbed by all three soils. The adsorption of Cu was similar regardless of using either 0.01 M CaCl2 or Ca(NO3)2 as the equilibration solution. When the Cu concentration in the equilibration solution was further increased in the range of 500–2000 mg L?1, the adsorption of Cu decreased from 60 to 24% of applied Cu in two soils with pH 6.2–7.9. In a high pH soil (pH = 9.9), the Cu adsorption decreased from 77 to 34%. Addition of incinerated sewage sludge (ISS) to a Palouse silt loam soil (pH = 6.2) increased the Cu adsorption as compared to that by unamended soil. This was, in part, due to an increase in the soil suspension pH with ISS amendment.  相似文献   

10.
Photochemical advanced oxidation processes have been considered for the treatment of water and wastewater containing the herbicide atrazine (ATZ), a possible human carcinogen and endocrine disruptor. In this study, we investigated the effects of the photon emission rate and initial concentration on ATZ photolysis at 254 nm, an issue not usually detailed in literature. Moreover, the role of reactive oxygen species (ROS) is discussed. Photon emission rates in the range 0.87?×?1018–3.6?×?1018 photons L?1 s?1 and [ATZ]0?=?5 and 20 mg L?1 were used. The results showed more than 65 % of ATZ removal after 30 min. ATZ photolysis followed apparent first-order kinetics with k values and percent removals decreasing with increasing herbicide initial concentration. A fivefold linear increase in specific degradation rate constants with photon emission rate was observed. Also, regardless the presence of persistent degradation products, toxicity was efficiently removed after 60-min exposure to UV radiation. Experiments confirmed a noticeable contribution of singlet oxygen and radical species to atrazine degradation during photolysis. These results may help understand the behavior of atrazine in different UV-driven photochemical degradation treatment processes.  相似文献   

11.
The treatment of 1,4-dioxane solution by electrochemical oxidation on boron-doped diamond was studied using a central composite design and the response surface methodology to investigate the use of SO4 2? and HCO3 ? as supporting electrolytes considering the applied electric current, initial chemical oxygen demand (COD) value, and treatment time. Two industrial effluents containing bicarbonate alkalinity, one just carrying 1,4-dioxane (S1), and another one including 1,4-dioxane and 2-methyl-1,3-dioxolane (S2), were treated under optimized conditions and subsequently subjected to biodegradability assays with a Pseudomonas putida culture. Electrooxidation was compared with ozone oxidation (O3) and its combination with hydrogen peroxide (O3/H2O2). Regarding the experimental design, the optimal compromise for maximum COD removal at minimum energy consumption was shown at the maximum tested concentrations of SO4 2? and HCO3 ? (41.6 and 32.8 mEq L?1, respectively) and the maximum selected initial COD (750 mg L?1), applying a current density of 11.9 mA cm?2 for 3.8 h. Up to 98 % of the COD was removed in the electrooxidation treatment of S1 effluent using 114 kWh per kg of removed COD and about 91 % of the COD from S2 wastewater applying 49 kWh per kg of removed COD. The optimal biodegradability enhancement was achieved after 1 h of electrooxidation treatment. In comparison with O3 and O3/H2O2 alternatives, electrochemical oxidation achieved the fastest degradation rate per oxidant consumption unit, and it also resulted to be the most economical treatment in terms of energy consumption and price per unit of removed COD.  相似文献   

12.
Octanol-air partition coefficients (KOA) and supercooled liquid vapor pressures (PL) of nine organochlorine pesticides (OCPs) including p,p′-DDE, p,p′-DDD, o,p′-DDT, o,p′-DDE, o,p′-DDD, α-HCH, β-HCH, γ-HCH, δ-HCH were determined as functions of temperature using a gas chromatographic retention time method. Among them, the KOA of o,p′-DDE and o,p′-DDD and the PL of o,p′-DDE, o,p′-DDD, β-HCH and δ-HCH were determined for the first time. The determined KOA and PL values of investigated compounds at 25°C ranged from 3.14 × 107 (α-HCH) to 3.76×109 (p,p′-DDD), and 8.95×10? 4 Pa (p,p′-DDD) to 1.08×10? 1 Pa (α-HCH), respectively. The KOA and PL data were compared with published data. The KOA values of o,p′-DDT at 25°C were 3.23×109, higher than o,p′-DDE (1.02×109) and o,p′-DDD (2.01×109), indicating o,p′-DDT were more preferred to partition in soil compared with the metabolites. The KOA values were lower and PL values were higher for o,p′-DDE and o,p′-DDD, compared with their p,p′-isomeric counterparts, leading to a potential difference in behavior and fate of these isomers. The discrepancies among chemicals are obvious, which reflected in the increasing KOA and decreasing PL values in order of α-HCH, γ-HCH, β-HCH, δ-HCH, o,p′-DDE, p,p′-DDE, o,p′-DDD, o,p′-DDT, p,p′-DDD. For each compound, the LogKOA decreased linearly with reciprocal absolute temperature, while LogPL had a significant positive correlation with the inverse absolute temperature. The present study suggested that the method of gas chromatographic retention time was appropriate to measure the KOA and PL of a number of OCPs.  相似文献   

