首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
An extensive field survey was employed for assessing the impacts of long-term wastewater irrigation of forage crops and orange orchards in three suburban agricultural areas in Cyprus (areas I, II, and III), as compared to rainfed agriculture, on the soil geochemical properties and the bioaccumulation of heavy metals (Zn, Ni, Mn, Cu, Co) to the agricultural products. Both ryegrass fields and orange orchards in areas I and II were continuously wastewater irrigated for 10 years, whereas clover fields in area III for 0.5, 4, and 8 years. The results revealed that wastewater reuse for irrigation caused a slight increase in soil salinity and Cl? content in areas I and II, and a remarkable increase, having strong correlation with the period in which wastewater irrigation was practiced, in area III. Soil salinization in area III was due to the high electrical conductivity (EC) of the wastewater applied for irrigation, attributed to the influx of seawater to the sewage collection network in area III. In addition, the wastewater irrigation practice resulted in a slight decrease of the soil pH values in area III, while a subtle impact was identified regarding the CaCO3, Fe, and heavy metal content in the three areas surveyed. The heavy metal content quantified in the forage plants’ above-ground parts was below the critical levels of phytotoxicity and the maximum acceptable concentration in dairy feed, whereas heavy metals quantified in orange fruit pulp were below the maximum permissible levels (MPLs). Heavy metal phytoavailability was confined due to soil properties (high pH and clay content), as evidenced by the calculated low transfer factor (TF).  相似文献   

2.
A field study was conducted in the fly ash lagoons of Santandih Thermal Power Plant located in West Bengal (India) to find out total, EDTA and DTPA extractable metals in fly ash and their bioaccumulation in root and shoot portion of the naturally growing vegetation. Fly ash sample has alkaline pH and low conductivity. The concentration of total Cu, Zn, Pb and Ni were found higher than weathered fly ash and natural soil, where as Co, Cd and Cr were found traces. Five dominant vegetation namely, Typha latifolia, Fimbristylis dichotoma, Amaranthus defluxes, Saccharum spontaenum and Cynodon dactylon were collected in the winter months (November–December). Bioaccumulation of metals in root and shoot portions were found varied significantly among the species, but all concentration were found within toxic limits. Correlation between total, DTPA and EDTA extractable metals viz. root and shoot metals concentration were studied. Translocation factor (TF) for Cu, Zn and Ni were found less than unity, indicates that these metals are immobilized in the root part of the plants. Metals like Mn have TF greater than unity. The study infers that natural vegetation removed Mn by phytoextraction mechanisms (TF > 1), while other metals like Zn, Cu, Pb and Ni were removed by rhizofiltration mechanisms (TF < 1). The field study revealed that T. latifolia and S. spontaenum plants could be used for bioremediation of fly ash lagoon.  相似文献   

3.
The Thriassio plain is located 25 km west of Athens city, the capital of Greece. Two major towns (Elefsina and Aspropyrgos), heavy industry plants, medium to large-scale manufacturing, logistics plants, and agriculture comprise the main land uses of the studied area. The aim of the present study was to measure the total and available concentrations of Cr, Zn, Ni, Pb, Co, Mn, Ba, Cu, and Fe in the top soils of the plain, and to asses soil contamination by these metals by using the geoaccumulation index (I geo), the enrichment factor (EF), and the availability ratio (AR) as soil pollution indexes. Soil samples were collected from 90 sampling sites, and aqua regia and DTPA extractions were carried out to determine total and available metal forms, respectively. Median total Cr, Zn, Ni, Pb, Co, Mn, Ba, Cu, and Fe concentrations were 78, 155, 81, 112, 24, 321, 834, 38, and 16?×?103 mg?kg?1, respectively. The available fractions showed much lower values with medians of 0.4, 5.6, 1.7, 6.9, 0.8, 5.7, 19.8, 2.1, and 2.9 mg?kg?1. Though median total metal concentrations are not considered as particularly high, the I geo and the EF values indicate moderate to heavy soil enrichment. For certain metals such as Cr, Ni, Cu, and Ba, the different distribution patterns between the EFs and the ARs suggest different origin of the total and the available metal forms. The evaluation of the EF and AR data sets for the soils of the two towns further supports the argument that the EFs can well demonstrate the long-term history of soil pollution and that the ARs can adequately portray the recent history of soil pollution.  相似文献   

