首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Lessonia nigrescens and Durvillaea antarctica, two large sub-Antarctic brown algae from the southern Chilean coast, were exposed to solar UV radiation in an outdoor system during a summer day (for 11 h) as well as to artificial UV radiation under controlled laboratory conditions at two temperatures (15 and 20 °C) for 72 h. Chlorophyll a fluorescence–based photoinhibition of photosynthesis was measured during the outdoor exposure, while electron transport rates, lipid peroxidation, antioxidant activity and content of phlorotannins were determined at different time intervals during the laboratory exposure. Under natural solar irradiances in summer, both species displayed well-developed dynamic photoinhibition: F v/F m values decreased by 70 % at noon coinciding with the levels of PAR >1,500 μmol m?2 s?1 and UV-B radiation >1 W m?2 and recovered substantially in the afternoon. In treatments including UV radiation, recovery in D. antarctica started already during the highest irradiances at noon. The results from laboratory exposures revealed that (a) elevated temperature of 20 °C exacerbated the detrimental effects of UV radiation on photochemical parameters (F v/F m and ETR); (b) peroxidative damage measured as MDA formation occurred rapidly and was strongly correlated with the decrease in F v/F m, especially at elevated temperature of 20 °C; (c) the antioxidant activity and increases in soluble phlorotannins were positively correlated mainly in response to UV radiation; (d) phlorotannins were rapidly induced but strongly impaired at 20 °C. In general, short-term (2–6 h) exposures to enhanced UV radiation and temperature were effective to activate the photochemical and biochemical defenses against oxidative stress, and they continued operative during 72 h, a time span clearly exceeding the tidal or diurnal period. Furthermore, when algae were exposed to dim light and control temperature of 15 °C for 6 h, F v/F m increased and lipid peroxidation decreased, indicating consistently that algae retained their ability for recovery. D. antarctica was the most sensitive species to elevated temperature for prolonged periods in the laboratory. Although no conclusive evidence for the effect of the buoyancy of fronds was found, the interspecific discrepancies in thermo-sensitivity in the UV responses found in this study are consistent with various ecological and biogeographical differences described for these species.  相似文献   

2.
The ongoing process of ocean acidification already affects marine life, and according to the concept of oxygen and capacity limitation of thermal tolerance, these effects may be intensified at the borders of the thermal tolerance window. We studied the effects of elevated CO2 concentrations on clapping performance and energy metabolism of the commercially important scallop Pecten maximus. Individuals were exposed for at least 30 days to 4 °C (winter) or to 10 °C (spring/summer) at either ambient (0.04 kPa, normocapnia) or predicted future PCO2 levels (0.11 kPa, hypercapnia). Cold-exposed (4 °C) groups revealed thermal stress exacerbated by PCO2 indicated by a high mortality overall and its increase from 55 % under normocapnia to 90 % under hypercapnia. We therefore excluded the 4 °C groups from further experimentation. Scallops at 10 °C showed impaired clapping performance following hypercapnic exposure. Force production was significantly reduced although the number of claps was unchanged between normocapnia- and hypercapnia-exposed scallops. The difference between maximal and resting metabolic rate (aerobic scope) of the hypercapnic scallops was significantly reduced compared with normocapnic animals, indicating a reduction in net aerobic scope. Our data confirm that ocean acidification narrows the thermal tolerance range of scallops resulting in elevated vulnerability to temperature extremes and impairs the animal’s performance capacity with potentially detrimental consequences for its fitness and survival in the ocean of tomorrow.  相似文献   

