首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Using a dry dust removal system used for aluminium dust collection presents a dust explosion risk, whereas a wet dust removal system presents a risk of hydrogen fire and explosion. Neither system can attain a sufficient level of safety for use at aluminium processing sites. In this paper, soybean isoflavone, a non-toxic and environmentally sustainable flavonoid, was investigated to inhibit hydrogen production from aluminium dust and water. Scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and Fourier transform infrared spectroscopy (FTIR) were used to characterize aluminium particles before and after the reaction. Soybean isoflavone was found to inhibit hydrogen production from aluminium dust and water. At a soybean isoflavone solution concentration of 2.1 g L−1, a dense protective film resulting from chemical adsorption on the surfaces of the aluminium particles isolated the aluminium particles from water molecules. This film blocked the reaction pathway between the aluminium particles and water to suppress hydrogen generation. This fundamental study addresses the problems of hydrogen fires and explosions in wet dust removal systems for aluminium dust collection and provides a novel, safe and effective method for aluminium dust removal.  相似文献   

2.
To identify a superior explosion suppressant for Al-Mg alloy dust explosion, the inhibition effects of Al(OH)3 and Mg(OH)2 powders on Al-Mg alloy explosion were investigated. A flame propagation suppression experiment was carried out using a modified Hartmann tube experimental system, an explosion pressure suppression experiment was carried out using a 20-L spherical explosion experimental system, and the suppression mechanisms of the two kinds of powders on Al-Mg alloy dust explosion were further investigated. The results demonstrate that by increasing the mass percentages of Al(OH)3 and Mg(OH)2, the flame height, flame propagation speed and explosion pressure of deflagration can be effectively reduced. When 80% Mg(OH)2 powder was added, the explosion pressure was reduced to less than 0.1 MPa, and the explosion was restrained. Due to the strong polarity of the surface of Mg(OH)2, agglomeration easily occurs; hence, when the added quantity is small, the inhibition effect is weaker than that of Al(OH)3. Because the Mg(OH)2 decomposition temperature is higher, the same quantity absorbs more heat and exhibits stronger adsorption of free radicals. Therefore, to fully suppress Al-Mg alloy explosion, the suppression effect of Mg(OH)2 powder is better.  相似文献   

3.
Using micron-sized Al2O3 particles as carriers to grow carbon nanotubes (CNTs) under 700°C atmosphere of methane and hydrogen after pre-planted catalysts of Fe–Ni nanoparticles, those composite CNTs (CCNTs) have demonstrated several unique properties compared to CNTs—medium specific surface area and zeta potential, high adsorption capacity for metal ions, high recovery rate by acids, low decomposition heat for exothermal reaction, and so on. The adsorption behaviours of Pb2+, Cu2+ and Cd2+ in aqueous solutions by CCNTs are in good agreement with the Langmuir adsorption isotherm and second order kinetic model with maximum individual adsorption capacities of 67.11, 26.59 and 8.89 mg g−1. The individual and competitive adsorption behaviours indicated that the preference order of adsorption were Pb2+ > Cu2+ > Cd2+ for aluminum oxides, activated carbon, commercial CNTs, and CCNTs as well as other researchers’ CNTs. We suggest that future development of CNTs to combine with metals and/or other materials, such as TiO2, should consider attached to carriers or surface in order to avoid concerns on environment, health and safety. Thus, growing CNTs on Al2O3 particles to form CCNTs is an inherently safe approach for many promising environmental applications.  相似文献   

