首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanisms of regulating worker reproduction in bumblebees were studied by direct behavioral observations and by measuring ovarian development and juvenile hormone (JH) biosynthesis rates in workers under different social conditions. Workers in the last stage of Bombus terrestris colony development (the competition phase) had the lowest ovarian development and JH biosynthesis rates. Callows introduced into colonies immediately after queen removal (dequeened colonies) demonstrated a significant increase in ovarian development before, but not during, the competition phase. These findings differ from the higher ovarian development in colonies during the competition phase predicted by the prevailing hypothesis that worker reproduction starts in response to a decrease in queen inhibition. Reproduction of callows housed with dominant workers in small queenless groups was inhibited as in queenright colonies. This suggests that the reduced ovarian development and JH biosynthesis rates observed in dequeened and normally developing colonies during the competition phase also reflect inhibition by dominant workers. Thus, two distinct stages of inhibition of reproduction seem to exist: (1) before the competition phase, when the queen slows down worker ovarian development and prevents oviposition; (2) during the competition phase, when dominant workers inhibit ovarian development of other workers. Between these stages there seems to be a temporal “window” of enhanced worker reproductive development. The queen's typical switch to haploid egg production was not associated with changes in worker ovarian development or JH biosynthesis rates. These findings suggest that regulation of worker reproduction in B. terrestris is not determined by simple changes in the queen's inhibition capacity or by the sex of offspring and that the worker's role is more important than previously believed. Received: 18 March 1998 / Accepted after revision: 18 July 1998  相似文献   

2.
In several species of ants, queens often form temporary cooperative associations during colony foundation. These associations end soon after the eclosion of the first workers with the death or expulsion of all but one of the queens. This study examined competition between foundress queens of the fire ant Solenopsis invicta. Although attacks by the workers contributed to queen mortality, queens gained no advantage by producing more workers than their co-foundresses. Restriction fragment length polymorphism analysis of mitochondrial DNA showed that the queen producing more workers during colony founding was no more likely to survive than the less productive queen. In experimentally manipulated colonies in which all the workers were daughters of only one of the queens, the mother of the workers was no more likely to survive than the unrelated queen. Queens producing diploid males reared fewer offspring but were as likely to survive as queens producing only workers. These results suggest that workers do not discriminate between related and unrelated queens within colonies. Aggressive encounters between queens were common. Queens were more likely to die or be expelled if paired with heavier queens or if they lost more weight than their co-foundress during the claustral period. Finally, when queens were separated by screens through which workers could pass, the workers usually attacked and killed the queen farther from the brood. These results suggest that queen survival is promoted by a high fighting ability relative to co-foundresses, rather than by increased worker production, and that workers respond to queen differences that are independent of kinship. Received: 8 September 1995/Accepted after revision: 5 March 1996  相似文献   

3.
Most social groups have the potential for reproductive conflict among group members. Within insect societies, reproduction can be divided among multiple fertile individuals, leading to potential conflicts between these individuals over the parentage of sexual offspring. Colonies of the facultatively polygynous ant Myrmicatahoensis contain from one to several mated queens. In this species, female sexuals were produced almost exclusively by one queen. The parentage of male sexuals was more complex. In accordance with predictions based on worker sex-allocation preferences, male-producing colonies tended to have low levels of genetic relatedness (i.e., high queen numbers). Correspondingly, males were often reared from the eggs of two or more queens in the nest. Further, over half of the males produced appeared to be the progeny of fertile workers, not of queens. Overall investment ratios were substantially more male biased than those predicted by genetic relatedness, suggesting hidden costs associated with the production of female sexuals. These costs are likely to include local resource competition among females, most notably when these individuals are adopted by their maternal nest. Received: 3 March 1998 / Accepted after revision: 20 June 1998  相似文献   

