首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Increase in concentrations of tropospheric ozone (O(3)) is one of the main factors affecting world agriculture production. Tropical countries including India are at greater risk due to their meteorological conditions (high solar radiation and temperature) being conducive to the formation of O(3). The most effective anti-ozonant chemical is N-[2-(2-oxo-1-imidazolidinyl) ethyl]-N-phenylurea or ethylene diurea (EDU). Due to its specific characteristics, EDU has been used in the field as a phytomonitoring agent to assess crop losses due to O(3). Field experiments were conducted on five local cultivars of wheat (Triticum aestivum L. cv HUW234, HUW468, HUW510, PBW343, and Sonalika) grown under natural field conditions in a suburban area of Varanasi, Uttar Pradesh, India during December 2006 to March 2007 to determine the impact of O(3) on their growth and yield characteristics. Mean monthly O(3) concentrations varied between 35.3 ppb and 54.2 ppb at the experimental site. EDU treatment positively affected various growth and yield parameters with difference between cultivars. EDU-treated plants showed increase in shoot and root length, leaf area, absolute growth rate, relative growth rate, and net primary productivity, indicating O(3) induced suppression in growth. EDU treatment was highly significant in different cultivars for total biomass and test weight but not for harvest index. Yield per plant was higher by 25.6%, 24%, 20.4%, 8.6%, and 1.9% in EDU-treated cultivars HUW468, Sonalika, HUW510, HUW234, and PBW343, respectively, than non-EDU-treated ones. These results clearly indicate the sensitivity of all the wheat cultivars to ambient levels of O(3) with cv HUW468 appearing to be most sensitive. The present study also supports the view that EDU has great potential in alleviating the unfavorable effects of O(3) and can be effectively used as a monitoring tool to assess growth and yield losses in areas experiencing elevated concentrations of O(3).  相似文献   

2.
An ambient air study was conducted inthe city of Florence, Italy, in the summer 1996.Tropospheric ozone was continuously monitored withautomatic analyzers in three stations, two located inthe urban area and one in the hilly surroundings(Settignano). A biomonitoring campaign based on thetobacco cv. Bel-W3 plants was performed in the samearea. The highest values were constantly recorded inthe Settignano station. The highest 1-hour meanrecorded was 197 nl/l; the accumulated exposure overa threshold of 40 nl/l (AOT40) was well above thecritical levels standards for protection of thevegetation. A consistent temporal variation wasobserved and July proved to be the month with thehighest ozone levels. Cumulative frequencydistribution of ozone maximum daily concentrationsexhibited a good fitting to log-normality. No`week-end effect was observed. Biomonitoring datawere in good agreement with chemico-physical ones.  相似文献   

3.
The analysis of data of the ground-level ozone concentration and accumulated ozone exposure over a threshold of 40 ppb (AOT40) in the rural areas of Lithuania is presented. Trends in the annual ozone mean, 95{th} and 25{th} percentiles were determined as statistically not significant at Preila and Rugsteliskes sites during the 1994hbox{–}2004 period. Trends in the ozone concentration and its percentiles in the air masses arriving to Preila station in “polluted” and “unpolluted” sectors have been examined. Statistically significant changes in the ozone annual mean and 25th percentile were found in air masses in both “polluted” and “unpolluted” sectors in the 1988hbox{–}2002 period. The trend analysis in the ozone monthly mean and percentiles for each month of the year revealed the main changes in the ozone level in both sectors during January-May. Insignificant downward trends in monthly 95th percentile in “unpolluted” sector and upward trends in “polluted” sector were found during summer months. Values of AOT40 for the protection of forests as well as crops and semi-natural vegetation were determined during the 1994–2004 period. The estimated AOT40 values for the protection of forests were lower than the critical level at Lithuanian rural sites but AOT40 values for the protection of crops and semi-natural vegetation were found to be higher than the critical level at both sites.  相似文献   

