首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
ABSTRACT: Levee sump systems are used by many riverine communities for temporary storage of urban wet weather flows. The hydrologic performance and transport of stormwater pollutants in sump systems, however, have not been systematically studied. The objective of this paper is to present a case study to demonstrate development and application of a procedure for assessing the hydraulic performance of flood control sumps in an urban watershed. Two sumps of highly variable physical and hydraulic characteristics were selected for analysis. A hydrologic modeling package was used to estimate the flow hydrograph for each outfall as part of the flow balance for the sump. To validate these results, a water balance was used to estimate the total runoff using sump operational data. The hydrologic model calculations provide a satisfactory estimate of the total runoff and its time‐distribution to the sump. The model was then used to estimate pollutant loads to the sump and to the river. Although flow of stormwater through a sump system is regulated solely by flood‐control requirements, these sumps may function as sedimentation basins that provide purification of stormwater. A sample calculation of removals of several conventional pollutants in the target sumps using a mass balance approach is presented.  相似文献   

2.
ABSTRACT: A “synthetic paired basin” technique that combines hydrologic monitoring and watershed modeling proves to be a useful tool in detecting hydrologic change in creeks draining basins undergoing urbanization. In this approach, measured stream flow following subbasin treatment (a period of urbanization) is compared with flow from a control subbasin over the same time period. The control subbasin is the pretreatment subbasin itself as represented by a well‐calibrated hydrologic model that is input with post‐treatment meteorological data. The technique is illustrated for stream monitoring sites at the outlets of two high‐resource sub‐basins in the Bear Creek basin of King County, Washington. Application of this technique holds promise to provide earlier warning of cumulative, human impacts on aquatic resources and to better inform adaptive watershed management for resource protection.  相似文献   

3.
: Estimates of specific annual suspended sediment yields, some of which rank among the highest reported in the world, are presented for 33 basins of South Island, New Zealand. Yield from each basin was determined by combining a suspended sediment concentration rating with the complete flow record of each catchment stream gaging station. A multiple regression analysis between sediment yields and climatic, hydrologic and physiographic parameters of each basin demonstrates that most of the variance in yields is explained by catchment mean rainfall. Geology apparently has little influence on sediment yield as suspended sediment concentration ratings, from rivers draining catchments of differing lithology, and regolith, are indistinguishable. Specific suspended sediment yield prediction equations are given for four defined regions covering in area almost all South Island; and except for one area, feature rainfall as the principle independent variable. Differences between regions may be due to variations in intensity, frequency, and duration patterns of storms. It is proposed that a simple power law relationship between yield and rainfall provides useful suspended sediment yield estimates in mountainous regions of temperate maritime climate, provided catchments have not been modified extensively by man.  相似文献   

4.
ABSTRACT: A computerized geographic information system (GIS) was created in support of data requirements by a hydrologic model designed to predict the runoff hydrograph from ungaged basins. Some geomorphologic characteristics (i.e., channel lengths) were manually measured from topographic maps, while other parameters such as drainage area and number of channels of a specified order, land use, and soil type were digitized and manipulated through use of the GIS. The model required the generation of an integrated Soil Conservation Service (SCS) curve number for the entire basin. To this end, soil associations and land use (generated from analysis of Landsat satellite data) were merged in the GIS to acquire a map representing SCS runoff curve numbers. The volume of runoff obtained from the Watershed Hydrology Simulation (WAHS) Model using this map was compared to the volume computed by hydrograph separation and found to be accurate within 19 percent error. To quantify the effect of changing land use on basin hydrology, the GIS was used to vary percentages from the drainage area from forest to bare soil. By changing the basin runoff curve numbers, significant changes in peak discharge were noted; however, the time to peak discharge remained essentially independent of change in area of land use. The GIS capability eliminated many of the more traditional manual phases of data input arid manipulation, thereby allowing researchers to concentrate on the development and calibration of the model and the interpretation of presumably more accurate results.  相似文献   

