首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为研究LNG加气站槽车直接供液过程泄漏后果严重程度,采用HAZOP辨识槽车供液和储罐供液典型泄漏场景,基于PHAST分析不同泄漏场景下LNG液池半径、蒸汽云扩散距离及积聚时长、爆炸超压和池火热辐射影响范围,定量评价槽车供液可能造成的事故后果扩大程度。结果表明:槽车供液泄漏事故的LNG液池最大半径、蒸汽云最大扩散距离、爆炸超压最大影响半径和池火热辐射最大半径,分别为储罐供液的5.7,1.7,2.3,7.9倍;槽车在无人值守条件下泄漏形成的LNG液池最大半径和蒸汽云积聚时长,分别为有人值守下的1.85,56倍;日供液量较大加气站不宜采用槽车直接为汽车供液模式,而应采用先卸车入罐、再储罐供液的模式;应落实槽车卸车轮班值守制度,并与周边社区建立有效的应急联动方案。  相似文献   

2.
从加氢站的事故场景、事故频率、事故后果、死亡概率和个人及社会风险5个方面进行研究,提出气态加氢站定量风险分析模型,并结合某加氢站进行了实例计算分析,计算出该加氢站量化的个人风险和社会风险,经与国内外认可的可接受风险标准比较后,得出其风险水平是否可接受的分析结论。  相似文献   

3.
The problem of toxic smoke in case of an accident with fire scenario is particularly severe in long tunnels and immediate effects from combustion product exposure often include fatalities. Notwithstanding extensive studies on fire simulation in tunnel, there is still a substantial lack of information on the different toxic products from combustion of light or heavy vehicles. In particular, there is a need for reliable test methods suitable to provide toxic products yields connected to defined accidental fire scenarios. In this paper, experimental runs in a laboratory scaled tunnel, simulating accidental fires of different heat release rates allowed firstly to characterize the thermal profiles in pool and car fires and to compare results by an analytical pool fire model. Results were compared as well with those obtained in a real scale tunnel, so as to quantitatively assess the scaling effect. A series of experiments was performed simulating an accidental scenario including pool fire from collision between a light vehicle and a HazMat heavy vehicle. An extensive set of experimental data allowed performing with good accuracy and reproducibility a complete characterization of toxic gases from car model fires, together with carbon monoxide and oxygen trends. The results obtained under different heat release rates allowed evidencing the dependence of the yields of toxic gases upon the considered scenario. Based on the intrinsic toxicity data of identified compounds, it is possible to draw practical conclusions, useful to assess the potential hazard associated to exposure to toxic smoke in road tunnel.  相似文献   

4.
Fire accidents of chemical installations may cause domino effects in atmospheric tank farms, where a large amount of hazardous substances are stored or processed. Pool fire is a major form of fire accidents, and the thermal radiation from pool fire is the primary hazard of domino accidents. The coupling of multiple pool fires is a realistic and important accident phenomenon that enhances the propagation of domino accidents. However, previous research has mostly focused on the escalation of domino accidents induced by a single pool fire. To overcome the drawback, in this study, the failure of a storage tank under the coupling effect of multiple pool fires was studied in view of spatial and temporal synergistic process. The historical accident statistics indicated that the accident scenario of two-pool fires accounted for 30.6% in pool fires. The domino accident scenario involving three tanks is analyzed, and the typical layout of tanks is isosceles right triangle based on Chinese standard “GB50341-2014”. The thermal response and damage of a target tank heated by pool fires were numerically investigated. The volume of 500 m3, 3000 m3, 5000 m3 and 10000 m3 were selected. Flame temperature was obtained by FDS, and then was input onto the finite element model. The temperature field and stress field of target tanks were simulated by ABAQUS. The results showed that the temperature rise rate of the target tanks under multiple pool fires was higher than that under a single pool fire. The failure time of the tank under the coupling effect of multiple fires was lower than that under the superposition of multiple fires without the first stage. The stress and yield strength were compared to judge the failure of the target tank. The model of failure time for the tank under the coupling effect of pool fires was established. Through the verification, the deviation of this model is 4.02%, which is better than the deviation of 15.76% with Cozzani's model.  相似文献   