4.
Field experiments were conducted in open top chamber during rabi seasons of 2009–10 and 2010–11 at the research farm of the Indian Agricultural Research Institute, New Delhi to study the effect of tropospheric ozone (O3) and carbon dioxide (CO2) interaction on yield and nutritional quality of Indian mustard (Brassica juncea (L.) Czern.). Mustard plants were grown from emergence to maturity under different treatments: charcoal-filtered air (CF, 80–85 % less O3 than ambient O3 and ambient CO2), nonfiltered air (NF, 5–10 % less O3 than ambient O3 and ambient CO2 ), nonfiltered air with elevated carbon dioxide (NF?+?CO2, NF air and 550?±?50 ppm CO2), elevated ozone (EO, NF air and 25–35 ppb elevated O3), elevated ozone along with elevated carbon dioxide (EO?+?CO2, NF air, 25–35 ppb O3 and 550?±?50 ppm CO2), and ambient chamber less control (AC, ambient O3 and CO2). Elevated O3 exposure led to reduced photosynthesis and leaf area index resulting in decreased seed yield of mustard. Elevated ozone significantly decreased the oil and micronutrient content in mustard. Thirteen to 17 ppm hour O3 exposure (accumulated over threshold of 40 ppm, AOT 40) reduced the oil content by 18–20 %. Elevated CO2 (500?±?50 ppm) along with EO was able to counter the decline in oil content in the seed, and it increased by 11 to 13 % over EO alone. Elevated CO2, however, decreased protein, calcium, zinc, iron, magnesium, and sulfur content in seed as compared to the nonfiltered control, whereas removal of O3 from air in the charcoal-filtered treatment resulted in a significant increase in the same.  相似文献   

5.
Ozone levels in the Jizerske hory Mts. measured at 13 sites by diffusive samplers during the 2006 and 2007 vegetation seasons are presented. A significant ozone gradient (5.4 ppb in 2006 and 4.0 ppb in 2007) per 100 m difference in altitude between 370 and 1,100 m a.s.l. was recorded. High-resolution maps of phytotoxic potential were developed. The AOT40 threshold (5 ppm h) was exceeded over the entire area with the highest levels exceeding this threshold by 12 times in the upper portions of the mountains. Ozone visible injury was evaluated at four of the monitoring sites on seven native plant and tree species. Four species showed ozone-like symptoms, two of which (Rubus idaeus and Fagus sylvatica) were confirmed as ozone-induced. Our results indicate that ambient ozone is likely to have a much lower impact on the Jizerske hory Mts. vegetation than expected, considering the measured ambient ozone exposures and favourable environmental conditions for ozone uptake.  相似文献   

6.
Passive samplers are often employed to measure ozone concentrations in remote areas such as mountain forests. The potential ozone risk for vegetation is then assessed by calculating the AOT40 exposure index (accumulated hourly ozone concentration exceedances above 40 ppb, i.e. AOT40 = Σ([O(3)] - 40)Δt for any hourly ozone concentration [O(3)] > 40 ppb). AOT40 is customary calculated on the basis of ozone concentrations expressed as a volumetric mixing ratio, while lab sheets normally report ozone concentrations from passive samplers in mass units per cubic metre. Concentrations are usually converted from mass units to ppb using a standard conversion factor taking SATP (Standard Ambient Temperature and Pressure) conditions into account. These conditions, however, can vary considerably with elevation. As a consequence, the blanket application of a standard conversion factor may lead to substantial errors in reporting and mapping ozone concentrations and therefore in assessing potential ozone risk in mountain regions. In this paper we carry out a sensitivity analysis of the effects of uncertainties in estimations of air temperature (T) and atmospheric pressure (P) on the concentration conversion factor, and present two examples from two monitoring and mapping exercises carried out in the Italian Alps. We derived P and T at each site from adiabatic lapse rates for temperature and pressure and analysed the magnitude of error in concentration estimations. Results show that the concentration conversion is much more sensitive to uncertainties in P gradient estimation than to air temperature errors. The concentration conversion factor (cf) deviates 5% from the standard transformation at an elevation of 500 m asl. As a consequence, the standard estimated AOT40 at this elevation is about 13% less than the actual value. AOT40 was found to be underestimated by an average between 25% and 34% at typical elevations of mountain forest stands in the Italian Alps when a correct conversion factor for transforming ozone concentrations from μg m(-3) to ppb is not applied.  相似文献   

7.
The US Forest Service administers a long-term, nationwide ozone biomonitoring program in partnership with other state and federal agencies to address national concerns about ozone impacts on forest health. Biomonitoring surveys begun in 1994 in the East and 1998 in the West provide important regional information on ozone air quality and a field-based record of ozone injury unavailable from any other data source. Surveys in the Northeast and North Central subregions cover 450 field sites in 24 states where ozone-sensitive plants are evaluated for ozone-induced foliar injury every year. Sites are typically large, undisturbed openings (>3 acres in size) close to forested areas where >3 bioindicator species are available for evaluation. Over the 16-year sampling period, injury indices have fluctuated annually in response to seasonal ozone concentrations and site moisture conditions. Sites with and without injury occur at all ozone exposures but when ambient concentrations are relatively low, the percentage of uninjured sites is much greater than the percentage of injured sites; and regardless of ozone exposure, when drought conditions prevail, the percentage of uninjured sites is much greater than the percentage of injured sites. Results indicate a declining trend in foliar injury especially after 2002 when peak ozone concentrations declined across the entire region.  相似文献   