3.
D. Hicks  R. McMahon 《Marine Biology》2002,140(6):1167-1179
Acute and chronic upper and lower thermal limits and freeze resistance were investigated in the nonindigenous brown mussel, Perna perna, from the Texas Gulf of Mexico coast in order to assess its potential distribution in North American coastal waters. This species' long-term, incipient lower and upper thermal limits were 7.5°C and 30°C, congruent with the seasonal ambient water temperature range of 10-30°C reported for other populations worldwide. Effects of temperature acclimation and individual size on survival time were most pronounced on chronic exposures to lethal temperatures approaching incipient lower or upper thermal limits. When exposed to temperature increasing at 0.1°C min-1, the acute upper lethal limit was 44°C regardless of acclimation temperature or individual size. P. perna had a limited freeze resistance, being intolerant of emersion at -2.5°C. This species' narrow incipient thermal limits, limited capacity for temperature acclimation and poor freeze resistance may account for its restriction to subtidal and lower eulittoral zones of cooler subtropical rocky shores. Near extinction of P. perna from Texas Gulf of Mexico waters occurred in the summer of 1997 when mean surface-water temperatures approached its incipient upper limit of 30°C.  相似文献   

4.
Climate models predict that the average temperature in the North Sea could increase 3–5 °C and surface-waters pH could decrease 0.3–0.5 pH units by the end of this century. Consequently, we investigated the combined effect of decreased pH (control pH 8.1; decreased pH 7.6) and temperature (control 6.7 °C; elevated 9.5 °C) on the hatching timing and success, and the zoeal development, survival, feeding, respiration and growth (up to stage IV zoea) of the northern shrimp, Pandalus borealis. At elevated temperature, embryos hatched 3 days earlier, but experienced 2–4 % reduced survival. Larvae developed 9 days faster until stage IV zoea under elevated temperature and exhibited an increase in metabolic rates (ca 20 %) and an increase in feeding rates (ca 15–20 %). Decreased pH increased the development time, but only at the low temperature. We conclude that warming will likely exert a greater effect on shrimp larval development than ocean acidification manifesting itself as accelerated developmental rates with greater maintenance costs and decreased recruitment in terms of number and size.  相似文献   

5.
The effect of light and temperature on the growth of Microcystis ichthyoblabe and Anabaena aphanizomenoides, isolated from the subtropical Oued Mellah lake, Morocco (33°30′N–07°20′W), were investigated in batch culture. Growth rates at 66 light–temperature combinations were determined and fitted with different mathematical models. The results show that the two Cyanobacteria grow at all light intensities and temperatures, except at 10 °C for A. aphanizomenoides, where the growth was strongly limited. The μmax of M. ichthyoblabe increased with temperature from 0.56 d?1 at 10 °C to 1.32 d?1 at 35 °C. At all tested temperatures, a relative photoinhibition within the studied range of irradiance was observed and the photosensitivity was thermodependent. For Anabaena, the obtained μmax ranged between 0.07 d?1 at 10 °C and 1.46 d?1 at 35 °C, and a weak photoinhibition was observed at 15 °C. The positive correlation between μmax and Iopt (r2≥0.93) indicates a close interaction between light and temperature on the cyanobacteria growth. The results obtained in this work suggest that the growth of these two species is possible under low light and low temperature.  相似文献   

6.
With global climate change, ocean warming and acidification occur concomitantly. In this study, we tested the hypothesis that increasing CO2 levels affect the acid–base balance and reduce the activity capacity of the Arctic spider crab Hyas araneus, especially at the limits of thermal tolerance. Crabs were acclimated to projected oceanic CO2 levels for 12 days (today: 380, towards the year 2100: 750 and 1,120 and beyond: 3,000 μatm) and at two temperatures (1 and 4 °C). Effects of these treatments on the righting response (RR) were determined (1) at acclimation temperatures followed by (2) righting when exposed to an additional acute (15 min) heat stress at 12 °C. Prior to (resting) and after the consecutive stresses of combined righting activity and heat exposure, acid–base status and lactate contents were measured in the haemolymph. Under resting conditions, CO2 caused a decrease in haemolymph pH and an increase in oxygen partial pressure. Despite some buffering via an accumulation of bicarbonate, the extracellular acidosis remained uncompensated at 1 °C, a trend exacerbated when animals were acclimated to 4 °C. The additional combined exposure to activity and heat had only a slight effect on blood gas and acid–base status. Righting activity in all crabs incubated at 1 and 4 °C was unaffected by elevated CO2 levels or acute heat stress but was significantly reduced when both stressors acted synergistically. This impact was much stronger in the group acclimated at 1 °C where some individuals acclimated to high CO2 levels stopped responding. Lactate only accumulated in the haemolymph after combined righting and heat stress. In the group acclimated to 1 °C, lactate content was highest under normocapnia and lowest at the highest CO2 level in line with the finding that RR was largely reduced. In crabs acclimated to 4 °C, the RR was less affected by CO2 such that activity caused lactate to increase with rising CO2 levels. In line with the concept of oxygen and capacity limited thermal tolerance, all animals exposed to temperature extremes displayed a reduction in scope for performance, a trend exacerbated by increasing CO2 levels. Additionally, the differences seen between cold- and warm-acclimated H. araneus after heat stress indicate that a small shift to higher acclimation temperatures also alleviates the response to temperature extremes, indicating a shift in the thermal tolerance window which reduces susceptibility to additional CO2 exposure.  相似文献   