4.
When cooperation is based on shared genetic interests, as in most social insect colonies, mechanisms which increase the genetic similarity of group members may help to maintain sociality. Such mechanisms can be especially important in colonies with many queens because within-colony relatedness drops quickly as queen number increases. Using microsatellite markers, we examined the Old World, multiple-queen, swarm-founding wasp Polybioides tabidus which belongs to the ropalidiine tribe, and found that relatedness among the workers was four times higher than what would be expected based on queen number alone. Relatedness was elevated by a pattern of queen production known as cyclical oligogyny, under which, queen number varies, and daughter queens are produced only after the number of old queens has reduced to one or a very few. As a result, the queens are highly related, often as full sisters, elevating relatedness among their progeny, the workers. This pattern of queen production is driven by collective worker control of the sex ratios. Workers are three times more highly related to females than to males in colonies with a single queen while they are more equally related to males and females in colonies with more queens. As a result of this difference, workers will prefer to produce new queens in colonies with a single queen and males in colonies with many queens. Cyclical oligogyny has also evolved independently in another group of swarm-founding wasps, the Neotropical epiponine wasps, suggesting that collective worker control of sex ratios is widespread in polistine wasps. Received: 22 May 2000 / Revised: 24 August 2000 / Accepted: 4 September 2000  相似文献   

5.
Queen control of egg fertilization in the honey bee   总被引:3,自引:0,他引:3  
The study investigated the precision with which honey bee queens can control the fertilization of the eggs they lay. Because males and workers are reared in different-sized cells, the honey bee is one of the few Hymenoptera in which it is possible for the experimenter to know which type of egg a queen “intends” to lay. Eggs were collected from both worker and drone (male) cells from four honey bee colonies. Ploidy of the embryo was determined using polymorphic DNA microsatellites. All 169 eggs taken from worker cells were heterozygous at at least one microsatellite locus showing that the egg was fertilized. All 129 eggs taken from drone cells gave a single band at the B124 locus, strongly suggesting haploidy. These data show that honey bee queens have great, and quite possibly complete, ability to control the fertilization of the eggs they lay. Data from the literature suggest that in two species of parasitoid Hymenoptera (Copidosoma floridanum, Colpoclypeus florus) females have great, but not complete, ability to control fertilization. Received: 23 December 1997 / Accepted after revision: 17 May 1998  相似文献   

6.
This study compares two basic models for the origin and maintenance of colony gestalt odor in the polygynous ant species Cataglyphis niger. In the first model, queens are centers of de novo biosynthesis and distribution of recognition odors (“queen-centered” model); in the second, colony odors are primarily synthesized and distributed by workers (“worker-centered” model). We tested the behavioral patterns that are predicted from each model, and verified by biochemical means the distributional directionality of these signals. Encounters between nestmates originating from split colonies were as amicable as between nestmates from non-split colonies; queenless ants were as aggressive as their queenright nestmates, and both were equally aggressed by alien ants. These results indicate that queens have little impact on the recognition system of this species, and lend credence to the worker-centered model. The queen-centered model predicts that unique queen substances should be produced in appreciable quantities and that, in this respect, queens should be more metabolically active than workers. Analysis of the chemical composition of postpharyngeal glands (PPGs) or cuticular extracts of queens and workers revealed high similarity. Quantitatively, queens possessed significantly greater amounts of hydrocarbons in the PPG than workers, but the amount on the thoracic epicuticle was the same. Queens, however, possess a lower hydrocarbon biosynthesis capability than workers. The biochemical evidence thus refutes the queen-centered model and supports a worker-centered model. To elucidate the directionality of cue distribution, we investigated exchange of hydrocarbons between the castes in dyadic or group encounters in which selective participants were prelabeled. Queens tended to receive more and give less PPG content, whereas transfer to the epicuticle was low and similar in all encounters, as predicted from the worker-centered hypothesis. In the group encounters, workers transferred, in most cases, more hydrocarbons to the queen than to a worker. This slight preference for the queen is presumably amplified in a whole colony and can explain their copious PPG content. We hypothesize that preferential transfer to the queen may reflect selection to maintain her individual odor as close to the average colony odor as possible. Received: 4 November 1997 / Accepted after revision: 5 February 1998  相似文献   