4.
Distribution of heavy metals in plants and fish of the Yamuna river (India)   总被引:2,自引:0,他引:2  
The distribution of cadmium (Cd), cobalt (Co), chromium (Cr), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni), lead (Pb) and zinc (Zn) in the plants and fish of Yamuna river from Delhi to Allahabad, a distance of about 840 km, at five sampling stations was determined in the year 1981. The results have shown wide variations in the heavy metal levels from one sampling station to the other. The concentrations of Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn in the plants (Eicchornia crassipes) were found to be 0.02–0.12, 2.7–21.3, 4.6–64.8, 9.8–114.0, 193.0–1835.0, 380.0–1443.0, 4.4–83.0, 4.8–30.2, and 22.1–356.5 g g-1 respectively whereas in the fish (Heteropnuestes fossilis) were found to be ND-0.40, 2.3–13.7, 3.7–26.9, 8.33–58.1, 278.3–1108.0, 81.3–213.8, 2.8–32.7, 1.4–12.8 and 101.8–364.8 gg-1 respectively on dry weight basis.  相似文献   

5.
This study was carried out to find out the comparative distribution of heavy metals (Fe, Cu, Mn, Zn, Co, Cr, Cd and Pb) in various tissues (muscles, gills, liver, stomach and intestine) of Cyprinus carpio from Rawal Lake, Pakistan, during summer and winter. Relatively higher concentrations of Cd, Co, Cr, Cu, Fe and Zn were found in the stomach samples, while the highest Pb and Zn levels were noted in muscle and intestine samples, respectively. Correlation study exhibited diverse relationships among the metals in various tissues. Generally, the metal concentrations found during the summer were comparatively higher than the winter. Potential non-carcinogenic and carcinogenic health risks related to the metals in C. carpio were evaluated using the US Environmental Protection Agency approved cancer risk assessment guidelines. The calculated daily and weekly intakes of Pb, Cd, Cr and Co through the fish consumption were significantly higher than the permissible limits. In relation to the non-carcinogenic risks to human, Pb, Cd, Cr, Co and Zn levels were higher than the safe limits; however, carcinogenic risks related to Cr (3.9?×?10?3 during summer and 1.1?×?10?3 during winter) and Pb (2.6?×?10?4 during summer and 1.5?×?10-4 during winter) clearly exceeded the safe limit (1?×?10?6). Consequently, the consumption of C. carpio from Rawal Lake on regular basis was considered unsafe.  相似文献   

6.
A greenhouse experiment was conducted during 2010–2011. A complete randomized blocks design was used including seven treatment levels of sludge(tons per hectare), i.e., 0, 6, 12, 18, 24, 30, and “30+ treated wastewater”, in four replications. Lettuce (Lactuca sativa L var longifolia) was chosen as a test plant. The purpose of the experiment was to study the relationships between soil Pollution Load Index, heavy metal transfer factor, and concentration factor and to determine optimum concentration factor values. The following were found: several mathematical relationships were established between the above parameters that could be used for the study of heavy metal accumulation in soils and plants under the effect of the applied sludge. They can be also used for the calculation of one of the above parameters as a function of the others. Based on the experimental data, the optimum concentration factor for several heavy metals were determined by multiple linear regression analysis, expressing the concentration factor as a function of the maximum dry lettuce matter yield, and of optimum/minimum heavy metal content of plant dry matter. The mean value of the calculated concentration factor obtained for each separate metal was: Zn, 2.93; Cd, 0.39; Co, 1.47; and Ni, 0.52.  相似文献   