7.
High-rocky-shore intertidal animals are predicted to be generally more vulnerable to climate warming than lower-shore species, because their thermal tolerances lie closer to maximum environmental temperatures (T e). However, this prediction is based on taxonomically and ecologically limited information. The present study investigated the effect of habitat use on climate warming vulnerability of the tropical high-shore snail, Echinolittorina malaccana (from Brunei Darussalam, 5°N), which aestivates in sun-exposed or shaded habitats. The thermal regimes of these habitats differed vastly, but snails showed similar daily energy consumption in either habitat, due to temperature-insensitive metabolism (TIM) between 35 and 46 °C in the sun-resting snails. However, maximum T e values in the shade and the sun were 35 and 46 °C, respectively, suggesting that sun-resting snails, which presently experience temperatures near the incipient lethal temperature range (46–56 °C), should be more threatened by further warming than shade-resting snails, which have an 11 °C ‘safety margin’. Thus, vulnerability of high-shore species to climate warming could be moderated by availability of shaded habitat, making predictions for these species more complex than previously realized.  相似文献   

8.
The thermal envelope of development to the larval stage of two echinoids from eastern Australia was characterized to determine whether they fill their potential latitudinal ranges as indicated by tolerance limits. The tropical sand dollar, Arachnoides placenta, a species that is not known to have shifted its range, was investigated in Townsville, northern Australia (19°20′S, 146°77′E), during its autumn spawning season (May 2012). The subtropical/temperate sea urchin, Centrostephanus rodgersii, a species that has undergone poleward range expansion, was investigated in Sydney, southern Australia (33°58′S, 151°14′E), during its winter spawning season (August 2012). The thermal tolerance of development was determined in embryos and larvae reared at twelve temperatures. For A. placenta, the ambient water temperature near Townsville and experimental control were 24 °C and treatments ranged from 14 to 37 °C. For C. rodgersii, ambient Sydney water temperature and experimental control were 17 °C, and the treatment range was 9–31 °C. A. placenta had a broader developmental thermal envelope (14 °C range 17–31 °C) than C. rodgersii (9 °C range 13–22 °C). Both species developed successfully at temperatures well below ambient, suggesting that cooler water is not a barrier to poleward migration for either species. Both species presently live near the upper thermal limits for larval development, and future ocean warming could lead to contractions of their northern range limits. This study provides insights into the factors influencing the realized and potential distribution of planktonic life stages and changes to adult distribution in response to global change.  相似文献   

