首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The effect of fish waste (FW), abattoir wastewater (AW) and waste activated sludge (WAS) addition as co-substrates on the fruit and vegetable waste (FVW) anaerobic digestion performance was investigated under mesophilic conditions using four anaerobic sequencing batch reactors (ASBR) with the aim of finding the better co-substrate for the enhanced performance of co-digestion. The reactors were operated at an organic loading rate of 2.46–2.51 g volatile solids (VS) l−1 d−1, of which approximately 90% were from FVW, and a hydraulic retention time of 10 days. It was observed that AW and WAS additions with a ratio of 10% VS enhanced biogas yield by 51.5% and 43.8% and total volatile solids removal by 10% and 11.7%, respectively. However FW addition led to improvement of the process stability, as indicated by the low VFAs/Alkalinity ratio of 0.28, and permitted anaerobic digestion of FVW without chemical alkali addition. Despite a considerable decrease in the C/N ratio from 34.2 to 27.6, the addition of FW slightly improved the gas production yield (8.1%) compared to anaerobic digestion of FVW alone. A C/N ratio between 22 and 25 seemed to be better for anaerobic co-digestion of FVW with its co-substrates. The most significant factor for enhanced FVW digestion performance was the improved organic nitrogen content provided by the additional wastes. Consequently, the occurrence of an imbalance between the different groups of anaerobic bacteria which may take place in unstable anaerobic digestion of FVW could be prevented.  相似文献   

2.
The increasing use and subsequent accumulation of polystyrene containers has triggered a substantial environmental problem. This study investigated using varied percentages of solid waste polystyrene disposable food dishes in the production of lightweight concrete samples with 350 kilograms per cubic meter (kg/m3) of cement and a density of 1,300 kg/m3. The polystyrene disposable dishes were ground into beads of 0–3 millimeters (mm) and 3–6 mm in size. First, the characteristics of Type II Portland cement, polystyrene, and aggregates were examined. The following characteristics of concrete using ASTM International and British Standards Institution standards were tested: slump, compressive strength, ability to resist chloride ion penetration, and resistance of concrete to rapid freezing and thawing cycles. Scanning electron microscopy (SEM) and energy dispersive X‐ray spectroscopy analytical techniques were also used. The slump of samples varied between 40 and 70 mm and was not dependent on either the polystyrene percentage or the size of the polystyrene beads in the concrete samples (p‐value > .05). The compressive strength of the concrete samples after 90 days of curing, and using different percentages of polystyrene, varied between 96 and 113 kilograms per square centimeter (kg/cm2). The resistance of the samples to the freezing and thawing cycle and chloride ion penetration were affected unfavorably by the presence of the polystyrene. The SEM technique indicated that concrete samples containing 15% and 25% polystyrene had denser crystals and less void than concrete samples with 40% and 55% polystyrene.  相似文献   

3.
Washing aggregate sludge from a gravel pit, sewage sludge from a wastewater treatment plant (WWTP) and a clay-rich sediment have been physically, chemically and mineralogically characterized. They were mixed, milled and formed into pellets, pre-heated for 5 min and sintered in a rotary kiln at 1150 °C, 1175 °C, 1200 °C and 1225 °C for 10 and 15 min at each temperature. The effects of the raw material characteristics, heating temperatures and dwell times on the loss on ignition (LOI), bloating index (BI), bulk density (ρb), apparent and dry particle densities (ρa, ρd), voids (H), water absorption (WA24h) and compressive strength (S) were determined. All the mixtures presented a bloating potential taking into consideration the gases released at high temperatures. The products obtained were lightweight aggregates (LWAs) in accordance with Standard UNE-EN-13055-1 (ρb ≤ 1.20 g/cm3 or particle density ≤ 2.00 g/cm3). LWAs manufactured with 50% washing aggregate sludge and 50% clay-rich sediment were expanded LWAs (BI > 0) and showed the lowest apparent particle density, the lowest water absorption and the highest compressive strength. It was possible to establish three groups of LWAs on the basis of their properties in comparison to Arlita G3, F3 and F5, commercially available lightweight aggregates manufactured in Spain. Our LWAs may have the same or similar applications as these commercial products, such as horticulture, prefabricated lightweight structures and building structures.  相似文献   