5.
Abstract: We used a retrospective approach to identify hydrologic metrics with the greatest potential for ecological relevance for use as resource management tools (i.e., hydrologic indicators) in rapidly urbanizing basins of the Puget Lowland. We proposed four criteria for identifying useful hydrologic indicators: (1) sensitive to urbanization consistent with expected hydrologic response, (2) demonstrate statistically significant trends in urbanizing basins (and not in undeveloped basins), (3) be correlated with measures of biological response to urbanization, and (4) be relatively insensitive to potentially confounding variables like basin area. Data utilized in the analysis included gauged flow and benthic macroinvertebrate data collected at 16 locations in 11 King County stream basins. Fifteen hydrologic metrics were calculated from daily average flow data and the Pacific Northwest Benthic Index of Biological Integrity (B‐IBI) was used to represent the gradient of response of stream macroinvertebrates to urbanization. Urbanization was represented by percent Total Impervious Area (%TIA) and percent urban land cover (%Urban). We found eight hydrologic metrics that were significantly correlated with B‐IBI scores (Low Pulse Count and Duration; High Pulse Count, Duration, and Range; Flow Reversals, TQmean, and R‐B Index). Although there appeared to be a great deal of redundancy among these metrics with respect to their response to urbanization, only two of the metrics tested – High Pulse Count and High Pulse Range – best met all four criteria we established for selecting hydrologic indicators. The increase in these high pulse metrics with respect to urbanization is the result of an increase in winter high pulses and the occurrence of high pulse events during summer (increasing the frequency and range of high pulses), when practically none would have occurred prior to development. We performed an initial evaluation of the usefulness of our hydrologic indicators by calculating and comparing hydrologic metrics derived from continuous hydrologic simulations of selected basin management alternatives for Miller Creek, one of the most highly urbanized basins used in our study. We found that the preferred basin management alternative appeared to be effective in restoring some flow metrics close to simulated fully forested conditions (e.g., TQmean), but less effective in restoring other metrics such as High Pulse Count and Range. If future research continues to support our hypothesis that the flow regime, particularly High Pulse Count and Range, is an important control of biotic integrity in Puget Lowland streams, it would have significant implications for stormwater management.  相似文献   

6.
The National Water Model (NWM) will provide the next generation of operational streamflow forecasts across the United States (U.S.) using the WRF-Hydro hydrologic model. In this study, we propose a strategy to calibrate 10 parameters of WRF-Hydro that control runoff generation during floods and snowmelt seasons, and due to baseflow. We focus on the Oak Creek Basin (820 km2), an unregulated mountainous sub-watershed of the Salt and Verde River Basins in Arizona, which are the largest source of water supply for the Phoenix Metropolitan area. We calibrate the model against discharge observations at the outlet in 2008–2011, and validate it at two stream gauging stations in 2012–2016. After bias correcting the precipitation forcings, we sequentially modify the model parameters controlling distinct runoff generation processes in the basin. We find that capturing the deep drainage to the aquifer is crucial to improve the simulation of all processes and that this flux is mainly controlled by the SLOPE parameter. Performance metrics indicate that snowmelt, baseflow, and floods due to winter storms are simulated fairly well, while flood peaks caused by summer thunderstorms are severely underestimated. We suggest the use of spatially variable soil depth to enhance the simulation of these processes. This work supports the ongoing calibration effort of the NWM by testing WRF-Hydro in a watershed with a large variety of runoff mechanisms that are representative of several basins in the southwestern U.S.  相似文献   

7.
Climate change projections for the Pacific Northwest (PNW) region of North America include warmer temperatures (T), reduced precipitation (P) in summer months, and increased P during all other seasons. Using a physically based hydrologic model and an ensemble of statistically downscaled global climate model scenarios produced by the Columbia Basin Climate Change Scenarios Project, we examine the nature of changing hydrologic extremes (floods and low flows) under natural conditions for about 300 river locations in the PNW. The combination of warming, and shifts in seasonal P regimes, results in increased flooding and more intense low flows for most of the basins in the PNW. Flood responses depend on average midwinter T and basin type. Mixed rain and snow basins, with average winter temperatures near freezing, typically show the largest increases in flood risk because of the combined effects of warming (increasing contributing basin area) and more winter P. Decreases in low flows are driven by loss of snowpack, drier summers, and increasing evapotranspiration in the simulations. Energy‐limited basins on the west side of the Cascades show the strongest declines in low flows, whereas more arid, water‐limited basins on the east side of the Cascades show smaller reductions in low flows. A fine‐scale analysis of hydrologic extremes over the Olympic Peninsula echoes the results for the larger rivers discussed above, but provides additional detail about topographic gradients.  相似文献   