9.
Temperature variability is particularly pronounced in intertidal systems. The importance of considering this variability has been increasingly recognised, especially in the context of climate change and disease dynamics. Here, we investigated the effects of temperature variability on the transmission of the intertidal trematode Maritrema novaezealandensis. The experimental treatments were 15 °C (control), 15 + 5 °C daily, 15 + 10 °C every second day, 15 + 15 °C every third day (overall equal thermal loading), and a heat wave treatment (15 + 10 °C daily). Daily 6 h incubations were carried out corresponding to daytime low tides over a 12-day period. Effects on output of transmission stages (cercariae) from infected Zeacumantus subcarinatus snail hosts and transmission success of cercariae to Paracalliope novizealandiae amphipod hosts were quantified, as well as the survival of amphipods. Results showed differential effects on output and transmission success. The number of cercariae emerging was similar for treatments with equal thermal loading, but was substantially increased in the heat wave treatment. Transmission success was highest and comparable for the treatments with regular daily temperature increases (i.e. 15 + 5 °C and heat wave), compared to other treatments. Amphipod survival was not affected by temperature treatment directly, but by the number of parasites infecting an amphipod, as well as amphipod sex. These results demonstrate that cercarial output depends mostly on total thermal loading, whereas successful infection of amphipods is determined by total time above 15 °C. Repeated exposure to ~25 °C, as expected under a heat wave scenario, therefore increases both transmission pressure and success, and hence, the risk of parasite-induced mortality in amphipods.  相似文献   

10.
A stochastic simulation model of brown shrimp (Penaeus aztecus Ives) population dynamics in Galveston Bay, Texas, is described, validated, and used to evaluate the effects of management alternatives and changing environmental conditions on shrimp dynamics. The model is composed of submodels representing: (1) recruitment, (2) growth, (3) natural mortality, (4) fishing mortality, and (5) emigration of brown shrimp. The model predicts significant changes in total annual harvest from the food shrimp, bait, and recreational fisheries resulting from (1) closure of the bay system to all fishing except during the spring and fall open seasons, (2) two-week postponement of the opening and closing of the open seasons for the food shrimp fishery, (3) a 2.5°C increase and (4) a 2.5°C decrease in mean water temperature, (5) an 80% increase and (6) an 80% decrease in fishing effort. No significant change in the total annual harvest is predicted when the food shrimp fishing season is extended from May 15 through December 15. Sensitivity analysis suggests that field experimentation designed specifically to test the hypothesis of a 60-day time lag between brown shrimp recruitment into the bays and exposure to the fishery should receive high priority. Simulation results are discussed within a management framework.  相似文献   

11.
We show the potentiality of coupling together different compound-specific isotopic analyses in a laboratory experiment, where 13C-depleted leaf litter was incubated on a 13C-enriched soil. The aim of our study was to identify the soil compounds where the C derived from three different litter species is retained. Three 13C-depleted leaf litter (Liquidambar styraciflua L., Cercis canadensis L. and Pinus taeda L., δ13CvsPDB ≈ ?43‰), differing in their degradability, were incubated on a C4 soil (δ13CvsPDB ≈ ?18‰) under laboratory-controlled conditions for 8 months. At harvest, compound-specific isotope analyses were performed on different classes of soil compounds [i.e. phospholipids fatty acids (PLFAs), n-alkanes and soil pyrolysis products]. Linoleic acid (PLFA 18:2ω6,9) was found to be very depleted in 13C (δ13CvsPDB ≈ from ?38 to ?42‰) compared to all other PLFAs (δ13CvsPDB ≈ from ?14 to ?35‰). Because of this, fungi were identified as the first among microbes to use the litter as source of C. Among n-alkanes, long-chain (C27–C31) n-alkanes were the only to have a depleted δ13C. This is an indication that not all of the C derived from litter in the soil was transformed by microbes. The depletion in 13C was also found in different classes of pyrolysis products, suggesting that the litter-derived C is incorporated in less or more chemically stable compounds, even only after 8 months decomposition.  相似文献   