8.
The ozone effect on Norway spruce (Picea abies (L) Karst.) and European beech (Fagus sylvatica L.) was studied on 48 monitoring plots in 2005-2008. These plots represent two major forest tree species stands of different ages in eight regions of the Czech Republic. The forest conditions were represented by defoliation and the annual radial increment of individual trees. The ozone exposure was assessed by using modeled values of mean annual O(3) concentration and the AOT40 index. The malondialdehyde (MDA) content of the foliage was analysed and used as an indicator of oxidative stress. The correlation analysis showed a significant relation of Norway spruce defoliation to the AOT40 exposure index, and European beech defoliation to the MDA level. The radial increment response to ozone was significant only for the European beech: (a) the correlation analysis showed its decrease with increasing AOT40; (b) the regression model showed its decrease with increasing mean annual ozone concentration only at lower altitudes (<700 m a.s.l.).  相似文献   

9.
Ozone biomonitoring is a detection and monitoring techniquethat involves documenting ozone-induced visible injury toknown ozone-sensitive species under conditions of ambientexposure. The USDA Forest Service administers a long-term,nationwide ozone biomonitoring program to address public andscientific concerns about ozone impacts on forest health. Asystematic grid is used as the basis for biomonitoring sitelocations. At each site, trained field crews evaluate amaximum of thirty plants of up to six species and record the amount and severity of leaf-injury on individualplants. Injury from ozone was found more often on biomonitoring sites in the eastern Unites States than in theinterior or west-coast areas. Further results from thenortheast reveal that in any year, there is a higherpercentage of ozone-injured plants with more severe symptomsin areas with relatively high ozone concentrations than inareas with relatively low ozone. In very dry years (e.g.,1999) the percentage of injured plants and injury severityestimates are both sharply reduced even though ambient ozoneexposures are high. These findings demonstrate thatbiomonitoring data provide meaningful evidence of when highozone concentrations during the growing season have biologicalsignificance. Any assessment of ozone stress in the forestenvironment must include both biomonitoring (i.e., plantresponse) and air quality data to be complete.  相似文献   

10.
欧盟臭氧(O3)监测与评价起步相对较早。对比中国和欧盟O3例行评价,欧盟在O3标准限值、保护对象、评价指标、评价时间尺度、参评点位类型的设定和选取,以及O3浓度与前体物排放量的关联性分析等方面,均对中国O3评价具有一定的借鉴意义。以2017—2020年石家庄市8个国控站点O3观测数据为分析案例,采用欧盟常用的日最大8 h滑动平均浓度(MDA8)第4高值,以及O3暴露指标SOMO35和AOT40等3项评价指标,开展了尝试性评价应用和浓度对比。对照欧盟O3评价指标应用经验,未来可考虑从兼顾两类功能区、丰富评价指标、扩展参评点位类型、纳入暴露影响评估、关联前体物排放变化等方面,进一步完善中国环境空气O3评价方式,以更好地发挥其对空气质量精细化管理的数据支撑作用。  相似文献   

11.
The onset and development of symptoms of three Sambucus species, S. ebulus, S. nigra and S. racemosa were studied in 2002 under three different experimental conditions, in charcoal filtered air (CF), and in two ozone enriched treatment: non filtered air plus 40 ppb ozone (NF+), and non filtered air plus 70 ppb ozone (NF++). The herb S. ebulus was more sensitive than the shrubs S. racemosa and S. nigra. Some plants of the three species showed visible injury below the AOT40 threshold of 10,000 ppb·h, established for protection of vegetation. Ozone produced a decrease in chlorophyll content in S. ebulus, and impaired both stomatal conductance and net photosynthesis in S. ebulus and S. nigra. A complementary study in 2004 with S. ebulus, confirmed a decrease in chlorophyll content after fumigation, associated to a decrease in N content of the leaves. Since S. ebulus is a widespread species in Europe and it is very sensitive to ozone, it could be a very appropriate plant for the biomonitoring studies across large areas in this continent.  相似文献   