7.
Solid waste from the Tripoli Sewage Treatment Plant is being used for manuring various crops in Al-Hadba production project. To monitor concentrations of several heavy elements, essential and nonessential to plants that are potentially hazardous to animal and human healthy by entering food chain via soil-plant system, samples of solid waste were collected monthly (every four weeks) during the years 1980–1981. These samples were appropriately handled and analized for total -N, P, K, Ca, Mg, Na, Fe, Mn, Cu, Zn, Cd, Cr, Ni, Co, and Pb.The sludge samples were found to contain an average of 2.00–2.22–0.31% when expressed as a mixed fertilizer (N–P2O5–K2O) respectively. Concentrations of Zn, Pb, Ni, and Cd were greater than their critical levels of 1500, 550, 150, and 15 ppm in 54, 58, 8, and 29% of the samples respectively. The concentrations of Cu and Cr were less than their critical levels of 750 and 500 ppm in all samples respectively.Contribution of Al-Fateh University, Soil Science Dept. and The National Academy for Scientific Research, Environmental Protection Program, Tripoli, Libya.  相似文献   

8.
Nascent Amberlite XAD-4 has been used as the polymeric support for the synthesis of a stable extractor of metal ions, by incorporating phthalic acid through azo bridging. Elemental analyses and infra-red spectral and thermal studies were carried out for its characterization. The water regain value and hydrogen ion capacity were found to be 12.50 and 5.75 mmol g?1, respectively. The optimum pH range for the maximum sorption of Ni(II), Mn(II), Cu(II), Zn(II), Cd(II), Cr(III), and Co(II) was observed at pH 5.5–8.0 with the corresponding half-loading time (t 1/2) of 9, 5, 9, 9, 3, 9, and 5 min, respectively. The preconcentration factor for Ni(II), Mn(II), Cu(II), Zn(II), Cd(II), Cr(III), and Co(II) are 190, 190, 190, 180, 180, 160, and 160, with the corresponding limit of preconcentration in the range of 5.25–6.25 μg L?1. The detection limits, for flame atomic absorption spectrophotometry, were found to be 0.62, 0.60, 0.65, 0.75, 0.72, 0.84, and 0.85 μg L?1, respectively. Method has been successfully applied to the analysis of water samples, multivitamin formulations, infant food substitutes, hydrogenated oil, and fishes.  相似文献   

9.
The concentrations and chemical partitioning of heavy metals (Co, Cr, Ni, Zn, Cu, and Pb) in the marine near-shore sediment cores were investigated. Typically, the mean concentrations from Core B sediment samples were 98.6, 21.1, 47.0, 46.4, 107.6, and 31.9 mg kg???1 for Cr, Co, Ni, Cu, Zn, and Pb, respectively. The heavy metal concentrations were normalized to commonly used reference elements Al, Li, Sc, and total organic carbon. Based on Pearson coefficients, Li was found to be a good normalizer for Co (r?= 0.974), Cr (r?= 0.967), Ni (r?= 0.898), and Zn (r?= 0.929) in 80 sediment samples from three sampling sites. However, the correlation coefficients between Li and Cu, and Li and Pb were relatively low. Multivariate statistic approaches (Principal Component Analysis and Cluster Analysis) were adopted for data treatment, allowing the identification of two main factors controlling the heavy metal variability in the sediments. Heavy metals in the enrichment sections were evaluated by a sequential extraction method for possible chemical forms in sediments. The results showed that the residual, Fe/Mn oxides and Organic/sulfide fractions were dominant geochemical phases in the enriched sections, indicating low bioavailability of heavy metals in sediments.  相似文献   