7.
Queen and worker Bombus terrestris have different optima for the timing of gyne production. Workers, being more related to their gyne-sisters than to their sons, should ascertain that gyne production has started before attempting to reproduce. Their optimal timing for gyne production will be as early as possible, while allowing sufficient ergonomic colony growth to support gyne rearing. Queen optimum, on the other hand, should be to postpone gyne production toward the end of colony life cycle, in order to minimize the time-window available for worker reproduction. Thus, the timing of gyne production may profoundly affect the outcome of queen–worker competition over male production. In this study we investigated some of the social correlates possibly affecting this timing. It was found that neither keeping colony size constant and as low as 20 workers, nor decreasing worker average age, influenced the onset of gyne production. To test the effect of queen age we created young colonies with old queens and vice versa. When colony social composition remained unchanged, in young colonies headed by old queens gynes were produced earlier than predicted, but in the inverse situation gyne production was not delayed. When colony social composition was completely standardized queen age had a decisive effect, indicating that the timing of gyne production is both under queen influence and affected by queen age. Furthermore, queens assess colony age from the time of first worker emergence rather than from their own first oviposition. In these experiments the factors affecting gyne production also affected the onset of queen–worker conflict for male production, suggesting that both are regulated by the same causal effect. Postponing gyne production as much as possible provides another mechanism, in addition to extensive oophagy, for the queen to outcompete her workers in male production.  相似文献   

8.
We studied the effect of prior experience to eggs laid by nestmate and non-nestmate queens on the acceptance of queen-laid eggs by worker wood ants, Formica fusca. We transferred eggs from a non-nestmate queen into colonies during early spring, when their own queen was recommencing egg laying. A few weeks later, workers from these “experienced” colonies accepted eggs of both familiar (44% acceptance) and unfamiliar (40%) non-nestmate queens much more than workers from control colonies (2%) that had only had previous contact with their own queen’s eggs. Thus, prior exposure to eggs laid by a non-nestmate queen induces much greater acceptance of all non-nestmate queen-laid eggs. Mechanistically, we hypothesize that exposure to eggs from several queens may increase acceptance by causing a highly permissive acceptance threshold of non-nestmate queen-laid eggs rather than by widening the template for acceptable queen-laid eggs. These novel results show that egg-discrimination behaviour in F. fusca is flexible and that workers respond to the diversity of eggs experienced in their colony.  相似文献   

9.
Multilocus DNA fingerprinting and microsatellite analysis were used to determine the number of queens and their mating frequencies in colonies of the carpenter ant, Camponotus ligniperdus (Hymenoptera: Formicidae). Only 1 of 61 analyzed queens was found to be double-mated and the population-wide effective mating frequency was therefore 1.02. In the studied population, 8 of 21 mature field colonies (38%) contained worker, male, or virgin queen genotypes which were not compatible with presumed monogyny and therefore suggested oligogyny, i.e., the cooccurrence of several mutually intolerant queens within one colony. Estimated queen numbers in oligogynous colonies ranged between two and five. According to the results of the genetic analysis, most of the queens coexisting in oligogynous colonies were not closely related. Pleometrosis is very rare and queenless colonies adopt mated queens both in the laboratory and field. Therefore, the most plausible explanation for the origin of oligogynous colonies in C. ligniperdus is the adoption of unrelated queens by orphaned mature colonies. The coexistence of unrelated, but mutually intolerant queens in C. ligniperdus colonies demonstrates that oligogyny should be considered as a phenomenon distinct from polygyny. Received: 18 December 1997 / Accepted after revision: 20 June 1998  相似文献   

10.
In the annual bumblebee Bombus terrestris, the onset of queen-worker conflict over male production is seasonally and socially constrained. Workers will do better if they start to reproduce (the so-called competition phase) only after ascertaining that larvae are committed to gyne development but before the season ends because they gain more by rearing sister-gynes than their own sons. Here, we tested two nonmutually exclusive hypotheses as to what triggers the onset of worker reproduction: Workers can directly monitor larval development and/or workers eavesdrop on the queen signal that directs gyne development. Exposing workers to gyne larvae through a double mesh did not advance the competition phase compared to control colonies. However, when workers, but not the queen, were allowed contact with gyne larvae, both the competition phase and gyne production were advanced. Thus, while larvae do not emit a volatile pheromone that discloses their developmental route, the physical contact of workers with such larvae triggers early competition phase. However, workers exclusively exposed to worker larvae (colonies prevented from producing gyne larvae) started to reproduce at the same time as control colonies. Replacing the resident queen with an older queen (from gyne-rearing colonies) advanced the competition phase, irrespective of worker age. The results are consistent with the hypothesis that workers eavesdrop on the queen pheromones. This is adaptive because it allows workers a broader time-window for reproduction and thus to gain fitness from rearing both sister-gynes and sons before the season ends without affecting colony development.  相似文献   