12.
Tropospheric ozone occurs at phytotoxic levels in the northeastern and mid-Atlantic regions of the United States. Quantifying possible regional-scale impacts of ambient ozone onforest tree species is difficult and is confounded by other factors, such as moisture and light, which influence the uptake of ozone by plants. Biomonitoring provides an approach to document direct foliar injury irrespective of direct measure ofozone uptake. We used bioindicator and field plot data from theUSDA Forest Service to identify tree species likely to exhibit regional-scale ozone impacts. Approximately 24% of sampled sweetgum (Liquidambar styraciflua), 15% of sampled loblollypine (Pinus taeda), and 12% of sampled black cherry (Prunus serotina) trees were in the highest risk category. Sweetgum and loblolly pine trees were at risk on the coastal plain of Maryland, Virginia and Delaware. Black cherry trees were at riskon the Allegheny Plateau (Pennsylvania), in the Allegheny Mountains (Pennsylvania, West Virginia, and Maryland) as well ascoastal plain areas of Maryland and Virginia. Our findings indicate a need for more in-depth study of actual impacts on growth and reproduction of these three species.  相似文献   

13.
Air pollution affects forest health through atmospheric deposition of acidic and nitrogen compounds and elevated levels of tropospheric ozone (O3). In 1985, a monitoring network was established across Europe and various research efforts have since been undertaken to define critical values. We measured atmospheric deposition of acidity and nitrogen as well as ambient levels of O3 on 12, 13, and 14 plots, respectively, in the framework of the Swiss Long-Term Forest Ecosystem Research (LWF) in the period from 1995 to 2002. We estimated the critical loads of acidity and of nitrogen, using the steady state mass balance approach, and calculated the critical O3 levels using the AOT40 approach. The deposition of acidity exceeded the critical loads on 2 plots and almost reached them on 4 plots. The median of the measured molar ratio of base nutrient cations to total dissolved aluminium (Bc/Al) in the soil solution was higher than the critical value of 1 for all depths, and also at the plots with an exceedance of the critical load of acidity. For nitrogen, critical loads were exceeded on 8 plots and deposition likely represents a long-term ecological risk on 3 to 10 plots. For O3, exceedance of critical levels was recorded on 12 plots, and led to the development of typical O3-induced visible injury on trees and shrubs, but not for all plots due to (1) the site specific composition of O3 sensitive and tolerant plant species, and (2) the influence of microclimatic site conditions on the stomatal behaviour, i.e., O3 uptake.  相似文献   

14.
The United States is making the transition from the 1979 1 hr maximum ozone standard to the newly adopted 8 hr ozone standard (3 yr average of the 4th highest maximum 8 hr ozone concentration). Consequently, we analyzed and compared ozone concentrations under both standards from a variety of monitoring sites throughout the central Appalachian region of Kentucky (KY), West Virginia (WV), and Virginia (VA). Data from 1988-1999 were used to determine how ozone exposure between the two metrics compared for remote sites. Most sites exceeded the 1 hr standard in 1988-1990 due to the 3 yr averaging and multiple high ozone concentrations that occurred over the region in 1988. All sites were in compliance with the 1 hr standard every year after 1991. It was much more common for the ozone exposure to exceed the 8 hr standard, particularly from 1997-1999. Many sites showed exceedences beginning in 1995; Big Meadows (VA) exceeded the 8 hr standard all years except 1994 and 1996. Response of vegetation to ozone in these areas was determined using the combination of W126 values (sigmoidally weighted exposure index), the number of hours that average concentrations > or = 0.10 ppm (N100), and the presence of moderate or more extreme droughts. In general, W126 and N100 values suggested that negative vegetation growth responses over most of the 12 yr would have been minimal for most sites, even for those exceeding ozone standards. Drought-induced stomatal closures would have overridden more extreme negative growth responses at all but the Big Meadows site in 1988.  相似文献   

15.
A rapid, empirical method is described for estimating weekly AOT40 from ozone concentrations measured with passive samplers at forest sites. The method is based on linear regression and was developed after three years of measurements in Trentino (northern Italy). It was tested against an independent set of data from passive sampler sites across Italy. It provides good weekly estimates compared with those measured by conventional monitors (0.85 ≤R(2)≤ 0.970; 97 ≤ RMSE ≤ 302). Estimates obtained using passive sampling at forest sites are comparable to those obtained by another estimation method based on modelling hourly concentrations (R(2) = 0.94; 131 ≤ RMSE ≤ 351). Regression coefficients of passive sampling are similar to those obtained with conventional monitors at forest sites. Testing against an independent dataset generated by passive sampling provided similar results (0.86 ≤R(2)≤ 0.99; 65 ≤ RMSE ≤ 478). Errors tend to accumulate when weekly AOT40 estimates are summed to obtain the total AOT40 over the May-July period, and the median deviation between the two estimation methods based on passive sampling is 11%. The method proposed does not require any assumptions, complex calculation or modelling technique, and can be useful when other estimation methods are not feasible, either in principle or in practice. However, the method is not useful when estimates of hourly concentrations are of interest.  相似文献   