4.
When aluminum magnesium alloy dust floats in the air, a certain ignition energy can easily cause an accidental explosion. To prevent and control the occurrence of accidental explosions and reduce the severity of accidents, it is necessary to carry out research on the explosion suppression of aluminum magnesium alloy dust. This paper uses a vertical glass tube experimental device and a 20 L spherical explosive experimental device to carry out experimental studies on the suppression of the flame propagation and explosion overpressure of aluminum magnesium alloy dust with melamine polyphosphate (MPP) and Al(OH)3. With increasing MPP and Al(OH)3 concentrations, the flame brightness darkened, the flame velocity and propagation distance gradually decreased, and Pmax and (dp/dt)max decreased significantly. When the amount of MPP added reached 60%, the flame propagation distance decreased to 188 mm, which is a decrease of 68%, and the explosion overpressure decreased to 0.014 MPa, effectively suppressing the explosion of aluminum magnesium alloy dust. The experimental results showed that MPP was more effective than Al(OH)3 in inhibiting the flame propagation and explosion overpressure of the aluminum magnesium alloy dust. Finally, the inhibitory mechanisms of the MPP and Al(OH)3 were further investigated. The MPP and Al(OH)3 endothermic decomposition produced an inert gas, diluted the oxygen concentration and trapped active radicals to terminate the combustion chain reaction.  相似文献   

5.
This paper discusses the results of an experimental program carried out to determine dust cloud deflagration parameters of selected solid-state hydrogen storage materials, including complex metal hydrides (sodium alanate and lithium borohydride/magnesium hydride mixture), chemical hydrides (alane and ammonia borane) and activated carbon (Maxsorb, AX-21). The measured parameters include maximum deflagration pressure rise, maximum rate of pressure rise, minimum ignition temperature, minimum ignition energy and minimum explosible concentration. The calculated explosion indexes include volume-normalized maximum rate of pressure rise (KSt), explosion severity (ES) and ignition sensitivity (IS). The deflagration parameters of Pittsburgh seam coal dust and Lycopodium spores (reference materials) are also measured. The results show that activated carbon is the safest hydrogen storage media among the examined materials. Ammonia borane is unsafe to use because of the high explosibility of its dust. The core insights of this contribution are useful for quantifying the risks associated with use of these materials for on-board systems in light-duty fuel cell-powered vehicles and for supporting the development of hydrogen safety codes and standards. These insights are also critical for designing adequate safety features such as explosion relief venting and isolation devices and for supplementing missing data in materials safety data sheets.  相似文献   

6.
In this work, vinyltriethoxysilane (A151) and 3-aminopropyltriethoxysilane (KH550) were used to modify ammonium polyphosphate (APP), showing that the dispersibility of APP could be improved remarkably by A151 and KH550. The maximum explosion pressure of aluminum dust explosion decreased with the addition of APP, A151-APP (APP-A) and KH550-APP (APP-B), with the exception of the case where the inerting ratio (α) of APP-A was less than 0.4. After the addition of APP-B, there was little difference in flame propagation behavior and explosion pressure compared with that of adding APP, indicating that APP-B could retain the inhibition performance of APP compared with APP-A. When the inerting ratios of APP, APP-A and APP-B were 1.2, 1.4 and 1.4, respectively, the aluminum dust explosion could be completely inhibited. The explosion residues of aluminum dust/APP mainly consisted of Al2O3, P-containing and N-containing compounds. It could be analyzed that APP exerted the inhibition effect through both chemical and physical effects.  相似文献   

7.
To investigate the effect of Al2O3 particle size on an aluminum explosion, the overpressure and flame velocity in a vertical duct were evaluated. The results show that the inhibitory effect of submicron Al2O3 is best, while the inhibitory effect increases with increasing inerting ratio. However, the inhibitory effect of micron Al2O3 does not increase significantly after the inerting ratio exceeds 40%. For high-concentration aluminum powder, 0.8 μm Al2O3 with an inerting ratio less than 20% promotes aluminum explosion. As the inerting ratio increases beyond 20%, however, the overpressure decreases. Furthermore, Al2O3 inhibits the formation of the intermediate product AlO and decreases the flame brightness. As the inerting ratio of 0.8 μm Al2O3 reaches 50%, the white patches in the flame image disappear. The results of scanning electron microscopy showed that the explosion products agglomerate and some dot-like protrusions appear on the surface of the unburned aluminum particles. The inhibition mechanism was qualitatively investigated. Physical heat absorption is proven to play a limited role. Thermal radiation and chemical inhibition play a key role. The chemical effect mainly influences the surface reaction energy source.  相似文献   