4.
Recycling of municipal wastewater requires treatment with flocculants, such as polyacrylamide. It is unknown how polyacrylamide in sludge affects removal of polycyclic aromatic hydrocarbons (PAH) from soil. An alkaline-saline soil and an agricultural soil were contaminated with phenanthrene and anthracene. Sludge with or without polyacrylamide was added while emission of CO2 and concentrations of NH4+, NO3, NO2, phenanthrene and anthracene were monitored in an aerobic incubation experiment. Polyacrylamide in the sludge had no effect on the production of CO2, but it reduced the concentration of NH4+, increased the concentration of NO3 in the Acolman soil and NO2 in the Texcoco soil, and increased N mineralization compared to the soil amended with sludge without polyacrylamide. After 112 d, polyacrylamide accelerated the removal of anthracene from both soils and that of phenanthrene in the Acolman soil. It was found that polyacrylamide accelerated removal of phenanthrene and anthracene from soil.  相似文献   

5.
In this study, industrial and agro-industrial by-products and residues (BRs), animal manures (AMs), and various types of organic wastes (OWs) were analyzed to evaluate their suitability as substitutes for energy crops (ECs) in biogas production. A comparison between the costs of the volume of biogas that can be produced from each substrate was presented with respect to the prices of the substrates in the Italian market. Furthermore, four different feeding mixtures were compared with a mixture of EC and swine manure (Mixture A) used in a full-scale plant in Italy. Swine manure is always included as a basic substrate in the feeding mixtures, because many of the Italian biogas plants are connected to farms. When EC were partially substituted with BR (Mixture B), the cost (0.28 € Nm−3) of the volume of biogas of Mixture A dropped to 0.18 € Nm−3. Furthermore, when the organic fraction of municipal solid waste (OFMSW) and olive oil sludge (OS) were used as possible solutions (Mixtures C and D), the costs of the volume of biogas were −0.20 and 0.11 € Nm−3, respectively. The negative price signifies that operators earn money for treating the waste. For the fifth mix (Mixture E) of the OFMSW with a high solid substrate, such as glycerin from biodiesel production, the resulting cost of the volume of biogas produced was −0.09 € Nm−3. By comparing these figures, it is evident that the biogas plants at farm level are good candidates for treating organic residues of both municipalities and the agro-industrial sector in a cost-effective way, and in providing territorially diffused electric and thermal power. This may represent a potential development for agrarian economy.  相似文献   

6.
Organic soil improvers are mainly used for their potential for preventing soil losses. This study investigates the physicochemical properties of six different organic soil improvers and their effects on the properties and productivity of reconstituted anthropic soils during short-term application compared to farm manure. Treatment materials were obtained from Tunisian agricultural waste composts (almond shell (AS), sesame bark (SB), olive cake (OC), olive mill wastewater sludge (OMWS) and poultry manure (PM)) as well as mixtures of compost-manure (CM). The characterization of soil conditioners shows that (i) nitrogen contents are higher in olive wastes and PM-based composts; (ii) carbon/nitrogen ratio (C/N) and the organic matter (OM) contents are in the ranges of 14.1-29.7 and 19.3-64.5%, respectively; (iii) the electrical conductivity (EC) is higher in manure (M) and compost-manure mixture (4.8-10.4 mS/cm) and (iv) pH values are alkaline (8.2-8.8). Treatments were applied as components of a reconstituted soil at a rate of 14 kg/m2. Except for the manures, the mixtures of soil and treatment material (in a ratio of 600 L/28 kg) were placed in metallic basins to form the reconstituted anthropic soil. Plot areas of 2 m2 were used for each treatment and 2 × 2 m2 for the control. An assessment of the geochemical properties of soils during the cultivation period reveals variations in soil organic matter (SOM) contents as well as pH and EC values. Soil productivity is determined by quantitative and qualitative comparison of tomato fruits obtained from each plot amended with manure-treated soil.  相似文献   