8.
ABSTRACT: The Gunnison River drains a mountainous basin in western Colorado, and is a large contributor of water to the Colorado River. As part of a study to assess water resource sensitivity to alterations in climate in the Gunnison River basin, climatic and hydrologic processes are being modeled. A geographic information system (GIS) is being used in this study as a link between data and modelers - serving as a common data base for project personnel with differing specialties, providing a means to investigate the effects of scale on model results, and providing a framework for the transfer of parameter values among models. Specific applications presented include: (1) developing elevation grids for a precipitation model from digital elevation model (DEM) point-elevation values, and visualizing the effects of grid resolution on model results; (2) using a GIS to facilitate the definition and parameterization of a distributed-parameters, watershed model in multiple basins; and (3) nesting atmospheric and hydrologic models to produce possible scenarios of climate change.  相似文献   

9.
Meierdiercks, Katherine L., James A. Smith, Mary Lynn Baeck, and Andrew J. Miller, 2010. Heterogeneity of Hydrologic Response in Urban Watersheds. Journal of the American Water Resources Association (JAWRA) 46(6):1221–1237. DOI: 10.1111/j.1752-1688.2010.00487.x Abstract: The changing patterns of streamflow associated with urbanization are examined through analyses of discharge and rainfall records for the study watersheds of the Baltimore Ecosystem Study (BES). Analyses utilize a decade (1999-2008) of observations from a dense U.S. Geological Survey stream gaging network and Hydro-NEXRAD radar rainfall fields. The principal study watershed of the BES is Gwynns Falls (171 km2). Focus is given to two Gwynns Falls basins with contrasting patterns and histories of development, Dead Run and Upper Gwynns Falls. The sharp contrasts in streamflow properties between the basins reflect the differences in urban development prior to implementation of stormwater management regulations (much of Dead Run) and development for which stormwater management is an integral part of the hydrologic system (Upper Gwynns Falls). The mean annual runoff in Dead Run (558 mm) is 35% larger than that of Upper Gwynns Falls; larger contrasts in runoff properties typify the “warm season” and are linked to storm event hydrologic response. Spatial heterogeneities in storm event response are reflected in seasonal and diurnal properties of streamflow. Analyses of storm event response are presented for June 2006, during which monthly rainfall over the BES region ranged from less than 150 to more than 500 mm. Baisman Run, the BES forest reference watershed, and Moores Run, a highly urbanized watershed in Baltimore City, provide “end-member” representations of urban impacts on streamflow.  相似文献   

10.
ABSTRACT: Reservoirs are used to store water for public water supply, flood control, irrigation, recreation, hydropower, and wildlife habitat, but also often store undesirable substances such as herbicides. The outflow from 76 reservoirs in the midwestern USA, was sampled four times in 1992 and four times in 1993. At least one herbicide was detected in 82.6 percent of all samples, and atrazine was detected in 82.1 percent of all samples. Herbicide properties; topography, land use, herbicide use, and soil type in the contributing drainage area; residence time of water in reservoirs; and timing of inflow, release, and rainfall all can affect the concentration of herbicides in reservoirs. A GIS was used to quantify characteristics of land use, agricultural chemical use, climatic conditions, topographic character, and soil type by reservoir drainage basins. Multiple linear and logistic regression equations were used to model mean herbicide concentrations in reservoir outflow as a function of these characteristics. Results demonstrate a strong association between mean herbicide concentrations in reservoir outflow and herbicide use rates within associated drainage basins. Results also demonstrate the importance of including soils and basin hydrologic characteristics in models used to estimate mean herbicide concentrations.  相似文献   

11.
This paper examines the relationships between measurable watershed hydrologic features, base flow recession rates, and the Q7,10 low flow statistic (the annual minimum seven‐day average streamflow occurring once every 10 years on average). Base flow recession constants were determined by analyzing hydrograph recession data from 24 small (>130 km2), unregulated watersheds across five major physiographic provinces of Pennsylvania, providing a highly variable dataset. Geomorphic, hydrogeologic, and land use parameters were determined for each watershed. The base flow recession constant was found to be most strongly correlated to drainage density, geologic index, and ruggedness number (watershed slope); however, these three parameters are intercorrelated. Multiple regression models were developed for predicting the recession rate, and it was found that only two parameters, drainage density and hydrologic soil group, were required to obtain good estimates of the recession constant. Equations were also developed to relate the recession rates to Q7,10 per unit area, and to the Q7,10/Q50 ratio. Using these equations, estimates of base flow recession rates, Q7,10, and streamflow reduction under drought conditions can be made for small, ungaged basins across a wide range of physiography.  相似文献   