13.
The present research deals with the development of a new heterogeneous photocatalysis and Fenton hybrid system for the removal of color from textile dyeing wastewater as Rhodamine B (RhB) solutions by using Fe2+/H2O2/Nb2O5 as a photocatalytic system. The application of this photocatalytic system for the decolorization of dye contaminants is not reported in the literature yet. Different parameters like dye concentration, Nb2O5/Fe2+ catalyst amount, pH, and H2O2 concentration have been studied. The optimum conditions for the decolorization of the dye were initial concentration of 10 mg L?1 of dye, pH 4, and Nb2O5/Fe2+ catalyst concentration of 0.5 g L?1/50 mg L?1. The optimum value of H2O2 concentration for the conditions used in this study was 700 mg L?1. Moreover, the efficiency of the Nb2O5/photo-Fenton hybrid process in comparison to photo-Fenton alone and a dark Fenton process as a control experiment to decolorize the RhB solution has been investigated. The combination of photo-Fenton and Nb2O5 catalysts has been proved to be the most effective for the treatment of such type of wastewaters. The results revealed that the RhB dye was decolorized in a higher percent (78 %) by the Nb2O5/photo-Fenton hybrid process (Fe2+/H2O2/Nb2O5/UV) than by the photo-Fenton process alone (37 %) and dark Fenton process (14 %) after 120 min of treatment. Moreover, the Nb2O5 catalyst as a heterogeneous part of the photocatalytic system was demonstrated to have good stability and reusability.  相似文献   

14.
Experiments were conducted to assess the impact of citric acid (CA) and rhizosphere bacteria on metal uptake in Phragmites australis cultured in a spiked acid mine drainage (AMD) soil. Rhizosphere iron-oxidizing bacteria (Fe(II)OB) enhanced the formation of Fe plaque on roots, which decreased the uptake of Fe and Mn. CA inhibited the growth of Fe(II)OB, decreased the formation of metal plaque, raised the metal mobility in soil, and increased the accumulation of metals in all tissues of the reeds. The higher the CA dosage, the more metals accumulated into reeds. The total amount of metals in reeds increased from 7.8?±?0.5?×?10?6 mol plant?1 (Mn), 1.4?±?0.1?×?10?3 mol plant?1 (Fe), and 1.0?±?0.1?×?10?4 mol plant?1 (Al) in spiked soil without CA to 22.2?±?0.5?×?10?6 mol plant?1 (Mn), 3.5?±?0.06?×?10?3 mol plant?1 (Fe), and 5.0?±?0.2?×?10?4 mol plant?1 (Al) in soil added with 33.616 g C6H8O7·H2O for per kilogram soil. CA could be effective at enhancing the phytoremediation of metals from AMD-contaminated soil.  相似文献   

15.

Pharmaceuticals reach terrestrial environments through the application of treated wastewaters and biosolids to agricultural soils. We have investigated the toxicity of 15 common pharmaceuticals, classified as nonsteroidal anti-inflammatory drugs (NSAIDs), blood lipid-lowering agents, β-blockers and antibiotics, in two photosynthetic organisms. Twelve pharmaceuticals caused inhibitory effects on the radicle and hypocotyl elongation of Lactuca sativa seeds. The EC50 values obtained were in the range of 170–5656 mg L−1 in the case of the radicle and 188–4558 mg L−1 for the hypocotyl. Propranolol was the most toxic drug for both root and hypocotyl elongation, followed by the NSAIDs, then gemfibrozil and tetracycline. Other effects, such as root necrosis, inhibition of root growth and curly hairs, were detected. However, even at the highest concentrations tested (3000 mg L−1), seed germination was not affected. NSAIDs decreased the photosynthetic yield of Chlamydomonas reinhardtii, but only salicylic acid showed EC50 values below 1000 mg L−1. The first effects detected at low concentrations, together with the concentrations found in environmental samples, indicate that the use of biosolids and wastewaters containing pharmaceuticals should be regulated and their compositions assessed in order to prevent medium- and long-term impacts on agricultural soils and crops.

  相似文献   

16.
A new method for the degradation of bisphenol A (BPA) in aqueous solution was developed. The oxidative degradation characteristics of BPA in a heterogeneous Fenton reaction catalyzed by Fe3O4/graphite oxide (GO) were studied. Transmission electron microscopic images showed that the Fe3O4 nanoparticles were evenly distributed and were ~6 nm in diameter. Experimental results suggested that BPA conversion was affected by several factors, such as the loading amount of Fe3O4/GO, pH, and initial H2O2 concentration. In the system with 1.0 g L?1 of Fe3O4/GO and 20 mmol L?1 of H2O2, almost 90 % of BPA (20 mg L?1) was degraded within 6 h at pH 6.0. Based on the degradation products identified by GC–MS, the degradation pathways of BPA were proposed. In addition, the reused catalyst Fe3O4/GO still retained its catalytic activity after three cycles, indicating that Fe3O4/GO had good stability and reusability. These results demonstrated that the heterogeneous Fenton reaction catalyzed by Fe3O4/GO is a promising advanced oxidation technology for the treatment of wastewater containing BPA.  相似文献   