8.
Coal dust explosion is one of the serious accidents in the coal industry. It is of great significance to study the flame suppression of coal dust explosions. In this paper, a novel active component NiB with amorphous structure for explosion suppression was synthesized by the chemical reduction method. Furthermore, the novel explosion suppressant NiB/Hβ-Al2O3 was prepared through the kneading method by loading novel amorphous NiB nanoparticles on Hβ-Al2O3 with the micro-mesoporous structure as the carrier. The morphology and structure of NiB/Hβ-Al2O3 were characterized by XRD, BET, SEM, and FTIR, which showed that the NiB/Hβ-Al2O3 has proper pore structure and NiB nanoparticles are uniformly distributed as active components for explosion suppression in suppressant. Hartmann tube was used to evaluate the inhibition of coal dust deflagration. The results showed that the flame propagation distance and velocity decreased with the increase of the explosion suppressant. When the addition of explosion suppressant was 30 wt%, the explosion of coal dust was suppressed effectively. Furthermore, combing with the analysis results of the products after coal dust deflagration, the physical and chemical inhibition mechanism of the novel NiB/Hβ-Al2O3 explosion suppressant on coal dust deflagration was put forward.  相似文献   

9.
Explosion indices and explosion behaviour of Al dust/H2/air mixtures were studied using standard 20 l sphere. The study was motivated by an explosion hazard occurring at some accidental scenarios considered now in ITER design (International Thermonuclear Experimental Reactor). During Loss-of-Vacuum or Loss-of-Coolant Accidents (LOCA/LOVA) it is possible to form inside the ITER vacuum vessel an explosible atmosphere containing fine Be or W dusts and hydrogen. To approach the Be/H2 explosion problem, Be dust is substituted in this study by aluminium, because of high toxicity of Be dusts. The tested dust concentrations were 100, 200, 400, 800, and 1200 g/m3; hydrogen concentrations varied from 8 to 20 vol. % with 2% step. The mixtures were ignited by a weak electric spark. Pressure evolutions were recorded during the mixture explosions. In addition, the gaseous compositions of the combustion products were measured by a quadruple mass-spectrometer. The dust was involved in the explosion process at all hydrogen and dust concentrations even at the combination ‘8%/100 g/m3’. In all the other tests the explosion overpressures and the pressure rise rates were noticeably higher than those relevant to pure H2/air mixtures and pure Al dust/air mixtures. At lower hybrid fuel concentrations the mixture exploded in two steps: first hydrogen explosion followed by a clearly separated Al dust explosion. With rising concentrations, the two-phase explosion regime transits to a single-phase regime where the two fuel components exploded together as a single fuel. In this regime both the hybrid explosion pressures and pressure rise rates are higher than either H2 or Al ones. The two fuels compete for the oxygen; the higher the dust concentration, the more part of O2 it consumes (and the more H2 remains in the combustion products). The test results are used to support DUST3D CFD code developed at KIT to model LOCA or LOVA scenarios in ITER.  相似文献   

10.
According to standard procedures, flammability and explosion parameters for dusts and dust mixtures are evaluated in 20 L and/or 1 m3 vessels, with equivalent results provided a correct ignition delay time (60 ms in the 20 L vessel; 600 ms in the 1 m3 vessel). In this work, CFD simulations of flow field and dust concentration distribution in the 1 m3 spherical vessel are performed, and the results compared to the data previously obtained for the 20 L. It has been found that in the 1 m3 vessel, the spatial distribution of the turbulent kinetic energy is lower and much more uniform. Concerning the dust distribution, as in the case of the 20 L, dust is mainly concentrated at the outer zones of the vortices generated inside the vessel. Furthermore, an incomplete feeding is attained, with most of the dust trapped in the perforated annular nozzle. Starting from the maps of dust concentration and turbulent kinetic energy, the deflagration index KSt is calculated in both vessels. In the conditions of the present work, the KSt is found to be 2.4 times higher in the 20 L than in the 1 m3 vessel.  相似文献   