11.
Lack of kin recognition in swarming honeybees ( Apis mellifera )   总被引:2,自引:0,他引:2  
Honeybee colonies reproduce by colony fission and swarming. The primary swarm leaves the nest with the mated mother queen. Further “after-swarms” can leave the nest. These are composed of virgin queens and sister workers. Since all workers in the primary swarm have the same relationship to the mother queen, kin recognition cannot have any effect on the worker distribution in the swarm. Because of polyandry of the mother queen, the after-swarm is composed of super- and halfsister workers of the virgin queen. In this case kin recognition might affect swarm composition if workers increase their inclusive fitness by preferentially investing in a supersister queen. The distribution of workers in the mother colony, the primary and the after-swarm was analyzed using single-locus DNA fingerprinting in two colonies of the honeybee (Apis mellifera). The colonies were composed of 21 and 24 worker subfamilies because of multiple mating of the queen. The subfamily distribution in the mother colonies before swarming was significantly different from the subfamily frequencies in the primary swarm. This indicates different propensities for swarming in the various subfamilies. The subfamily distribution was also significantly different between the mother colony and the after-swarm. There was however no significant difference between the subfamily composition of the primary and the after-swarm. The average effects of kin recognition on the distribution of the subfamilies in the two after-swarms were less than 2%. We conclude that colony-level selection sets the evolutionary framework for swarming behaviour. Received: 22 May 1996 / Accepted after revision: 2 November 1996  相似文献   

12.
Kin conflict over caste determination in social Hymenoptera   总被引:2,自引:0,他引:2  
We argue that caste determination, the process whereby females in the social Hymenoptera develop into either queens or workers, is subject to kin-selected conflict. Potential conflict arises because developing females are more closely related to their would-be offspring than to those of other females. Therefore, they may favour becoming queens contrary to the interests of other developing females and of existing queens and workers. We suggest two contexts leading to potential caste conflict. The first occurs when queens are reared in a reproductive phase following an ergonomic phase of worker production, while the second occurs when queens and workers are reared simultaneously. The first context assumes that workers' per capita contribution to colony survival and productivity falls with rising colony size. A critical feature influencing whether potential conflict is realized is the extent to which developing females can determine their own caste (“self-determination”). Self-determination is facilitated when female larvae control their own food intake and when queen-worker size dimorphism is low. We know of no strong evidence for actual conflict over caste fate arising in the first context. However, stingless bees and polygynous ants with excess queen-potential larvae that are either forced to develop as workers or are culled as adults demonstrate actual caste conflict in the second context. Caste conflict does not preclude caste regulation for “the good of the colony”, but such regulation is contingent on either the absence of potential conflict or on developing females losing control of their caste fate. Received: 22 March 1999 / Received in revised form: 15 June 1999 / Accepted: 19 June 1999  相似文献   

13.
Workers of a queenless honeybee colony can requeen the colony by raising a new queen from a young worker brood laid by the old queen. If this process fails, the colony becomes hopelessly queenless and workers activate their ovaries to lay eggs themselves. Laying Cape honeybee workers (Apis mellifera capensis) produce female offspring as an additional pathway for requeening. We tested the frequency of successful requeening in ten hopelessly queenless colonies. DNA genotyping revealed that only 8% of all queens reared in hopelessly queenless colonies were the offspring of native laying worker offspring. The vast majority of queens resulted from parasitic takeovers by foreign queens (27%) and invading parasitic workers (19%). This shows that hopelessly queenless colonies typically die due to parasitic takeovers and that the parasitic laying workers are an important life history strategy more frequently used than in providing a native queen to rescue the colony. Parasitism by foreign queens, which might enter colonies alone or accompanied by only a small worker force is much more frequent than previously considered and constitutes an additional life history strategy in Cape honeybees.  相似文献   