7.
Forest fires are common in Mediterranean environments and may become increasingly more frequent as the climate changes. Destruction of the forest cover and litter layer leads to greater overland flow and increased erosion rates. The greatest risk occurs during the first rainstorms following a major fire, so local authorities must act quickly to put erosion control methods in place in order to avoid excessive post-fire sediment loads in river channels. Deciding on which methods to use requires accurate knowledge of their impact on sediment load and an estimate of their cost efficiency. The objective of this study was to evaluate the efficiency of Log Debris Dams (LDDs) and a sedimentation basin for their effectiveness in trapping sediments. Paired sub-catchments were studied to quantify the amount of sediments trapped in stream channels by a series of LDDs and a sedimentation basin. Cost efficiency was evaluated for each of the measures as a function of the cost per unit volume of sediments trapped. In addition, grain size analyses were performed to characterise the nature of the sediments trapped. A third sediment trapping method, Log Erosion Barriers (LEBs) was evaluated more superficially than the first two and conclusions regarding this method are tentative. LDDs trapped a mean volume of 1.57 m3 per unit (median = 1.28 m3); mean LDD height was 105.4 cm (std. dev. = 21.9 cm), and mean height of trapped sediments was only 50.0 cm (std. dev. = 22.9 cm), showing that the traps were only half filled. Sediment height was limited by the presence of gaps between logs or branches that allowed runoff to flow through. Comparison of the textural characteristics of slope and trapped sediments showed distinct sorting: particles greater than 20 mm were not mobilised from the slopes during the study period, sediments in the medium to coarse sand size fractions were trapped preferentially by the LDDs, and sediments in the sedimentation basin were enriched by clay and silt sized (<0.050 mm) particles as coarser sediments were trapped upstream by the LDDs. Cost efficiency of LDDs was estimated at about 143 € m−3 for the LDDs and 217 € m−3 for the sedimentation basin at the time of sampling. The LDDs are therefore a cost effective method of trapping sediments, but they can only be used when pine trees or straight-trunked trees are locally available. In this case, they should be combined with LEBs, which had a cost efficiency estimated at about 250 € m−3. Installation of the LEBs had not been optimised and they have the advantage of trapping sediments on the slopes where they can continue to play an ecological role, so this method can give better results with more care. Sedimentation basins can be emptied if necessary and are useful in areas where pine trees are not available and where the site can be secured.  相似文献   

8.
This study investigated the use of electrokinetics in unsaturated soil to promote biodegradation of pentachlorophenol through increased contact between bacteria and contaminant. Soil microcosms, contaminated with approximately 100 mg kg−1 pentachlorophenol (containing [14C]-PCP as a tracer), and inoculated with a specific pentachlorophenol-degrading bacterium (Sphingobium sp. UG30–1 × 108 cfu g−1) were subjected to constant and regularly reversed electric currents (10 mA). The former caused large pH and moisture content changes due to water electrolysis and electroosmotic effects, with subsequent negative impacts on biodegradation parameters including enzyme activity and contaminant mineralisation (as measured by 14CO2 evolution rate). The reversed field caused little change in pH and moisture content and led to more rapid contaminant mineralisation, lower soil contaminant concentration in the majority of the microcosms and increased soil enzyme activity (with the exception of soil immediately adjacent to the anode). The presence of an electric field, if suitably applied, may therefore enhance contaminant biodegradation in unsaturated soil.  相似文献   

9.
The purpose of this study was assessing Cu and Zn availabilities in soils amended with a biosolid through the determination of their sequentially extracted chemical forms and their relationship with the contents of these metals in ryegrass (Lolium perenne L.) and subterranean clover (Trifolium subterraneum L.) plant tissues cultivated in a greenhouse using four soils classified as Aquic Xerochrepts and Ultic Haploxeralfs representatives of potential areas for biosolids application in the central zone of Chile. The soils were treated with sewage sludge at a rate of 0 and 30 Mg ha−1. The greenhouse experiment was carried out through a completely randomized block design in a 2 × 4 (biosolid rate × soil) arrangement, considering three repetitions per treatment. The soils used in the greenhouse experiment before and after cultivation, were sequentially extracted with specific reagents and conditions in order to obtain the following fractions: exchangeable, sodium acetate-soluble, soluble in moderately reducing condition, K4P2O7-soluble, soluble in reducing condition, and soluble in strongly acid and oxidizing condition. It was established that Cu and Zn were predominantly found in soils in less available forms, associated to organic matter, oxides and clay minerals. Zinc concentration in ryegrass plants was higher than that found in subterranean clover plants in biosolid-amended soils. Zinc contents in ryegrass shoot and root correlated with the exchangeable, bound-to-carbonate, and bound-to-FeOx metal forms in control soil. Copper and Zn bioavailabilities were estimated through satisfactorily fitted multiple linear regression models, with determination coefficients from 0.77 to 0.99, which showed a positive contribution of the labile metal forms in soils, especially in relation to Zn in both plant species.  相似文献   