5.
HAZOP在油气管道站场风险分析中的应用实践   总被引:2,自引:1,他引:1  
针对长输油气管道站场具有高温高压、易燃易爆、压力容器集中、工艺条件苛刻、生产连续性强等特点,阐述了HAZOP(危险与可操作性研究)技术在长输管道站场风险分析中的必要性和应用步骤。通过HAZOP分析可确定站场主要的节点和有实际意义的偏差,通过分析偏差产生的原因、后果及可采取的对策,结合风险矩阵判定事故的风险等级。实例应用表明HAZOP能够识别出站场中存在的隐患,对隐患进行分级并提出针对性的建议措施,有助于企业进行隐患整治,对提高站场工艺设施及操作的安全可靠性、减少各类事故的发生有着十分积极的作用。  相似文献   

6.
Hazard and Operability (HAZOP) studies are conducted to identify and assess potential hazards which originate from processes, equipment, and process plants. These studies are human-centered processes that are time and labor-intensive. Also, extensive expertise and experience in the field of process safety engineering are required. There have been several attempts by different research groups to (semi-)automate HAZOP studies in the past. Within this research, a knowledge-based framework for the automatic generation of HAZOP worksheets was developed. Compared to other approaches, the focus is on representing semantic relationships between HAZOP relevant concepts under consideration of the degree of abstraction. In the course of this, expert knowledge from the process and plant safety (PPS) domain is embedded within the ontological model. Based on that, a reasoning algorithm based on semantic reasoners is developed to identify hazards and operability issues in a HAZOP similar manner. An advantage of the proposed method is that by modeling causal relationships between HAZOP concepts, automatically generated but meaningless scenarios can be avoided. The results of the enhanced causation model are high quality extended HAZOP worksheets. The developed methodology is applied within a case study that involves a hexane storage tank. The quality and quantity of the automatically generated results agree with the original worksheets. Thus the ontology-based reasoning algorithm is well-suited to identify hazardous scenarios and operability issues. Node-based analyses involving multiple process units can also be carried out by a slight adjustment of the method. The presented method can help to support HAZOP study participants and non-experts in conducting HAZOP studies.  相似文献   

7.
为了解汽油对加油站从业人员心理与神经系统的影响,对北京市中石化所属19家加油站的345名作业人员和管理人员进行职业健康体检,结合心理测试量表,对人员的睡眠及情绪情况进行调查。结果显示19家加油站工作场所空气中汽油的浓度均符合国家卫生标准。加油作业人员中有神经衰弱症状的占738%,管理人员中有神经衰弱症状的占366%。加油作业人员中,有652%的人存在状态焦虑,有640%存在特质焦虑。管理人员中,有350%存在状态焦虑,有350%存在特质焦虑。加油作业人员中,存在睡眠障碍或睡眠质量下降的占635%;管理人员中,存在睡眠质量下降的占312%。提示加油站作业环境可能会影响作业人员的心理状态和睡眠状况,应加强对加油作业人员的职业健康监护工作。  相似文献   

8.
为克服传统危险与可操作性(HAZOP)定性分析方法在复杂操作、间歇作业等过程中使用的局限性,提出在传统HAZOP定性分析方法的基础上结合What-if(故障假设)方法,对人的不安全行为和操作规程不完备所导致的风险后果分析作出补充。详细说明其技术原理、工作流程等使用细节,系统阐述该方法与传统HAZOP定性分析方法的区别,并在某延迟焦化装置的除焦操作的风险分析中应用。经分析,识别出在“给水-泡焦”节点,有“操作规程错误”场景2项,“操作规程不具体”场景1项,不存在“操作人员未按操作规程执行”场景。研究结果表明:本文方法有效且具有较好效果,可以广泛应用于操作规程/作业指导书审查、作业过程隐患排查等方面,帮助企业开展操作层面的风险识别与管理,提升企业的生产安全水平。  相似文献   