12.
Five hundred and ninety-nine primary producers and consumers in the Papahānaumokuākea Marine National Monument (PMNM) (22°N–30°N, 160°W–180°W) were sampled for carbon and nitrogen stable isotope composition to elucidate trophic relationships in a relatively unimpacted, apex predator–dominated coral reef ecosystem. A one-isotope (δ13C), two-source (phytoplankton and benthic primary production) mixing model provided evidence for an average minimum benthic primary production contribution of 65 % to consumer production. Primary producer δ15N values ranged from ?1.6 to 8.0 ‰ with an average (2.1 ‰) consistent with a prevalence of N2 fixation. Consumer group δ15N means ranged from 6.6 ‰ (herbivore) to 12.1 ‰ (Galeocerdo cuvier), and differences between consumer group δ15N values suggest an average trophic enrichment factor of 1.8 ‰ Δ15N. Based on relative δ15N values, the larger G. cuvier may feed at a trophic position above other apex predators. The results provide baseline data for investigating the trophic ecology of healthy coral reef ecosystems.  相似文献   

13.
The photophysiology of three geniculate coralline algal species (Corallina officinalis, C. caespitosa and Ellisolandia elongata) was determined in intertidal rock pools in the south-west UK at Combe Martin (51°12′31N 4°2′19W) and Heybrook Bay (50°31′66N 4°11′41W), at the start, middle and end of summer (September 1 and 2) and winter (February 9 and 10) daylight tidal emersion periods, in relation to prevailing irradiance, temperature and carbonate chemistry conditions. Algal photophysiology was assessed from rapid light curves performed using pulse amplitude modulation fluorometry. Corallina and Ellisolandia experienced significant fluctuations in irradiance, temperature and carbonate chemistry over seasonal and tidal cycles. Rock pool carbonate chemistry was predictable (R 2 = 0.82, P < 0.0001) by photodose (summed irradiance) plus water temperature, but not significantly related to photophysiology. In contrast, Corallina and Ellisolandia relative maximum electron transfer rate showed a significant negative relationship (R 2 = 0.65, P < 0.0001) with irradiance plus water temperature. At a seasonal resolution, photoacclimation to maximize both light harvesting during winter months and photoprotection during summer months was observed for all species. Dynamic photoinhibition was apparent over both summer and winter tidal emersion, in relation to irradiance fluctuations. More effective photoinhibition was apparent during summer months, with greater sensitivity to irradiance and slower recovery in F v/F m, observed during winter. With sustained high irradiance over tidal emersion, the establishment of high pH/low inorganic carbon conditions may impact photochemistry. This study represents the first assessment of C. officinalis, C. caespitosa and E. elongata photophysiology underpinned by clear species concepts and highlights their ability to adapt to the dramatically fluctuating conditions experienced in intertidal rock pools.  相似文献   

14.
The sea anemone Entacmaea quadricolor simultaneously harbours multiple symbiont types from the genus Symbiodinium, while providing essential habitat for anemonefish. This anemone lives close to its upper thermal threshold and experiences bleaching under elevated temperature and light stress. Here, we determine whether E. quadricolor experienced a shuffling in the abundance of two genetically distinct symbiont types (Symbiodinium C25 and C3.25) during bleaching and recovery. Anemones were exposed to control (22.9 °C) or elevated temperature (28.5 °C) for 42 days, whereas for the following 75 days, all anemones were exposed to 22.9 °C. By day 47, a more pronounced bleaching occurred via symbiont expulsion in the elevated temperature treatment than the control, and the proportion of C25 to C25 + C3.25 increased by 6.2 and 13.2 % in the control and bleached anemones, respectively. The increased relative abundance of C25 to C3.25 after exposure to thermal stress may indicate that C3.25 performs poorly when temperature is elevated. Although no significant recovery in symbiont density was detected, a revival of the C3.25 genotype was found at day 117, which may indicate that it is either more competitive or has qualities that are beneficial to the symbiosis when thermal stress is no longer apparent. This work demonstrates the potential for this anemone species to shuffle its symbiont types in response to environmental change and could provide resilience during times of stress.  相似文献   