10.
Arsenic (As) accumulation in rice owing to uptake from the soil is a critical human health issue. Here, we studied the chemical properties of As-treated soils, growth inhibition patterns of As-stressed rice plants, changes in the As content of soil and soil solutions, and the relationship between As accumulation and As transfer factor from the soil to the rice organs. Rice plants were cultivated in a greenhouse under four concentrations of As: 0 (control), 25, 50, and 75 mg kg?1. A significant positive correlation was found between available P2O5 and exchangeable K and between As concentration and available P2O5 or exchangeable K. The As concentration for 50% shoot growth inhibition was 50 mg kg?1. As levels in roots and shoots were positively correlated with the growth stages of rice. The transfer factor (TF)root/soil increased with As concentration at the tillering stage but decreased at the heading stage. TFroot/soil and TFshoot/soil were higher at the heading stage than at the tillering stage. As accumulation in the 25 mg kg?1 treatment was higher during the heading stage, whereas no difference was found at the tillering stage. As accumulation was related to plant biomass and soil As concentration. We found that As accumulation was greater at As concentrations that allowed for plant growth and development. Thus, species-specific threshold concentrations must be determined based on As phytotoxicity for the phytoremediation of As-contaminated soils. Hence, developing practical approaches for managing safe crop production in farmlands with an As contamination of 25 mg kg?1 or less is necessary.  相似文献   

11.
Arsenic (As) is a widespread environmental and food chain contaminant and class I, non-threshold carcinogen. Plants accumulate As due to ionic mimicry that is of importance as a measure of phytoremediation but of concern due to the use of plants in alternative medicine. The present study investigated As accumulation in native plants including some medicinal plants, from three districts [Chinsurah (Hoogly), Porbosthali (Bardhman), and Birnagar (Nadia)] of West Bengal, India, having a history of As pollution. A site-specific response was observed for Specific Arsenic Uptake (SAU; mg kg(-1) dw) in total number of 13 (8 aquatic and 5 terrestrial) collected plants. SAU was higher in aquatic plants (5-60 mg kg(-1) dw) than in terrestrial species (4-19 mg kg(-1) dw). The level of As was lower in medicinal plants (MPs) than in non-medicinal plants, however it was still beyond the WHO permissible limit (1 mg kg(-1) dw). The concentration of other elements (Cu, Zn, Se, and Pb) was found to be within prescribed limits in medicinal plants (MP). Among the aquatic plants, Marsilea showed the highest SAU (avg. 45 mg kg(-1) dw), however, transfer factor (TF) of As was the maximum in Centella asiatica (MP, avg. 1). Among the terrestrial plants, the maximum SAU and TF were demonstrated by Alternanthera ficoidea (avg. 15) and Phyllanthus amarus (MP, avg. 1.27), respectively. In conclusion, the direct use of MP or their by products for humans should not be practiced without proper regulation. In other way, one fern species (Marsilea) and some aquatic plants (Eichhornia crassipes and Cyperus difformis) might be suitable candidates for As phytoremediation of paddy fields.  相似文献   

12.
Cd, Co, Cr, Cu, Mn, Ni, Zn, and Pb were measured in feather samples of adult, subadult, and juvenile of Larus dominicanus, sampled in the Florianólis, SC, in the south of Brazil in December 2005, by flame atomic absorption spectrophotometry. The average of the distribution of Cd concentration in adult feathers (0.072 μg g???1) was significantly different than that found in juvenile feathers (0.021 μg g???1). Cu concentration averages were not significantly different between adults (13.30 μg g???1), subadults (9.67 μg g???1), and juveniles (13.76 μg g???1). For adults and juveniles there was significant difference in feather concentrations for Cd, Co, Cr, Ni, and Pb. The distribution of Mn concentration averages in feathers differs between adults (11.36 μg g???1) and juveniles (1.184 μg g???1). Ni concentration averages of adults (5.92 μg g???1) were significantly higher than those of juveniles (2.23 μg g???1). For Pb, concentration averages were significantly higher in adults (7.53 μg g???1) than in juveniles (1.47 μg g???1). The concentration of Co and Cr in juvenile and subadults are statistically different when compared with the adults. In the present study, levels of Cd, Co, Cr, Mn, Ni, Zn, and Pb increased with age. The concentrations of essential trace elements in L. dominicanus were generally comparable to values reported in other studies. With non-essential metals (Cd, Pb, and Ni), in our study, L. dominicanus had lower values than those reported for their northern Atlantic counterparts.  相似文献   