9.
In the context of spatial planning the Dutch Ministry of Housing, Spatial Planning and the Environment asked the Centre for External Safety of the National Institute for Public Health and the Environment (RIVM) to advice on safe distances pertaining to hydrogen filling stations. The RIVM made use of failure modeling and parameters for calculating the distance in detail. An imaginary hydrogen filling station for cars is used in the determination of ‘external safety’ or third party distances for the installations and the pipe work for three different sizes of hydrogen filling stations. For several failure scenarios ‘effect’ distances are calculated for car filling at 350 and 700 bar. Safe distances of filling stations from locations where people live and work appear to be similar for compressed hydrogen, gasoline/petrol and compressed natural gas. Safe distances for LPG are greater. A filling unit for hydrogen can be placed at gasoline/petrol-filling stations without increasing safety distances.  相似文献   

10.
Most metal hydrides are pyrophoric and water-reactive. Summaries of metal hydride fire incidents are presented to illustrate ignition scenarios, threats to personnel and equipment, and fire suppression experiences. Met-L-X™, a sodium chloride-based, certified, Class D fire suppression agent, has successfully extinguished some metal hydride fires by coating the hydride and excluding air access. However, the still hot hydride is prone to re-ignition upon surface disturbance, such as may be necessary during disposal. Previously reported testing of various Class D agents and moist sand for sodium hydride fires is reviewed here along with certification and ad hoc testing of existing Class D agents and recent testing of a new candidate Class D agent. Hydride explosibility testing is also briefly summarized. Additional fire and explosibility tests, as well as suppression agent reactivity evaluations, are recommended.  相似文献   

11.
烷基苯联合装置含有国家安全监管总局首批重点监管的15种危险化工工艺中的加氢工艺、烷基化工艺两种,装置工艺介质为易燃、易爆、有毒及强腐蚀性物质,生产中潜在危险性较大;开展工艺风险研究,落实控制措施,对于提高装置本质安全性具有极为重要意义.首先探讨了工艺危险和要害部位,确认装置主要风险为火灾、爆炸和毒性危害;然后应用HAZOP方法,以加氢反应进料加热炉、烷基化反应器为分析对象,研究了工艺状态参数温度、压力、物料流量等方面出现偏差的原因、后果及安全措施;还对氢气泄漏发生火灾、爆炸和苯泄漏发生火灾、爆炸、人员中毒进行了事故后果定量分析,提出了相应的安全措施,以消除或降低工艺危险,保障装置安全.  相似文献   

12.
Evaluating potential hazards caused by accidental LNG release from underwater pipelines or vessels is a significant consideration in marine transportation safety. The aim of this study was to capture the dynamic behavior of LNG jet released under water and to analyze its vapor dispersion characteristics and combustion characteristics on the water surface during different release scenarios. Controlled experiments were conducted where LNG was jet released from a cryogenic storage tank. The dynamic process of LNG being jet released from orifices of different sizes and shapes, as well as the rising plume structure, were captured by a high-speed camera. The leakage flow rate and pipeline pressure were recorded by a flow meter and pressure gauge, respectively. The concentration distribution that emanated from the water surface was measured utilizing methane sensors in different positions with various wind speeds. The flame combustion characteristics of LNG vapor clouds, which immediately ignited upon the enclosed water tank, were also recorded. Additionally, the mass burning rate of the flame on the water surface was evaluated, and a new correlation between the ratio of flame length and width was established. The results indicated a large dimensionless heat release rate (Q*) and a continuous release flow rate in a limited burning area. This study could provide greater understanding of the mechanisms of LNG release and combustion behavior under water.  相似文献   