12.
While storm water detention basins are widely used for controlling increases in peak discharges that result from urbanization, recent research has indicated that under certain circumstances detention storage can actually cause increases in peak discharge rates. Because of the potential for detrimental downstream effects, storm water management policies often require downstream effects to be evaluated. Such evaluation requires the design engineer to collect additional topographic and land use data and make costly hydrologic analyses. Thus, a method, which is easy to apply and which would indicate whether or not a detailed hydrologic analysis of downstream impacts is necessary, should decrease the average cost of storm water management designs. A planning method that does not require either a large data base or a computer is presented. The time co-ordinates of runoff hydrographs are estimated using the time-of-concentration and the SCS runoff curve number; the discharge coordinates are estimated using a simple peak discharge equation. While the planning method does not require a detailed design of the detention basin, it does provide a reasonably accurate procedure for evaluating whether or not the installation of a detention basin will cause adverse downstream flooding.  相似文献   

13.
Urbanization impacts the stormwater regime through increased runoff volumes and velocities. Detention ponds and low impact development (LID) strategies may be implemented to control stormwater runoff. Typically, mitigation strategies are designed to maintain postdevelopment peak flows at predevelopment levels for a set of design storms. Peak flow does not capture the extent of changes to the hydrologic flow regime, and the hydrologic footprint residence (HFR) was developed to calculate the area and duration of inundated land during a storm. This study couples a cellular automata land cover change model with a hydrologic and hydraulic framework to generate spatial projections of future development on the fringe of a rapidly urbanizing metropolitan area. The hydrologic flow regime is characterized for existing and projected land cover patterns under detention pond and LID‐based control, using the HFR and peak flow values. Results demonstrate that for less intense and frequent rainfall events, LID solutions are better with respect to HFR; for larger storms, detention pond strategies perform better with respect to HFR and peak flow.  相似文献   

14.
ABSTRACT: A relatively simple nonlinear equation was fitted to 468 stormflows larger than 0.05 area inches on 11 forested basins from New Hampshire to South Carolina, providing a predictive method for use on forest and wildlands in humid regions. Stormflow in area inches (Q?) was: where R is the mean value of Q/P for all P larger than one inch, P is storm rainfall in inches, and I is the initial flow rate in ft3/sec/mi2. S.E. was 0.3 inch of stormflow. Peakflow was similarly estimated, S.E. 26 ft3/sec/mi2. The R-index method is proposed as a practical tool in forest and wildland management. Similar to the SCS runoff curve number method, the R-index method requires no prior assumptions about infiltration capacities of forest lands, but calls for the mapping of all first-order streams for the average storage capacity index R, i.e., the mean hydrologic response of the source areas. Tested against the runoff curve method on four independent basins, predictions by the R-index method were considerably more accurate when field information normally available to planners and managers was used in both methods.  相似文献   

15.
A technique is presented for developing an isohyet map for the Hualapai Valley, a closed hydrologic basin of about 315 square miles in the northwestern Great Basin in Nevada. In this basin there is practically no climatic data, and in the northwest Great Basin there are too few stations for determination of rainfall on a detailed basis. Using a vegetational typing to represent a range in elevation and precipitation, an initial mean annual rainfall is determined for selected points on a grid pattern. This rainfall is then modified by using topographic parameters of slope, orientation, exposure, and rainfall shadow effect. The resulting point determinations of mean annual rainfall are then smoothed using a trend surface analysis, and an isohyetal map is drawn from the smoothed points. The technique provides an estimated accuracy of one inch of mean annual precipitation and one mile of resolution on isohyets.  相似文献   