13.
In this study concentrations of metals in the native plants and soils surrounding the old flotation tailings pond of the copper mine were determined. It has been established that the soil is heavily contaminated with copper, iron and arsenic, the mean concentrations being 1585.6, 29,462.5 and 171.7 mg kg(-1) respectively. All the plants, except manganese, accumulated metallic elements in concentrations which were either in the range of critical and phytotoxic values (Pb and As) or higher (Zn), and even much higher (Cu and Fe) than these values. Otherwise, the accumulation of Mn, Pb and As was considerably lower than that of Cu, Fe and Zn. In most plants the accumulation of target metals was highest in the root. Several plant species showed high bioaccumulation and translocation factor values, which classify them into species for potential use in phytoextraction. The BCF and TF values determined in Prunus persica were 1.20 and 3.95 for Cu, 1.5 and 6.0 for Zn and 1.96 and 5.44 for Pb. In Saponaria officinalis these values were 2.53 and 1.27 for Zn, and in Juglans regia L. they were 8.76 and 17.75 for Zn. The translocation factor in most plants, for most metals, was higher than one, whereas the highest value was determined in Populus nigra for Zn, amounting to 17.8. Among several tolerant species, the most suitable ones for phytostabilization proved to be Robinia pseudoacacia L. for Zn and Verbascum phlomoides L., Saponaria officinalis and Centaurea jacea L. for Mn, Pb and As.  相似文献   

14.
The linearity of the interspecies relation between the elemental contents in Parmelia sulcata and Lecanora conizaeoides, sampled in a polluted area, was examined by the function y=az+b and yz –1=a+bz –1, with y and z being the elemental content in Parmelia and Lecanora, respectively. For As, Co, V and Zn significant positive a and b values were found, allowing interspecies calibration. For Br, Cd, Cr, Fe, La, Sb, Se and W the a values were zero and the b values were positive, indicating saturation of Parmelia and thus ruling out interspecies calibration. For Cu a part of the data set showed saturation effects in Lecanora. The results showed that the average concentration ratio could not be used for intercalibration purposes, because the concentration ratios were dependent on the concentrations.  相似文献   

15.
Dynamics of heavy metals such as Fe, Mn, Zn, Cr, Cu, Co, Ni, Pb, and Cd in surface water of Mahanadi River estuarine systems were studied taking 31 different stations and three different seasons. This study demonstrates that the elemental concentrations are extremely variable and most of them are higher than the World river average. Among the heavy metals, iron is present at highest concentration while cadmium is at the least. The spatial pattern of heavy metals suggests that their anthropogenic sources are possibly from two major fertilizer plants and municipal sewage from three major towns as well as agricultural runoff. The temporal variations for metals like Fe, Cu, and Pb exhibit higher values during the monsoon season, which are related to agricultural runoff. Concentrations of Ni, Pb, and Cd exceed the maximum permissible limits of surface water quality in some polluted stations and pose health risks. Dissolved heavy metals like Fe, Mn, Cr, Ni, and Pb exhibit a non-conservative behavior during estuarine mixing, while Zn, Cu, and Co distribution is conservative. Distribution of cadmium in the estuarine region indicates some mobilization which may be due to desorption. The enrichment ratio data suggest that various industrial wastes and municipal wastes contribute most of the dissolved metals in the Mahanadi River. The Mahanadi River transports 18.216 × 103 t of total heavy metals into the Bay of Bengal and the calculated rate of erosion in the basin is 128.645 kg km − 2 year − 1.  相似文献   