14.
Although colonies of the fire ant Solenopsis invicta are often founded by small groups of queens, all but one of the queens are soon eliminated due to worker attacks and queen fighting. The elimination of supernumerary queens provides an important context for tests of discrimination by the workers, since the outcome of these interactions strongly affects the workers' inclusive fitness. To test whether workers in newly founded colonies discriminate among nestmate queens, paired cofoundresses were narrowly separated by metal screens that prevented direct fighting, but through which the workers could easily pass. Soon after the first workers completed development, they often attacked one of the queens; these attacks were strongly associated with queen mortality. When one queen's brood was discarded, so that the adult workers were all the daughters of just one queen, the workers were significantly less likely to bite their mother than the unrelated queen; however, this tendency was comparatively weak. Queens kept temporarily at a higher temperature to increase their rate of investment in brood-rearing lost weight more rapidly than paired queens and were subsequently more likely to be attacked and killed by workers. Workers were more likely to bite queens that had been temporarily isolated than queens that remained close to brood and workers. When queens were not separated by screens, the presence of workers stimulated queen fights. These results show that workers discriminate strongly among equally familiar queens and that discrimination is based more on the queens' condition and recent social environment than on kinship. Received: 9 June 1998 / Accepted after revision: 10 October 1998  相似文献   

15.
Social Hymenoptera are general models for the study of parent-offspring conflict over sex ratio, because queens and workers frequently have different reproductive optima. The ant Pheidole pallidula shows a split distribution of sex ratios with most of the colonies producing reproductives of a single sex. Sex ratio specialization is tightly associated with the breeding system, with single-queen (monogynous) colonies producing male-biased brood and multiple-queen (polygynous) colonies female-biased brood. Here, we show that this sex specialization is primarily determined by the queens influence over colony sex ratio. Queens from monogynous colonies produce a significantly more male-biased primary sex ratio than queens from polygynous colonies. Moreover, queens from monogynous colonies produce a significantly lower proportion of diploid eggs that develop into queens and this is associated with lower rate of juvenile hormone (JH) production compared to queens from polygynous colonies. These results indicate that queens regulate colony sex ratio in two complementary ways: by determining the proportion of female eggs laid and by hormonally biasing the development of female eggs into either a worker or reproductive form. This is the first time that such a dual system of queen influence over colony sex ratio is identified in an ant.  相似文献   

16.
Monogyne fire ant, Solenopsis invicta, colony workers are territorial and are aggressive toward members of other fire ant colonies. In contrast, polygyne colony workers are not aggressive toward non-nestmates, presumably due to broader exposure to heritable and environmentally derived nestmate recognition cues (broad template). Workers from both monogyne and polygyne fire ant colonies execute newly mated queens after mating flights. We discovered that monogyne and polygyne queens have a remarkable effect on conspecific recognition. After removal of their colony queen, monogyne worker aggression toward non-nestmate conspecifics quickly drops to merely investigative levels; however, heterospecific recognition/aggression remains high. Queenless monogyne or polygyne worker groups were also not aggressive toward newly mated queens. Queenless worker groups of both forms that adopted a monogyne-derived newly mated queen became aggressive toward non-nestmate workers and newly mated queens. We propose that the powerful effect of fire ant queens on conspecific nestmate recognition is caused by a queen-produced recognition primer pheromone that increases the sensitivity of workers to subtle quantitative differences in nestmate recognition cues. This primer pheromone prevents the adoption of newly mated queens (regulation of reproductive competition) in S. invicta and when absent allows queenless workers to adopt a new queen readily. This extraordinary discovery has broad implications regarding monogyne and polygyne colony and population dynamics.  相似文献   

17.
Queen mating frequency of the facultatively polygynous ant Acromyrmex echinatior was investigated by analysing genetic variation at an (AG)n repeat microsatellite locus in workers and sexuals of 20 colonies from a single Panamanian population. Thirteen colonies were found to be monogynous, 5 colonies contained multiple queens, whereas the queen number of 2 colonies remained unresolved. Microsatellite genotypes indicated that 12 out of 13 queens were inseminated by multiple males (polyandry). The mean queen mating frequency was 2.53 and the mean genetically effective paternity frequency was 2.23. These values range among the highest found in ants, and the results are in keeping with the high mating frequencies reported for other species of leafcutter ants. Consistent skew in the proportional representation of different patrilines within colonies was found, and this remained constant in two consecutive samples of offspring. Dissections showed that all examined queens from multiple-queen colonies were mated egg-layers. The mean relatedness value among nestmate workers in polygynous colonies was lower than that for monogynous colonies. No diploid males were detected in a sample of 70 genotyped males. Worker production of males was detected in one queenless colony. We discuss our findings in relation to known patterns of multiple maternity and paternity in other eusocial Hymenoptera. Received: 2 September 1998 / Received in revised form: 3 February 1999 / Accepted: 7 February 1999  相似文献   