16.
Effective water quality management of streams in urbanized basins requires identification of the elements of urbanization that contribute most to pollutant concentrations and loads. Drainage connection (the proportion of impervious area directly connected to streams by pipes or lined drains) is proposed as a variable explaining variance in the generally weak relationships between pollutant concentrations and imperviousness. Fifteen small streams draining independent subbasins east of Melbourne, Australia, were sampled for a suite of water quality variables. Geometric mean concentrations of all variables were calculated separately for baseflow and storm events, and these, together with estimates of runoff derived from a rainfall-runoff model, were used to estimate mean annual loads. Patterns of concentrations among the streams were assessed against patterns of imperviousness, drainage connection, unsealed (unpaved) road density, elevation, longitude (all of which were intercorrelated), septic tank density, and basin area. Baseflow and storm event concentrations of dissolved organic carbon (DOC), filterable reactive phosphorus (FRP), total phosphorus (TP) and ammonium, along with electrical conductivity (EC), all increased with imperviousness and its correlates. Hierarchical partitioning showed that DOC, EC, FRP, and storm event TP were independently correlated with drainage connection more strongly than could be explained by chance. Neither pH nor total suspended solids concentrations were strongly correlated with any basin variable. Oxidized and total nitrogen concentrations were most strongly explained by septic tank density. Loads of all variables were strongly correlated with imperviousness and connection. Priority should be given to low-impact urban design, which primarily involves reducing drainage connection, to minimize urbanization-related pollutant impacts on streams.  相似文献   

17.
The National Water Model (NWM) was deployed by the National Oceanic and Atmospheric Administration to simulate operational forecasts of hydrologic states across the continental United States. This paper describes the geospatial river network (“hydro-fabric”), physics, and parameters of the NWM, elucidating the challenges of extrapolating parameters a large scale with limited observations. A set of regression-based channel geometry parameters are evaluated for a subset of the 2.7 million NWM reaches, and the riverine compound channel scheme is described. Based on the results from regional streamflow experiments within the broader NWM context, the compound channel reduced the root mean squared error by 2% and improved median Nash–Sutcliffe efficiency by 16% compared with a non-compound formulation. Peak event analysis from 910 peak flow events across 26 basins matched from the US Flash Flood Observation Database revealed that the mean timing error is 3 h lagged behind the observations. The routing time step was also tested, for 5-min (default, operational setting) and 1-h increments. The model was computationally stable and able to convey the flood peaks, although the hydrograph shape and peak timing were altered.  相似文献   

18.
Abstract: Water managers in arid and semiarid regions increasingly view treated wastewater (effluent) as an important water resource. Artificial recharge basins allow effluent to seep into the ground relieving stressed aquifers, however these basins frequently clog due to physical, chemical, and biological processes. Likewise effluent is increasingly used to maintain perennial base flow for dry streambeds, however, little is known about the impact of effluent on streambed hydraulic conductivity and stream‐aquifer interactions. We address this issue by investigating: if a clogging layer forms, how the formation of a clogging layer alters stream‐aquifer connections, and what hydrologic factors control the formation and removal of clogging layers. We focused on the Upper Santa Cruz River, Arizona where effluent from the Nogales International Waste Water Treatment Plant sustains perennial flow. Monthly sampling, along a 30 km river reach, was done with two foci: physical streambed transformations and water source identification using chemical composition. Historical dataset were included to provide a larger context for the work. Results show that localized clogging occurs in the Upper Santa Cruz River. The clogging layers perch the stream and shallow streambed causing desaturation below the streambed. With these results, a conceptual model of clogging is established in the context of a semiarid hydrologic cycle: formation during the hot premonsoon months when flow is nearly constant and removal by large flood flows (>10 m3/s) during the monsoon season. However, if the intensity of flooding during the semiarid hydrologic cycle is lessened, the dependent riparian area can experience a die off. This conceptual model leads us to the conclusion that effluent dominated riparian systems are inherently unstable due to the clogging process. Further understanding of this process could lead to improved ecosystem restoration and management.  相似文献   

19.
ABSTRACT: Specific annual suspended sediment yields and their standard deviations are presented for 47 basins of North Island, New Zealand. Most of the variance in yields is explained by catchment mean rainfall. Rivers with similar flow range have similar suspended sediment concentration ratings, independent of differing watershed lithology and regolith, except for six basins having an abundance of soft fine sediments. Prediction equations for yield and its standard deviation are derived for four essentially arbitrary regions. AU feature rainfall as the independent variable. Differences between regions may owe to variations in intensity, frequency, and duration patterns of storms and, in one area, to bed material size as well. The temporal distribution of annual yields from a basin m be modeled by a two-parameter lognormal function: the prediction equations above may be used to evaluate this function at a site for which suspended sediment data are unavailable.  相似文献   

20.
ABSTRACT: Research is presented that statistically analyzes the relationship between lake area and precipitation. These hydrologic variables are assessed in part using LANDSAT MSS satellite data and digital-image processing techniques. Results show dramatic regional hydrologic differences in lake area fluctuations and in lake area response to short term climatic variation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号