15.
The combined effects of exposure to copper and temperature were investigated in adult specimens and germlings of the canopy-forming brown alga Fucus serratus. A matrix of four temperatures, 6, 12, 17 and 22 °C, and three concentrations of copper, 0, 100 and 1,000 nM total copper were used. Measured endpoints were growth rate, chlorophyll fluorescence parameters and for germlings also survival. The growth rate of adult specimens of F. serratus changed with increasing temperature. Growth tended to be negatively affected by high concentrations of copper when exposed to heat (22 °C) though not significantly so. The photosynthetic performance (i.e., chlorophyll fluorescence parameters: F v/F m, maximum electron transport rate (ETRmax) and maximum non-photosynthetic quenching (NPQmax) of adults was largely unaffected by both copper and temperature. Germling survival, growth rate and chlorophyll fluorescence parameters were affected by the combination of copper concentration and temperature. Increasing temperature led to reduced survival, increased rhizoid growth and higher F v/F m and ETRmax, whereas high copper concentration had a negative effect on the latter three endpoints. The negative effect of high copper concentration was amplified by high temperature. We conclude that juveniles of F. serratus are more susceptible to environmental stressors than adult specimens and recommend therefore including early life stages when assessing the risk of exposure to toxic compounds. Considering the response of adult specimens only may lead to false conclusions regarding the ecological impact of environmental stress.  相似文献   

16.
Various iron oxides are used for Fenton reactions to degrade organic pollutants. The degradation efficiency may be improved by transforming an iron oxide phase to another. Here, we report on the transformation of goethite into hematite by thermal treatment at 400 °C. The products were analyzed by X-ray diffractometry, Raman spectroscopy, scanning electron microscopy and N2-physisorption. The catalytic activities were measured for orange II bleaching at initial concentration of 25 mg L?1, pH 3, catalyst concentration of 0.2 g L?1; 5 mM H2O2, 30 °C. Results show that the synthesized goethite was successfully transformed into hematite, and the specific surface area of the material increased from 134 to 163 m2 g?1. The bleaching efficiency of the orange II dye reached 100 % for the hematite product, versus 78 % for goethite. Therefore, a moderate thermal treatment of a plasma-synthesized goethite improves the catalytic oxidation of organic pollutants.  相似文献   

17.
The depth distribution and temperature preferences of wahoo (Acanthocybium solandri) were quantified in the eastern North Pacific using archival tags. One hundred and eight data-loggers were deployed on wahoo (105?C165-cm fork length) from 2005 to 2008 at three locations off of the coast of Baja California Sur, Mexico (Alijos Rocks, 25°00??N/115°45??W; Magdalena Bay Ridge, 25°55??N/113°21??W; Hurricane Bank, 16°51??N/117°29??W). Twenty-five tagged individuals (23%) were recaptured within close proximity (<20?km) of their release sites. Collectively, depth and temperature data from 499?days revealed a predominant distribution within the upper mixed layer, with an average (±SD) depth of 18?±?4?m during the day and 17?±?6?m at night. Wahoo spent 99.2% of the daytime and 97.9% of night above the thermocline, and the greatest depth achieved by any fish was 253?m. Mean dive duration (3.8?±?2.9 vs. 2.3?±?0.8?min) and the vertical rate of movement (3.8?±?1.3 vs. 3.0?±?0.5?m?min?1) were greater at night when compared to day. Ambient temperatures obtained from tag records ranged from 11.1 to 27.9°C, with an average of 25.0?±?1.1°C. These data identify the importance of the warm, upper mixed layer for the wahoo. High recapture rates proximal to the deployment sites suggest seasonal site fidelity and reveal the economic importance of this resource to both commercial and recreational fisheries of the region.  相似文献   