13.
This study investigates the effect of the ignition position on vented hydrogen-air deflagration in a 1 m3 vessel and evaluates the performance of the commercial computational fluid dynamics (CFD) code FLACS in simulating the vented explosion of hydrogen-air mixtures. First, the differences in the measured pressure-time histories for various ignition locations are presented, and the mechanisms responsible for the generation of different pressure peaks are explained, along with the flame behavior. Secondly, the CFD software FLACS is assessed against the experimental data. The characteristic phenomena of vented explosion are observed for hydrogen-air mixtures ignited at different ignition positions, such as Helmholtz oscillation for front ignition, the interaction between external explosion and combustion inside the vessel for central ignition, and the wall effect for back-wall ignition. Flame-acoustic interaction are observed in all cases, particularly in those of front ignition and very lean hydrogen-air mixtures. The predicted flame behavior agree well with the experimental data in general while the simulated maximum overpressures are larger than the experimental values by a factor of 1.5–2, which is conservative then would lead to a safe design of explosion panels for instance. Not only the flame development during the deflagration was well-simulated for the different ignition locations, but also the correspondence between the pressure transients and flame behavior was also accurately calculated. The comparison of the predicted results with the experimental data shows the performance of FLACS to model vented mixtures of hydrogen with air ignited in a lab scale vessel. However, the experimental scale is often smaller than that used in practical scenarios, such as hydrogen refueling installations. Thus, future large-scale experiments are necessary to assess the performance of FLACS in practical use.  相似文献   

14.
Recent years have seen a convergence of scenario-based Hazard and Operability (HAZOP) studies, Layer of Protection Analyses (LOPAs), and safety integrity level (SIL) determinations. These can all be performed using order-of-magnitude estimates for the initiating cause frequency, the effectiveness of protection layers, the severity of loss event consequences, and the inclusion of other risk-reduction factors. Conducting a HAZOP study or a HAZOP/LOPA study in this manner makes it possible to extend the study results to not only determine required SILs, but also to sum scenario risks by process unit and show the quantitative benefit of implementing risk-reduction measures. The aggregated risk can be compared to process-wide tolerable risk criteria, in addition to comparing each scenario to a risk matrix or risk magnitude. This presentation demonstrates how a true risk-based HAZOP study can be performed with little additional effort over that required for commonly performed cause-by-cause HAZOP studies, and how facility managers and engineers can then use the results when deciding on and implementing risk-reduction measures.  相似文献   

15.
地铁火灾场景设计的初步研究   总被引:1,自引:0,他引:1  
现阶段地铁火灾研究的主要工具是计算机模拟,而模拟计算结果准确与否很大程度上取决于火灾场景选取得是否恰当.本文通过对地铁站内的可燃物状况和已发生地铁火灾情况的仔细调查与分析,设定出了几种典型的地铁火灾场景,为地铁火灾模拟计算提供了依据.  相似文献   

16.
HAZOP (Hazard and Operability) studies began about 40 years ago, when the Process Industry and complexity of its operations start to massively grow in different parts of the world. HAZOP has been successfully applied in Process Systems hazard identification by operators, design engineers and consulting firms. Nevertheless, after a few decades since its first applications, HAZOP studies are not truly standard in worldwide industrial practice. It is common to find differences in its execution and results format. The aim of this paper is to show that in the Mexican case at National level in the oil and gas industry, there exist an explicit acceptance risk criteria, thus impacting the risk scenarios prioritizing process. Although HAZOP studies in the Mexican oil & gas industry, based on PEMEX corporate standard has precise acceptance criteria, it is not a significant difference in HAZOP applied elsewhere, but has the advantage of being fully transparent in terms of what a local industry is willing to accept as the level of risk acceptance criteria, also helps to gain an understanding of the degree of HAZOP applications in the Mexican oil & gas sector. Contrary to this in HAZOP ISO standard, risk acceptance criteria is not specified and it only mentions that HAZOP can consider scenarios ranking. The paper concludes indicating major implications of risk ranking in HAZOP, whether before or after safeguards identification.  相似文献   

17.
This paper presents an analysis and simulation of an accident involving a liquefied petroleum gas (LPG) truck tanker in Kannur, Kerala, India. During the accident, a truck tanker hit a divider and overturned. A crack in the bottom pipe caused leakage of LPG for about 20 min forming a large vapor cloud, which got ignited, creating a fireball and a boiling liquid expanding vapor explosion (BLEVE) situation in the LPG tank with subsequent fire and explosion. Many fatalities and injuries were reported along with burning of trees, houses, shops, vehicles, etc. In the present study, ALOHA (Area Locations of Hazardous Atmospheres) and PHAST (Process Hazard Analysis Software Tool) software have been used to model and simulate the accident scenario. Modeling and simulation results of the fireball, jet flame radiation and explosion overpressure agree well with the actual loss reported from the site. The effects of the fireball scenario were more significant in comparison to that of the jet fire scenario.  相似文献   