10.
11.
Abstract: A pervious concrete infiltration basin was installed on the campus of Villanova University in August 2002. A study was undertaken to determine what contaminants, if any, were introduced to the soils underlying the site as a result of this best management practice (BMP). The average infiltration rate at the site is approximately 10?4 cm/s. The drainage area (5,208 m2) consists of grassy surfaces (36%), standard concrete/asphalt (30%), and roof surfaces (30%) that directly connect to the infiltration beds via downspouts and storm sewers. Composite samples of infiltrated stormwater were collected from the vadose zone using soil moisture suction devices. Discrete samples were collected from a port within an infiltration bed and a downspout from a roof surface. Samples from 17 storms were analyzed for pH, conductivity, and concentrations of suspended solids, dissolved solids, chloride, copper, and total nitrogen. Copper and chloride were the two constituents of concern at this site. Copper was introduced to the system from the roof, while chloride was introduced from deicing practices. Copper was not found in porewater beneath 0.3 m and the chloride was not significant enough to impact the ground water. This research indicates that with proper siting, an infiltration BMP will not adversely impact the ground water.  相似文献   

12.
The hydrolysis/precipitation behaviors of Al3+, Al13 and Al30 under conditions typical for flocculation in water treatment were investigated by studying the particulates' size development, charge characteristics, chemical species and speciation transformation of coagulant hydrolysis precipitates. The optimal pH conditions for hydrolysis precipitates formation for AlCl3, PACAl13 and PACAl30 were 6.5–7.5, 8.5–9.5, and 7.5–9.5, respectively. The precipitates' formation rate increased with the increase in dosage, and the relative rates were AlCl3 ? PACAl30 > PACAl13. The precipitates' size increased when the dosage increased from 50 μM to 200 μM, but it decreased when the dosage increased to 800 μM. The Zeta potential of coagulant hydrolysis precipitates decreased with the increase in pH for the three coagulants. The iso-electric points of the freshly formed precipitates for AlCl3, PACAl13 and PACAl30 were 7.3, 9.6 and 9.2, respectively. The Zeta potentials of AlCl3 hydrolysis precipitates were lower than those of PACAl13 and PACAl30 when pH > 5.0. The Zeta potential of PACAl30 hydrolysis precipitates was higher than that of PACAl13 at the acidic side, but lower at the alkaline side. The dosage had no obvious effect on the Zeta potential of hydrolysis precipitates under fixed pH conditions. The increase in Zeta potential with the increase in dosage under uncontrolled pH conditions was due to the pH depression caused by coagulant addition. Al–Ferron research indicated that the hydrolysis precipitates of AlCl3 were composed of amorphous Al(OH)3 precipitates, but those of PACAl13 and PACAl30 were composed of aggregates of Al13 and Al30, respectively. Al3+ was the most un-stable species in coagulants, and its hydrolysis was remarkably influenced by solution pH. Al13 and Al30 species were very stable, and solution pH and aging had little effect on the chemical species of their hydrolysis products. The research method involving coagulant hydrolysis precipitates based on Al–Ferron reaction kinetics was studied in detail. The Al species classification based on complex reaction kinetic of hydrolysis precipitates and Ferron reagent was different from that measured in a conventional coagulant assay using the Al–Ferron method. The chemical composition of Ala, Alb and Alc depended on coagulant and solution pH. The Alb measured in the current case was different from Keggin Al13, and the high Alb content in the AlCl3 hydrolysis precipitates could not used as testimony that most of the Al3+ was converted to highly charged Al13 species during AlCl3 coagulation.  相似文献   