17.
A method for determining atrazine in soil extracts was evaluated by flow injection analysis with spectrophotometric detection. The method is based on the reaction of atrazine with pyridine in an acid medium followed by the reaction with NaOH and sulfanilic acid. Several analytical conditions were previously studied and optimized. Under the best conditions of analysis, the limits of detection and quantification were 0.15 and 0.45 mg L?1, respectively, for a linear response between 0.50 and 2.50 mg L?1, and a sampling throughput of 21 determinations per hour. Using the standard addition method, the maximum relative standard deviation of 17% and recovery values between 80 and 100% were observed for three extracts from soil samples with different composition. The proposed method is simple, low-cost and easy to use, and can be employed for studies involving atrazine in soil samples or for screening of atrazine in soils.  相似文献   

18.
The objective of this work was to evaluate the efficiency of a solar TiO2-assisted photocatalytic process on amoxicillin (AMX) degradation, an antibiotic widely used in human and veterinary medicine. Firstly, solar photolysis of AMX was compared with solar photocatalysis in a compound parabolic collectors pilot scale photoreactor to assess the amount of accumulated UV energy in the system (Q UV) necessary to remove 20 mg L?1 AMX from aqueous solution and mineralize the intermediary by-products. Another experiment was also carried out to accurately follow the antibacterial activity against Escherichia coli DSM 1103 and Staphylococcus aureus DSM 1104 and mineralization of AMX by tracing the contents of dissolved organic carbon (DOC), low molecular weight carboxylate anions, and inorganic anions. Finally, the influence of individual inorganic ions on AMX photocatalytic degradation efficiency and the involvement of some reactive oxygen species were also assessed. Photolysis was shown to be completely ineffective, while only 3.1 kJUV?L?1 was sufficient to fully degrade 20 mg L?1 AMX and remove 61 % of initial DOC content in the presence of the photocatalyst and sunlight. In the experiment with an initial AMX concentration of 40 mg L?1, antibacterial activity of the solution was considerably reduced after elimination of AMX to levels below the respective detection limit. After 11.7 kJUV?L?1, DOC decreased by 71 %; 30 % of the AMX nitrogen was converted into ammonium and all sulfur compounds were converted into sulfate. A large percentage of the remaining DOC was in the form of low molecular weight carboxylic acids. Presence of phosphate ions promoted the removal of AMX from solution, while no sizeable effects on the kinetics were found for other inorganic ions. Although the AMX degradation was mainly attributed to hydroxyl radicals, singlet oxygen also plays an important role in AMX self-photosensitization under UV/visible solar light.  相似文献   

19.
Abstract

We investigated the adsorption of glyphosate onto five subtropical soils of Paraná and São Paulo states, Brazil, a region of intense agricultural activities, aiming at the determination of kinetic and isotherm adsorption parameters which enable the evaluation of the potential leaching of the herbicide. The adsorption was fast, being described by the pseudo-second order and intraparticle diffusion models, thus suggesting that mixed mechanisms are involved. The Oxisol containing the highest concentrations of metal oxides (209.5?g kg?1 Fe2O3 and 160.2?g kg?1 Al2O3) was the sample with the highest rate constant, indicating the adsorption sites are readily available. All the soils are rich in aluminum and iron oxides, explaining the Freundlich coefficients (KF) between 642 and 1360?mg1-1/n kg?1 L1/n, which are higher than most of the coefficients described for other soils around the world. The maximum desorption (15% of the adsorbed amount) was observed for the Oxisol. For the other soils, desorption ranged from 2 to 7%. These results suggest that the leaching of free glyphosate to nearby surface and groundwaters is unlikely unless excessive doses are used. The adsorption parameters are useful for managing the right doses applied to the crops, thus avoiding contamination of adjacent areas.  相似文献   

20.
A myriad of physical, chemical, and biological processes controls the fate of organic contaminants in soils. The knowledge of bioavailability of a contaminant in soil can be useful to conduct environmental risk assessment. We conducted batch equilibrium experiments to investigate the sorption of cyromazine (CA) and its metabolite melamine (MA) onto five typical soils of China belonging to suborders Ali-Perudic Ferrosols, Udic Argosols, Gleyic-Stagnic Anthrosols, Ustic Cambosols, and Udic Isohumosols. Results showed that sorption of CA and MA onto soils was linear, as indicated by the Freundlich and Langmuir models. Different sorption behaviors of CA and MA were observed on the five agricultural soils, with lgK f values (Freundlich model) of 1.6505–2.6557 and 1.632–2.549, respectively. Moreover, the K f values for CA and MA were positively correlated with soil organic matter (r?=?0.989, r?=?0.976) and significantly negatively correlated with pH (r?=??0.938, r?=??0.964). The free energy of sorption of CA and MA ranged from ?20.8 to ?23.0 kJ mol?1 and ?20.8 to ?22.8 kJ mol?1, respectively, suggesting that the sorption of CA and MA onto the soils is primarily a physical process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号