18.
Floating roof storage tank boilover   总被引:1,自引:0,他引:1  
Storage tanks are important facilities for the major hazard installations (MHIs) to store large quantity of crude oil. There is several fire types can occur with large diameter open top floating roof storage tanks. Boilover is considered one of the most dangerous fires in large-scale oil tank. The world has witnessed many incidents due to boilover in floating roof storage tank. Boilover problem has been studied in experiments and by models to understand how to control the boilover phenomena. An experimental study has been carried out in Jebel Dhanna (JD) terminal area by Abu Dhabi Company for Onshore Oil Operations (ADCO) with support of Resource Protection International (RPI) consultant. 2.4 m diameter and 4.5 m diameters pans have been used to study the characteristics of the large oil-tank fires (i) to gain more knowledge of the boilover phenomenon of crude oil (ii) verify if the crude oil stored by ADCO would boilover (ii) estimation of rate of hot-zone growth and the period needed from ignition to boilover (iii) estimation of radiant heat and consequences of boilover. This paper presents an overview on the floating roof storage tank boilover. The paper also presents briefly boilover experimental research study carried out by ADCO.  相似文献   

19.
As part of the EC funded Naturalhy project, two large scale experiments were conducted to study the hazard presented by the rupture of high pressure transmission pipelines conveying natural gas or a natural gas/hydrogen mixture containing approximately 22% hydrogen by volume. The experiments involved complete rupture of a 150 mm diameter pipeline pressurised to nominally 70 bar. The released gas was ignited and formed a fireball which rose upwards and then burned out. It was followed by a jet fire which continued to increase in length, reaching a maximum of about 100 m before steadily declining as the pipeline depressurised. During the experiments, the flame length and the incident radiation field produced around the fire were measured. Measurements of the overpressure due to pipeline rupture and gas ignition were also recorded. The results showed that the addition of the hydrogen to the natural gas made little difference to radiative characteristics of the fires. However, the fraction of heat radiated by these pipeline fires was significantly higher than that observed for above ground high pressure jet fires (also conducted as part of the Naturalhy project) which achieved flame lengths up to 50 m. Due to the lower density, the natural gas/hydrogen mixture depressurised more quickly and also had a slightly reduced power. Hence, the pipeline conveying the natural gas/hydrogen mixture resulted in a slightly lower hazard in terms of thermal dose compared to the natural gas pipeline, when operating at the same pressure.  相似文献   

20.
The chemical process industries are characterized by the use, processing, and storage of large amounts of dangerous chemical substances and/or energy. Among different missions of chemical plants there are two very important ones, which: 1. provide a safe work environment, 2. fully protect the environment. These important missions can be achieved only by design of adequate safeguards for identified process hazards. Layer of Protection Analysis (LOPA) can successfully answer this question. This technique is a simplified process of quantitative risk assessment, using the order of magnitude categories for initiating cause frequency, consequence severity, and the likelihood of failure of independent protection layers to analyze and assess the risk of particular accident scenarios. LOPA requires application of qualitative hazard evaluation methods to identify accident scenarios, including initiating causes and appropriate safeguards. This can be well fulfilled, e.g., by HAZOP Studies or What-If Analysis. However, those techniques require extensive experience, efforts by teams of experts as well as significant time commitments, especially for complex chemical process units. In order to simplify that process, this paper presents another strategy that is a combination of an expert system for accident scenario identification with subsequent application of LOPA. The concept is called ExSys-LOPA, which employs, prepared in advance, values from engineering databases for identification of loss events specific to the selected target process and subsequently a accident scenario barrier model developed as an input for LOPA. Such consistent rules for the identification of accident scenarios to be analyzed can facilitate and expedite the analysis and thereby incorporate many more scenarios and analyze those for adequacy of the safeguards. An associated computer program is under development. The proposed technique supports and extends the Layer of Protection Analysis application, especially for safety assurance assessment of risk-based determination for the process industries. A case study concerning HF alkylation plant illustrates the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号