18.
Social insect colonies often have one or a few queens. How these queens maintain their reproductive monopoly, when other colony members could gain by sharing in the reproduction, is not generally known. DNA microsatellite genotyping is used to determine reproductive interests of various classes of colony members in the paper wasp, Polistes annularis. The relatedness estimates show that the best outcome for most individuals is to be the reproductive egg-layer. For workers, this depends on the sex of offspring: they should prefer to lay their own male eggs, but are indifferent if the queen lays the female eggs. The next-best choice is usually to support the current queen. As a rule, subordinates and workers should prefer the current queen to reproduce over other candidates (though subordinates have no strong preference for the queen over other subordinates, and workers may prefer other workers as a source of male eggs). This result supports the theory that reproductive monopoly stems from the collective preferences of non-reproductives, who suppress each other in favor of the queen. However, we reject the general hypothesis of collective worker control in this species because its predictions about who should succeed after the death of the present queen are not upheld. The first successor is a subordinate foundress even though workers should generally prefer a worker successor. If all foundresses have died, an older worker succeeds as queen, in spite of a collective worker preference for a young worker. The results support the previous suggestion that age serves as a conventional cue serving to reduce conflict over queen succession. Received: 3 May 1996 / Accepted after revision: 22 September 1996  相似文献   

19.
Honey-bees, Apis, are an important model system for investigating the evolution and maintenance of worker sterility. The queen is the main reproductive in a colony. Workers cannot mate, but they can lay unfertilized eggs, which develop into males if reared. Worker reproduction, while common in queenless colonies, is rare in queenright colonies, despite the fact that workers are more related to their own sons than to those of the queen. Evidence that worker sterility is enforced by 'worker policing' is reviewed and worker policing is shown to be widespread in Apis. We then discuss a rare behavioural syndrome, 'anarchy', in which substantial worker production of males occurs in queenright colonies. The level of worker reproduction in these anarchic colonies is far greater than in a normal queenright honey-bee colony. Anarchy is a counterstrategy against worker policing and an example of a 'cheating' strategy invading a cooperative system.  相似文献   

20.
Summary In a population of the monogynous slave-making ant Harpagoxenus sublaevis in S.E. Sweden, the mean proportion of dry weight investment in queens was 0.54. This result differed significantly from 0.75 but not from 0.5, matching the prediction from the genetic relatedness hypothesis of sex ratio applied to slave-makers, given (as confirmed by this study) single mating of queens, population-wide mate competition, and relatively low levels of worker male production. Sex investment appeared unaffected by resource availability. In the same 47 colony population sample, fertile slave-maker workers were found in every queenless colony (ca. 30% of all colonies), and in 58% of queen-right colonies. Fertile workers occurred at a significantly higher frequency in the queenless colonies (19.2%) than in the queenright ones (9.8%), confirming that queenless conditions promote worker fertility. Fertile and sterile workers were similar in size. Electrophoretic allozyme analysis of ants from 49 colonies showed that: 1) queens mated singly; 2) female nestmates were full sisters (their regression coefficient of relatedness (±SE) was 0.735±0.044); 3) inbreeding did not occur; 4) queen and worker siblings were not genetically differentiated. Worker male production in queenright colonies was neither confirmed nor ruled out by the genetic data. However, production data indicated that queenless workers produced between 4.4 and 21.6% of all males. Overall colony productivity was largely determined by slave number, itself positively correlated with the number of slave-maker workers. There was an abrupt switch from all worker to all sexual production as colony size rose, as predicted by life history models. In queenright colonies, fertile slave-makers did not discernibly reduce colony productivity. Such workers occurred in queenright colonies with most slaves, suggesting they exploited energetic surpluses. Worker reproduction in H. sublaevis therefore appears to have greater influence at the level of individual behaviour than at colony or population level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号