16.
The technique of diffusive gradients in thin film (DGT) has been shown to be a promising tool to assess zinc (Zn) bioavailability in soils, but there exists considerable debate on its suitability. In this study, Zn bioavailability was systematically investigated in wheat- and maize-grown soils using this technique and seven traditional methods, including soil solution concentration and six widely used single-step extraction methods (HAc, EDTA, NaAc, NH4Ac, CaCl2, and MgCl2). The concentrations of Zn in the shoots and roots of these two plant species increased continuously with increasing additions of Zn to the soils, accompanied by significant decreases in shoot biomass and root biomass at Zn concentrations greater than 400 mg kg?1 for maize and 800 mg kg?1 for wheat. Zinc uptake and accumulation was higher in maize roots than in wheat roots. Both the concentrations of bioavailable Zn measured by DGT (C DGT) and soil solutions (C sol) increased linearly with increasing additions of Zn to the soils, while no strong linear relationships were observed for the extraction methods. Higher concentrations of extractable Zn, lower values of C sol, and larger values of R (i.e., the ratio of C DGT to C sol) were observed in maize-grown soils compared with those of wheat-grown soils, while the values of C DGT between the two plants were similar. These findings demonstrate that there likely exists a stronger resupply of Zn from the soil solid phases in maize-grown soils to satisfy a higher Zn uptake and accumulation in this plant. Linear correlation analyses showed that C DGT had the highest correlation coefficients with plant Zn concentrations compared with other traditional methods, implying that the DGT technique is more sensitive and robust in reflecting Zn bioavailability in soils to plants.  相似文献   

17.
The distribution and potential sources of 15 polycyclic aromatic hydrocarbons (PAHs) in soils in the vicinity of three South African coal-fired power plants were determined by gas chromatography–mass spectrometry. PAH compound ratios such as phenanthrene/phenanthrene + anthracene (Phen/Phen + Anth) were used to provide reliable estimation of emission sources. The total PAH concentration in the soils around three power plants ranged from 9.73 to 61.24 μg g?1, a range above the Agency for Toxic Substances and Disease Registry levels of 1.0 μg g?1 for significantly contaminated site. Calculated values of Phen/Phen + Anth ratio were 0.48?±?0.08, 0.44?±?0.05, and 0.38?+?0.04 for Matla, Lethabo, and Rooiwal, respectively. Flouranthene/fluoranthene + pyrene (Flan/Flan + Pyr) were found to be 0.49?±?0.03 for Matla, 0.44?±?0.05 for Lethabo, and 0.53?±?0.08 for Rooiwal. Such values indicate a pyrolytic source of PAHs. Higher molecular weight PAHs (five to six rings) were predominant, suggesting coal combustion sources. A good correlation existed between most of the PAHs implying that these compounds were emitted from similar sources. The carcinogenic potency B[a]P equivalent concentration (B[a] Peq) at the three power plants ranged from 3.61 to 25.25 indicating a high carcinogenic burden. The highest (B[a] Peq) was found in samples collected around Matla power station. It can therefore be concluded that the soils were contaminated with PAHs originating from coal-fired power stations.  相似文献   

18.
The objective of this study was to assess the contamination level of trace metals in soil and vegetables and health risk to the urban population in Bangladesh. The range of Cr, Ni, Cu, As, Cd, and Pb in agricultural soils was 158–1160, 104–443, 157–519, 41–93, 3.9–13, and 84–574 mg/kg, respectively. Sequential extraction tests revealed that the studied metals were predominantly associated with the residual fraction, followed by the organically bound phase. Concerning Cu, Ni, Cd, and Pb in vegetables, more than 50 % samples exceeded the FAO/WHO recommended permissible limits. Considering the transfer of metals from soil to vegetables, Cu and Cd exhibited higher transfer factor (TF) values than the other metals. Target hazard quotient (THQ) for individual metal was below 1, suggesting that people would not experience significant health hazards if they ingest a single metal from vegetables. However, total metal THQ signifies the potential non-carcinogenic health hazard to the highly exposed consumers. The carcinogenic risk (TR) of As (1.9?×?10?4) and Pb (2.3?×?10?5) through consumption of vegetables were higher than the USEPA threshold level (10?6), indicating potential cancer risks.  相似文献   