13.
Maintenance of soil organic carbon (SOC) is important for sustainable use of soil resources due to the multiple effects of SOC on soil nutrient status and soil structural stability. The objective of this study was to identify the changes in soil aggregate distribution and stability, SOC, and nitrogen (N) concentrations after cropland was converted to perennial alfalfa (Medicago sativa L. Algonguin) grassland for 6 years in the marginal oasis of the middle of Hexi Corridor region, northwest China. Significant changes in the size distribution of dry-sieving aggregates and water-stable aggregates, SOC, and N concentrations occurred after the conversion from crop to alfalfa. SOC and N stocks increased by 20.2% and 18.5%, respectively, and the estimated C and N sequestration rates were 0.4 Mg C ha−1 year−1 and 0.04 Mg N ha−1 year−1 following the conversion. The large aggregate (>5 mm) was the most abundant dry aggregate size fraction in both crop and alfalfa soils, and significant difference in the distribution of dry aggregates between the two land use types occurred only in the >5 mm aggregate fraction. The percentage of water-stable macroaggregates (>2, 2–0.25 mm) and aggregate stability (mean weight diameter of water-stable aggregates, WMWD) were significantly higher in alfalfa soils than in crop soils. There was a significant linear relationship between total SOC concentration and aggregate parameters (mean weight diameter) for alfalfa soils, indicating that aggregate stability was closely associated with increased SOC concentration following the conversion of crops to alfalfa. The SOC and N concentrations and the C/N ratio were greatest in the >2 mm water-stable aggregates and the smallest in the 0.25–0.05 mm aggregates in crop and alfalfa soils. For the same aggregate, SOC and N concentrations in aggregate fractions increased with increasing total SOC and N concentrations. The result showed that the conversion of annual crops to alfalfa in the marginal land with coarse-texture soils can significantly increase SOC and N stocks, and improve soil structure.  相似文献   

14.
Hydrothermal solidification of riverbed sediments (silt) has been carried out in a Teflon (PTFE) lined stainless steel hydrothermal apparatus, under saturated steam pressure at 343–473 K for 2–24 h by calcium hydrate introduction. Tobermorite was shown to be the most important strength-producing constituent of the solidified silt. A longer curing time or a higher curing temperature was shown to be favorable to the tobermorite formation, thus promoting strength development; however, overlong curing time (24 h) seemed to affect the strength development negatively. The hardening mechanism consisted of the crystal growth/morphology evolution during the hydrothermal process. The species dissolved from the silt were precipitated first as fine particles, and then some of the particles seemed to build up the rudimental morphology of calcium silicate hydrate (CSH) gel. The CSH gel, with precipitated particles, appeared to cause some reorganization within the matrix, which made the matrix denser and thus gave an initial strength development. Tobermorite, transformed inevitably from the CSH gel, reinforced the matrix with its interlocked structure, and thus further promoted the strength development.  相似文献   

15.
An inventory of trace element inputs to agricultural soils in China   总被引:45,自引:0,他引:45  
It is important to understand the status and extent of soil contamination with trace elements to make sustainable management strategies for agricultural soils. The inputs of trace elements to agricultural soils via atmospheric deposition, livestock manures, fertilizers and agrochemicals, sewage irrigation and sewage sludge in China were analyzed and an annual inventory of trace element inputs was developed. The results showed that atmospheric deposition was responsible for 43–85% of the total As, Cr, Hg, Ni and Pb inputs, while livestock manures accounted for approximately 55%, 69% and 51% of the total Cd, Cu and Zn inputs, respectively. Among the elements concerned, Cd was a top priority in agricultural soils in China, with an average input rate of 0.004 mg/kg/yr in the plough layer (0–20 cm). Due to the spatial and temporal heterogeneity of the sources, the inventory as well as the environmental risks of trace elements in soils varies on a regional scale. For example, sewage sludge and fertilizers (mainly organic and phosphate-based inorganic fertilizers) can also be the predominant sources of trace elements where these materials were excessively applied. This work provides baseline information to develop policies to control and reduce toxic element inputs to and accumulation in agricultural soils.  相似文献   

16.
Chromium(VI)-containing sorbents in the form of sludge or solid residue from treatment processes are often landfilled or used as fill materials, therefore the long-term stability of metal binding is important. The reduction of Cr(VI)–Cr(III) through heat treatment may be a useful detoxification method. After heating at 500, 900, 1000, and 1100 °C for 4 h, the transformation of chemical states of chromium on 105 °C-dried, 7.9% Cr(VI)-doped TiO2 powders was studied on the basis of surface area measurements, scanning electron microscopy (SEM) images, X-ray diffraction (XRD), and extended X-ray absorption fine structure (EXAFS) spectra. It was shown that Cr(VI) was reduced to Cr(III) in the Cr(VI)-doped samples after heating within 500–900 °C. The present results also suggested that the chromium octahedral was bridged to the titanium tetrahedral and was incorporated in TiO2 minerals formed after 1000 °C treatment.  相似文献   