18.
Trachurus capensis is an important fisheries resource in the degraded Namibian upwelling ecosystem. Food supply and shoaling of hypoxic zones are hypothesised to influence the species’ recruitment success. This paper is the first to quantify energy requirements and hypoxia tolerance of larval and juvenile stages of a Trachurus species. We measured normoxic respiration rates of T. capensis with a size range from 0.001 to 20.8 g wet mass (WM) collected off Cape Town (33.9°S, 18.5°E, 12/2009) and in the northern Benguela (17–24°S, 11–15°E, 02/2011). Routine metabolic rate (RMR) and standard routine rate (SRR) (mg O2 h?1) followed the allometric functions RMR = 0.418 WM0.774 and SRR = 0.275 WM0.855, respectively. Larvae and juveniles had comparatively high metabolic rates, and the energy demand of juveniles at the upper end of the size range appeared too high to be fuelled by a copepod diet alone. T. capensis’ early life stages showed a high tolerance to hypoxic conditions. RMR in larvae did not change until 30 % O2sat at 18 °C. In juveniles, critical oxygen saturation levels were low (PC for SRR = 11.2 ± 1.7 % O2sat and PC for RMR = 13.2 ± 1.6 % O2sat at 20 °C) and oxy-regulation effective (regulation index = 0.78 ± 0.09). A high hypoxia tolerance may facilitate the retention of larvae in near-shore waters providing favourable feeding conditions and allowing juveniles to exploit food resources in the oxygen minimum zone. These mechanisms seem to well adapt T. capensis to a habitat affected by spreading hypoxic zones and probably enhance its recruitment success.  相似文献   

19.
A study was conducted to determine the median lethal toxicity of four heavy metals on the marine gastropod Babylonia areolata. Median lethal toxicity tests were conducted to observe the sensitivity of this gastropod to metals and how variations in temperature might affect toxicity of test elements. Four heavy metals were used in the study. It was observed that the 96-hr LC50 (in mg/L) for the different metals was found to be nickel (Ni) 33.53 (35.22–28.43), copper (Cu) 44.59 (46.43–41.53), cadmium (Cd) 21.53 (23.43–18.37), and zinc (Zn) 27.34 (28.81–24.24) at room temperature 24 °C. With temperature as a variable, median lethal concentration (LC50) values were observed to increase from 22.41 mg/L at 10 °C to 27.34 mg/L at 28 °C and reduce to 18.43 mg/L at 30 °C and a further rise in toxicity was observed at 35 °C where LC50 value was 12.7 mg/L as seen in the case of Zn. It was also observed that at 40 °C thermal and chemical toxicity overlapped as 100% mortality was observed in controls. This trend was noted in all metals for Babylonia areolata indicating that temperature played an important role in determining LC50 values of toxicants.  相似文献   

20.
Among bivalves, scallops are exceptional due to their capacity to escape from predators by swimming which is provided by rapid and strong claps that are produced by the phasic muscle interspersed with tonic muscle contractions. Based on the concept of oxygen and capacity-limited thermal tolerance, the following hypothesis was tested: ocean warming and acidification (OWA) would induce disturbances in aerobic metabolic scope and extracellular acid-case status and impair swimming performance in temperate scallops. Following long-term incubation under near-future OWA scenarios [20 vs. 10 °C (control) and 0.112 kPa CO2 (hypercapnia) vs. 0.040 kPa CO2 (normocapnic control)], the clapping performance and metabolic rates (MR) were measured in resting (RMR) and fatigued (maximum MR) king scallops, Pecten maximus, from Roscoff, France. Exposure to OA, either alone or combined with warming, left MR and swimming parameters such as the total number of claps and clapping forces virtually unchanged. Only the duration of the escape response was affected by OA which caused earlier exhaustion in hyper- than in normocapnic scallops at 10 °C. While maximum MR was unaffected, warm exposure increased RMR in both normocapnic and hypercapnic P. maximus resulting in similar Q 10 values of ~2.2. The increased costs of maintenance and the observation of strongly reduced haemolymph PO2 levels indicate that at 20 °C scallops have reached the upper thermal pejus range with unbalanced capacities for aerobic energy metabolism. As a consequence, warming to 20 °C decreased mean phasic force during escape performance until fatigue. The observed prolonged recovery time in warm incubated scallops might be a consequence of elevated metabolic costs at reduced oxygen availability in the warmth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号