19.
To understand the metal distribution characteristics in the atmosphere of urban Islamabad, total suspended particulate (TSP) samples were collected on daily 12 h basis, at Quaid-i-Azam University campus, using high volume sampler. The TSP samples were treated with HNO3/HClO4 based wet digestion method for the quantification of eight selected metals; Fe, Zn, Pb, Mn, Cr, Co, Ni and Cd by FAAS method. The monitoring period ran from June 2001 to January 2002, with a total of 194 samples collected on cellulose filters. Effects of different meteorological conditions such as temperature, relative humidity, wind speed and wind direction on selected metal levels were interpreted by means of multivariate statistical approach. Enhanced metal levels for Fe (930 ng/m3), Zn (542 ng/m3) and Pb (210 ng/m3) were found on the mean scale while Mn, Cr, Co and Ni emerged as minor contributors. Statistical correlation study was also conducted and a strong correlation was observed between Pb-Cr (r=0.611). The relative humidity showed some significant influence on atmospheric metal distribution while other meteorological parameters showed weak relationship with TSP metal levels. Regarding the origin of sources of heavy metals in TSP, the statistical procedure identified three source profiles; automobile emissions, industrial/metallurgical units, and natural soil dust. The metal levels were also compared with those reported for other parts of the world which showed that the metal levels in urban atmosphere of Islamabad are in exceedence than those of European industrial and urban sites while comparable with some Asian sites.  相似文献   

20.
The present study deals with the effect of fireworks on ambient air quality during Diwali Festival in Lucknow City. In this study, PM10, SO2, NO x and 10 trace metals associated with PM10 were estimated at four representative locations, during day and night times for Pre Diwali (day before Diwali) and Diwali day. On Diwali day 24 h average concentration of PM10, SO2, and NO x was found to be 753.3, 139.1, and 107.3 μg m−3, respectively, and these concentrations were found to be higher at 2.49 and 5.67 times for PM10, 1.95 and 6.59 times for SO2 and 1.79 and 2.69 for NO x , when compared with the respective concentration of Pre Diwali and normal day, respectively. On Diwali day, 24 h values for PM10, SO2, and NO x were found to be higher than prescribed limit of National Ambient Air Quality Standard (NAAQS), and exceptionally high (7.53 times) for PM10. On Diwali night (12 h) mean level of PM10, SO2 and NO x was 1,206.2, 205.4 and 149.0 μg m−3, respectively, which was 4.02, 2.82 and 2.27 times higher than their respective daytime concentrations and showed strong correlations (p < 0.01) with each other. The 24 h mean concentration of metals associated with PM10 was found to be in the order of Ca (3,169.44) > Fe (747.23) > Zn (542.62) > Cu (454.03), > Pb (307.54) > Mn (83.90) > Co (78.69) > Cr (42.10) > Ni (41.47) > Cd (34.69) in ng m−3 and all these values were found to be higher than the Pre Diwali (except Fe) and normal day. The metal concentrations on Diwali day were found to be significantly different than normal day (except Fe & Cu). The concentrations of Co, Ni, Cr and Cd on Diwali night were found to be significantly higher than daytime concentrations for Pre Diwali (control). The inter correlation of metals between Ca with Pb, Zn with Ni and Cr, Cu with Co, Co with Mn, Ni with Cd, Mn with Cd, Ni with Cd and Cr, and Cr with Cd showed significant relation either at p < 0.05 or P < 0.01 levels, which indicated that their sources were the same. The metals Cu, Co, Ni, Cr and Cd showed significant (p < 0.01) association with PM10. These results indicate that fireworks during Diwali festival affected the ambient air quality adversely due to emission and accumulation of PM10, SO2, NO x and trace metals. ITRC Communication Number 2538  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号