11.
An experimental investigation was carried out on the influences of dust concentration, particle size distribution and humidity on aluminum dust explosion. Tests were mainly conducted thanks to a 20 L explosion sphere. The effect of humidity was studied by storing the aluminum particles at constant relative humidity until the sorption equilibrium or by introducing water vapour in the explosion vessel. The tested particles sizes ranged from a volume median diameter of 7 to 42 μm and the dust concentrations were up to 3000 g m?3.Among other results, the strong influence of the particle size was pointed out, especially when the Sauter mean diameter is considered. These results stressed the predominance of the specific surface area on the mass median particle diameter.The effect of water on aluminum dust explosion was decoupled: on the one hand, when water adsorption occurs, hydrogen generation leads to an increase of the explosion severity; on the other hand, when the explosion of dried aluminum powder occurs in a humid atmosphere, the inhibiting effect of humidity is put forward.A model based on mass and heat balances, assuming a shrinking core model with chemical reaction limitation, leads to a satisfactory representation of the pressure evolution during the dust explosion.  相似文献   

12.
Oxidation of sulfurized rust in oil tank is complicated, and it is influenced by numerous factors such as water content, air humidity, operating temperature etc. The paper focuses on the oxidation process of sulfurized rust in the wild. Firstly, samples collected from a petrochemical company were put into the sulfurization & oxidation experimental apparatus to gain wet and dry sulfurized rusts. Their chemical compositions and phase were analyzed by Energy Dispersive X-ray Spectrometer (EDS) -scanning electron microscope (SEM) technique. The results showed that both wet and dry sulfurized rusts had S, Fe2O3, Fe3S4 and FeS2, whereas FeS only existed in wet sulfurized rust. The two kinds of rusts gave a short length of side, diamond appearance and a large pore size in structure. Then oxidation of wet sulfurized rust was investigated, which included electrochemical reaction stage, electrochemical & chemical reaction coexisting stage and chemical reaction stage. The final oxidation product of wet sulfurized was determined to be Fe2O3. On the basis of this study, an indicator for monitoring and early-warning was proposed to prevent plants in vicinity of the accidental vessel or tank from fire and explosion.  相似文献   

13.
The effect of pyrolysis and oxidation characteristics on the explosion sensitivity and severity parameters, including the minimum ignition energy MIE, minimum ignition temperature MIT, minimum explosion concentration MEC, maximum explosion pressure Pmax, maximum rate of pressure rise (dP/dt)max and deflagration index Kst, of lauric acid and stearic acid dust clouds was experimentally investigated. A synchronous thermal analyser was used to test the particle thermal characteristics. The functional test apparatuses including the 1.2 L Hartmann-tube apparatus, modified Godbert-Greenwald furnace, and 20 L explosion apparatus were used to test the explosion parameters. The results indicated that the rapid and slow weight loss processes of lauric acid dust followed a one-dimensional diffusion model (D1 model) and a 1.5 order chemical reaction model (F1.5 model), respectively. In addition, the rapid and slow weight loss processes of stearic acid followed a 1.5 order chemical reaction model (F1.5 model) and a three-dimensional diffusion model (D3 model), respectively, and the corresponding average apparent activation energy E and pre-exponential factor A were larger than those of lauric acid. The stearic acid dust explosion had higher values of MIE and MIT, which were mainly dependent on the higher pyrolysis and oxidation temperatures and the larger apparent activation energy E determining the slower rate of chemical bond breakage during pyrolysis and oxidation. In contrast, the lauric acid dust explosion had a higher MEC related to a smaller pre-exponential factor A with a lower amount of released reaction heat and a lower heat release rate during pyrolysis and oxidation. Additionally, due to the competition regime of the higher oxidation reaction heat release and greater consumption of oxygen during explosion, the explosion pressure Pm of the stearic acid dust was larger in low concentration ranges and decayed to an even smaller pressure than with lauric acid when the concentration exceeded 500 g/m3. The rate of explosion pressure rise (dP/dt)m of the stearic acid dust was always larger in the experimental concentration range. The stearic acid dust explosion possessed a higher Pmax, (dP/dt)max and Kst mainly because of a larger pre-exponential factor A related to more active sites participating in the pyrolysis and oxidation reaction. Consequently, the active chemical reaction occurred more violently, and the temperature and overpressure rose faster, indicating a higher explosion hazard class for stearic acid dust.  相似文献   