16.
Rising O(3) concentrations in agricultural areas have been identified as a significant threat to crop production in Asia including India. The present work reports the results of a field study conducted to assess the usefulness of higher than recommended NPK dose in modifying the physiological, growth, yield, and seed quality responses of two mustard (Brassica campestris L. var. Vardan and Aashirwad) varieties under ambient ozone level at a rural site of India, using open-top chambers. Twelve hourly mean O(3) concentrations ranged between 27.7 and 59.04 ppb during the growth period. Plants in nonfiltered chambers (NFCs) showed reductions in photosynthetic rate, stomatal conductance, and growth parameters compared to the plants in filtered chambers (FCs), but reductions were of lower magnitude at 1.5 times recommended dose of NPK (1.5 RNPK) compared to recommended (RNPK). Yield and seed quality reduced significantly in plants of NFCs compared to FCs at RNPK, but no significant differences were recorded at 1.5 RNPK. There were higher N uptake and N uptake efficiency of plants in FCs compared to NFCs. Nitrogen utilization efficiency increased in Vardan, but decreased in Aashirwad in NFCs compared to FCs suggesting higher capability of N acquisition and utilization under ambient O(3), which led to a less pronounced reduction in the yield of the former than the latter variety. The differential nitrogen utilization efficiency in these varieties may be potentially used as measure of sensitivity characteristics in breeding programs for yield improvement in mustard under the present trend of increase in O(3) concentrations.  相似文献   

17.
Soil to plant transfer factor (TF) of60Co and 65Zn was determined fromradioisotope experiments on plants grown in pots underoutdoor ambient tropical conditions for three growingseasons (1995–1998). The TFs were obtained fordifferent plants/crops such as, rice, bean, peanutspineapple, cabbage, tomato, spinach and grass. Theaverage TF values of 60Co are found to be 0.087,0.15, 0.12, 0.67, 0.28, 0.79, 1.03 and 0.34respectively for the above mentioned plants/crops. Incase of 65Zn, the average TF values are found tobe 2.24, 1.17, 0.89, 1.09, 0.78, 1.34, 2.92 and 1.78,respectively, for the above mentioned plants/crops. Thedata will be useful to assess the radiation exposureto man associated with the releases of radionuclidesfrom nuclear facilities by means of radiologicalassessment models that require transfer factors asinput parameters to predict the contamination ofradionuclides in foodchain.  相似文献   

18.
19.
Six Indian cultivars of Vigna radiata L. (HUM-1, HUM-2, HUM-6, HUM-23, HUM-24 and HUM-26) were exposed with ambient and elevated (ambient + 10 ppb ozone (O3) for 6 h?day?1) level of O3 in open top chambers. Ozone sensitivity was assessed by recording the magnitude of foliar visible injury and changes in various physiological parameters. All the six cultivars showed visible foliar symptoms due to O3, ranging 7.4 to 55.7 % injured leaf area. O3 significantly depressed total chlorophyll, photosynthetic rate (Ps), quantum yield (F v/F m) and total biomass although the extent of variation was cultivar specific. Cultivar HUM-1 showed maximum reduction in Ps and stomatal conductance. The fluorescence parameters also indicated maximum damage to PSII reaction centres of HUM-1. Injury percentage, chlorophyll loss, Ps, F v/F m and total biomass reduced least in HUM-23 depicting highest O3 resistance (R%).  相似文献   

20.
The present study showed a possibility to use phenotypic and proteomic responses in rice plants as an in vivo biomarker to detect higher concentrations of ambient ozone (O3). The investigation was done on two cultivars of Indian rice using open top chambers ventilated with charcoal filtered air, ambient air, ambient air with 10 ppb O3 exposure and ambient air with 20 ppb O3 exposure at a rural site of Varanasi, India. Results showed that the magnitude of O3 induced specific type of foliar injury directly depends on the duration and concentration of O3 exposure. Even the internal protein profile of injured and normal leaf demonstrated a differential expression, which directly indicates towards the molecular basis of plant’s response against O3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号