17.
Environmental impact and management of phosphogypsum   总被引:2,自引:0,他引:2  
The production of phosphoric acid from natural phosphate rock by the wet process gives rise to an industrial by-product called phosphogypsum (PG). About 5 tons of PG are generated per ton of phosphoric acid production, and worldwide PG generation is estimated to be around 100–280 Mt per year. This by-product is mostly disposed of without any treatment, usually by dumping in large stockpiles. These are generally located in coastal areas close to phosphoric acid plants, where they occupy large land areas and cause serious environmental damage. PG is mainly composed of gypsum but also contains a high level of impurities such as phosphates, fluorides and sulphates, naturally occurring radionuclides, heavy metals, and other trace elements. All of this adds up to a negative environmental impact and many restrictions on PG applications. Up to 15% of world PG production is used to make building materials, as a soil amendment and as a set controller in the manufacture of Portland cement; uses that have been banned in most countries. The USEPA has classified PG as a “Technologically Enhanced Naturally Occurring Radioactive Material” (TENORM).  相似文献   

18.
137Cs activities in mosses and substrate (soil, bark) collected from W. Macedonia, Greece were measured 20 years after the Chernobyl reactor accident. Archive material from previous studies was also used for comparison and diachronic estimation of the radio-contamination status. A gradual decrease was detected which depended on various factors such as the collected species, location, growth rate and substrate. Maximum accumulation capacity of 137Cs was observed in the epilithic mosses in comparison to the epiphytic ones. The 137Cs content in the bark of the two broad-leaved species (oak and fagus) was higher than that of the conifer (pinus). Bark specimens of about 50 cm height were in general more contaminated than those of 200 cm. Autoradiography revealed an amount of 137Cs distributed more or less uniformly in moss thalli. The high 137Cs activities found in mosses 20 years after Chernobyl suggest that these primitive plants are effective, suitable and inexpensive biological detectors of the distribution and burden of radionuclide fallout pattern.  相似文献   

19.
Few studies exist on how chloride from chloride‐based deicers is transported in infiltration‐based stormwater control measures. In 2009, the U.S. Environmental Protection Agency (USEPA) constructed a 0.4 ha parking lot in Edison, New Jersey, that was surfaced with permeable interlocking concrete pavers (PICP), pervious concrete (PC), and porous asphalt (PA). Each surface type has four equally sized, lined sections that direct all infiltrate to separate 5.7 m3 collection tanks. The USEPA acute criterion for aquatic life (860 mg/l) was exceeded in events immediately following a snow event. Concentrations of the infiltrate exceeded the detection limit (5 mg/l) year round but did not exceed the USEPA chronic toxicity (230 mg/l) after April. The chloride concentration decreased with cumulative rainfall since previous snow event, and a power regression described this relationship. In the power regression, the coefficient (b) described the initial concentration following a snow event, and the exponent (m) described the rate in which chloride was flushed through the system with infiltrating water. PC had the largest coefficient (5,664) and largest absolute exponent (?0.92), followed closely by PICP (= 4,943 and = ?0.87), and distantly by PA (= 2,907 and = ?0.67). The differences in release rate were proportional to the measured surface infiltration rates of 4,000; 2,400; and 200 cm/h for PC, PICP, and PA, respectively. These results will assist those who manage or regulate stormwater where receiving waters are chloride impaired.  相似文献   

20.
Researches on the removal of dicofol catalyzed by immobilized cellulase were conducted. Factors, such as acidity, temperature, enzyme activity, and initial concentration of dicofol, which could influence the removal were studied. The optimal pH for dicofol removal by immobilized cellulase was approximately 4–7, broader than that for free enzymes. The removal efficiencies for immobilized and free cellulase both decreased with increasing initial concentration of dicofol. The Km for immobilized cellulase was slightly lower than that of free cellulase, suggesting that substrate affinity may be enhanced by immobilization. The optimum temperatures for immobilized and free cellulase were 45 °C and 50 °C. The removal reaction for immobilized cellulase was found to be a first-order reaction. The activation energy was 64.3 kJ mol−1. The continuous oxidation of dicofol carried out in the static system of immobilized cellulase showed that the removal efficiency of immobilized cellulase remained after six cycles of operation. Thus, the catalytic efficiency of cellulase was improved greatly. As evidenced by infrared and gas chromatography–mass spectrometry data, the mechanism of reaction might involve an attack by the OH free radical of cellulase at a weak location of the dicofol molecule, resulting in the removal of three chlorine atoms from dicofol, thus oxygenizing dicofol and producing 4,4′-dichloro-dibenzophenone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号