14.
This study discusses results of an experimental program for determination of dust cloud combustion parameters of charged and fully discharged states of metastable alane (aluminum hydride, α-AlH3 polymorph) powder in air. The measured characterization parameters include: maximum deflagration pressure rise (ΔPMAX), maximum rate of pressure rise (dP/dt)MAX, minimum ignition temperature (TC), minimum explosible concentration (MEC), and minimum ignition energy (MIE). These measured values are used for calculating the associated explosion severity (ES) index, and volume-normalized maximum rate of pressure rise (KSt). The experimental results show values of MEC and TC of fully discharged alane to be greater than those of the charged alane but measured MIE values are about the same. Moreover, the results show higher reactivity of fully discharged alane dust cloud in air compared to its charged state. For example, ES and KSt of discharged alane dust cloud in air are about 300% and 35% greater, respectively, than ES and KSt of charged alane dust. The higher air reactivity of fully-discharged (primarily Al powder) dust cloud compared to its charged state can be attributed to the higher surface energy (J/m2) of Al compared to that of α-AlH3. These experimental insights have safety implications in postulated risk scenarios involving light-duty vehicles powered by PEM fuel cells. The core insights and critical data provided by this contribution are useful for supporting development and promulgation of hydrogen safety standards and augmenting property databases of hydrogen storage materials.  相似文献   

15.
为降低铝合金湿式除尘系统发生氢气爆炸事故的风险,提出1种氢气抑制的方法用来降低铝合金湿式除尘系统发生氢气爆炸事故的可能性。选取柠檬酸钠作为抑制剂开展抑氢实验研究,得到不同浓度的柠檬酸钠溶液随时间变化的抑氢曲线。当柠檬酸钠溶液浓度为0.4~4 g/L时,能有效抑制铝合金粉尘与水的反应。通过扫描电子显微镜(scanning electron microscope,SEM)和能量色散谱(energy dispersive spectroscopy,EDS)分析对铝合金粉与柠檬酸钠溶液反应后的产物进行表征。最后,对本文提出的抑氢方法的经济性进行分析,明确该方法在节约安全投入方面具有非常明显的优势。抑氢本质化安全设计方法为控制铝合金湿式除尘系统氢气爆炸事故提供了1种新的思路,同时也可被控制核反应堆氢气爆炸事故所借鉴。  相似文献   

16.
Wood products are easy to produce dust in the production and processing process, and have a serious explosion risk. In order to improve the safety of wood products production, the inhibiting effects of magnesium hydroxide (MTH), SiO2, melamine polyphosphate (MPP) on the minimum ignition energy (MIE) and minimum ignition temperature (MIT) of wood dust were experimentally studied. The results showed that the inhibiting effects of inhibitors on the MIE of wood dust show the order of MPP > SiO2>MTH. The order of the inhibiting effects on the MIT of wood dust was MPP > MTH > SiO2. When 10% MPP was added to wood dust, the time when the flame appears (Tappear) and the time when the flame reaches the top of the glass tube (Ttop) obviously rose to 80, 140 ms. Therefore, MPP had the best inhibiting effect on the ignition sensitivity of wood dust.According to thermogravimetry (TG), differential scanning calorimetry (DSC) tests, the introduction of MPP leaded to lower maximum mass loss rate (MMLR), higher temperature corresponding to mass loss of 90% (T0.1), residual mass and heat absorption. In addition, thermogravimetric analysis/infrared spectrometry (TG-IR) results showed that MPP produced H2O (g) and NH3 (g) during the thermal decomposition process, which diluted the oxygen.  相似文献   

17.
The explosion characteristics of anthracite coal dust with/without small amount of CH4 (1.14 vol %) were investigated by using a 20 L spherical explosion apparatus with an emphasis on the roles of oxygen mole fraction and inert gas. Two methods based on overpressure and combustion duration time were used to determine the minimum explosion concentration (MEC) or the lower explosion limit (LEL) of the pure anthracite coal dust and the hybrid coal-methane mixtures, respectively. The experiment results showed that increasing oxygen mole fraction increases the explosion risk of coal dust: with increasing oxygen mole fraction, the explosion pressure (Pex) and the rate of explosion pressure rise ((dp/dt)ex)) increase, while MEC decreases. The explosion risk of anthracite dust was found to be lower after replacing N2 with CO2, suggesting that CO2 has a better inhibition effect on explosion mainly due to its higher specific heat. However, the addition of 1.14% CH4 moderates the inhibition effect of CO2 and the promotion effect of O2 on anthracite dust explosion for some extent, increasing explosion severity and reducing the MEC of anthracite dust. For hybrid anthracite/CH4 mixture explosions, Barknecht's curve was found to be more accurate and conservative than Chatelier's line, but neither are sufficient from the safety considerations. The experimental results provide a certain help for the explosion prevention and suppression in carbonaceous dust industries.  相似文献   

18.
To reveal the microscopic characteristics of the post-explosion coal dust samples, coal dust explosion tests were performed in a 20 L spherical vessel. The explosion characteristic parameters, such as the maximum pressure (Pmax), the maximum rate of pressure rise ((dP/dt)max), ignition time (t) and the deflagration index (KSt) were recorded. Meanwhile, the post-explosion dust samples were collected and analyzed. The research efforts include particle size distribution analysis, SEM analysis and FTIR analysis of dust samples before and after the explosion. The particle size range of post-explosion dust samples became wider according to the mass percent analysis. The microscopic appearance of samples in same particle size range showed some similarity. The porous structure of dust samples was observed by improving the SEM magnification. The chemical structure of dust samples before and after explosion was analyzed by FTIR.  相似文献   

19.
Pd based membrane provides an inherently safer way to handle flammable mixture of hydrogen and oxygen, as it could selectively isolate hydrogen from other gases. However, due to their susceptibility to hydrogen embrittlement, pure Pd membranes are not suitable for processes at low temperature. To solve this problem, body-centered cubic (bcc)-PdCu alloy membranes were prepared by the combination of electroplating and electroless plating. The hydrogen permeation rate (JH2), N2 leak rate (JN2) and H2/N2 selectivity (αH2/N2) remained stable through 200 h continuous operation in H2 at 298 K and ΔPH2 = 100 kPa. The excellent low-temperature tolerance of bcc-PdCu membranes rendered them ideal materials for the capture and activation of hydrogen during the direct hydrogen peroxide synthesis from hydrogen and oxygen. The reaction could be performed safely within the explosive limit of hydrogen/oxygen by feeding the gases separately from the opposite sides of the membrane with no direct contact. 60 mmol m−2 h−1 formation rate, 40% H2O2 selectivity, and a nearly 100% hydrogen conversion was reached at 298 K, 500 kPa.  相似文献   

20.
Coal dust explosion occurs easily in the coal chemical industry. To ensure safety in industrial production, NaY zeolite was used as carrier modified with Fe ions and combined with ammonium polyphosphate (APP) to prepare a novel composite suppressant for coal dust explosion. The explosion suppression performance of novel APP/NaY–Fe suppressant was investigated by flame propagation inhibition experiments. The results show that Fe ion modification can effectively improve the explosion suppression performance. By increasing content, the explosion suppression performance of the explosion suppressant increases. The maximum explosion pressure Pmax of coal dust drops to 0.13 MPa when 50 wt% explosion suppressants were added, and the coal dust explosion cannot continue to expand. Complete suppression of explosion could be achieved by adding 66 wt% explosion suppressants. Combined with XRD, SEM and TG results, the explosion suppression mechanism was proposed. The novel explosion suppressant has high thermal stability, good dispersity and its explosion suppression components distribute uniformly. It shows good explosion suppression performance by the synergistic effect among explosion-suppression components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号