首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
人们通常认为抗生素的选择压力是造成抗生素抗性基因快速扩散的原因,但是越来越多的研究表明环境中非抗生素类新污染物也能够造成抗生素抗性基因快速扩散。本文对非抗生素类新污染物影响质粒携带抗性基因水平转移规律和机制研究进展进行了归纳总结。目前的研究大多集中在内分泌干扰物、药品及个人护理产品以及纳米材料影响R质粒携带抗生素抗性基因水平转移,相关机制主要关注非抗生素类新污染物对活性氧、应激反应以及细胞膜通透性的影响。持久性有机污染物影响质粒携带抗性基因水平转移规律以及非抗生素类新污染物对其他质粒携带的抗生素抗性基因水平转移规律和其他类型的机制可以作为未来的研究方向。  相似文献   

2.
随着抗生素及其抗菌产品的广泛应用,自然和人工环境中的抗生素残留带来的危害引起人们关注.本文基于最新文献,综述了国内外抗生素及其抗性基因的污染水平和来源、它们之间的关系和传播机理以及这类污染物的降解和去除技术.现有研究表明,抗生素及其抗性基因的污染已遍布水、土壤、大气等介质,而在以污水处理厂和固废填埋场为代表的人工环境中,其污染水平更高.抗生素残留诱导产生抗性基因,其在环境中传播扩散与水平基因转移(Horizontal Gene Transfer,HGT)和微生物群落结构组成有关.抗生素和抗性基因在环境中自然降解过程受基质类型、光照、温度和微生物种群等因素的影响,其中光照是影响其降解的重要因子;而在人工处理系统中,紫外消毒和生化降解对抗生素及其抗性基因有较好的去除效果,但并非全部有效.建议今后加强对特定环境中抗生素和抗生素抗性基因的扩散规律和高效降解去除等方面的机理和工艺研究,进而有效控制其环境含量,降低其污染水平.  相似文献   

3.
环境中广泛存在的抗生素和抗生素抗性基因会导致很严重的人类健康风险。在我们前期研究中发现,离子液体1-丁基-3-甲基咪唑六氟磷酸盐([BMIm][PF6])作为环境选择性压力可以促进抗生素抗性基因的水平转移。本研究以E.coli DH5α(RP4)和同属的E.coli HB101,以及E.coli DH5α(RP4)和跨属的Salmonella enterica之间的纯菌接合转移体系为考察对象,从mRNA基因表达调控水平角度阐明离子液体[BMIm][PF6](0.001~2.5 g·L-1)影响质粒RP4接合转移的机理。结果表明,离子液体[BMIm][PF6]通过抑制基因kor A,kor B和trb A的mRNA表达水平来提高接合和跨膜转运基因trb Bp和trf Ap的表达;增强水平转移基因tra F的mRNA表达水平,并通过增强负调控基因kil A和kil B的mRNA表达水平抑制质粒的垂直传递过程;通过抑制基因trb K的mRNA表达水平降低接合转移体系的排斥效果,从而促进质粒RP4的接合转移。该结果有助于为抗生素抗性基因在环境中水平转移扩散的机理研究提供理论依据。  相似文献   

4.
胞外抗生素抗性基因是抗性基因的重要存在形式,可能通过转化重新进入细胞表达抗药性.因此其具有严峻却隐蔽的健康风险,且不同形态胞外抗生素抗性基因的风险存在显著差异,然而当前针对胞外抗性基因风险的研究极为稀少.本研究以序批式活性污泥反应器(SBR)为例,考察了污水生物处理过程中结合型和游离型胞外抗性基因产生的时空特征,以及曝气强度和污泥负荷的影响.结果 表明,SBR启动期2种胞外抗性基因均大量产生,且游离型胞外抗性基因的增加倍数和持续时间高于结合型:稳定运行后2种胞外抗性基因的丰度显著下降.从胞内外抗性基因的比重来看,好氧阶段以胞外抗性基因为主,且游离型胞外抗性基因比例达60%以上;厌氧阶段以胞内抗性基因为主,且结合型胞外抗性基因比例升高(7.5%~31.9%);出水中游离型胞外抗性基因占据绝对优势,比例达66.5% ~ 86.9%.曝气强度提高使2种胞外抗性基因丰度显著提高,但游离型胞外抗性基因提高程度(2.2倍~12.2倍)高于结合型(2.1倍~62倍).污泥负荷提高同样导致2种胞外抗性基因丰度提高,但游离型胞外抗性基因提高程度(1.3倍~7.8倍)低于结合型(1.9倍~ 13.3倍).研究表明,大量胞外抗性基因将在污水生物处理过程中产生,并随污水排放至环境中,是水环境中抗生素抗性基因(ARGs)的重要来源之一.  相似文献   

5.
污泥堆肥过程中磺胺类和大环内酯类抗性基因的残留   总被引:2,自引:0,他引:2  
抗生素抗性基因是一种新型环境污染物,污水处理厂特别是污泥中存在着高丰度的抗生素抗性基因.为研究污泥堆肥过程中抗生素抗性基因的残留,对磺胺类和大环内酯类抗性基因(sulI、sulII、erm(B)和erm(F))以及I类整合子(intI1)的丰度变化进行了定量分析.结果显示,sulΙ、sulΙI、erm(B)和erm(F)的相对丰度在中温阶段降低(PsulII0.05,Perm(B)0.05,Perm(F)0.05),且sulΙ的相对丰度在高温阶段达到最小值(PsulI0.05),sulΙ、sulΙI和erm(F)的相对丰度在冷却和腐熟阶段增加(PsulI0.05,PsulII0.05,Perm(F)0.05).堆肥过程中sulΙ、sulII和erm(B)的丰度与温度呈负相关(P0.05),温度可能是影响磺胺类和大环内酯类抗性基因变化的重要因素.sulΙ和sulII的丰度与intI1的丰度呈正相关(P0.05),表明水平基因转移可能是该类抗性基因传播与扩散的重要途径.研究结果表明,尽管存在于污泥中的抗生素抗性基因的相对丰度在升温阶段呈下降趋势,但在随后的冷却和腐熟阶段却显著反弹.因此,经堆肥处理的污泥直接施用于农田可能造成抗生素抗性基因的二次扩散.  相似文献   

6.
抗生素在现阶段的水产养殖中具有不可替代的作用,但长期滥用抗生素会诱导水生动物体内产生携带抗性基因(ARGs)的细菌株,尤其是多重耐药性菌株的产生将使得各种疾病的治疗更加棘手.抗性基因一旦被排泄到水产环境中不仅会对养殖区域和周围的环境造成潜在的基因污染,而且还会通过各种可移动遗传元件如质粒、转座子、整合子等的水平迁移作用进入其他致病菌和环境细菌中,对人类的健康安全构成潜在的威胁.论文对抗生素抗性基因在水产养殖业中的来源、污染现状、潜在的传播途径和相关的检测方法进行了综述,指出了开展水产养殖业中抗生素抗性基因污染研究的必要性,建议政府和有关部门尽快进行水产养殖业抗生素抗性基因的污染机理与控制对策研究.  相似文献   

7.
高晓宇  王磊 《生态环境学报》2023,(11):2062-2071
细菌耐药性给人类健康及公共卫生带来巨大的威胁。土壤尤其是农业土壤是环境中抗生素抗性重要的源库。为减少抗生素抗性基因(ARGs)的传播风险,了解其在土壤中的传播规律非常重要。通过总结分析国内外发表的相关文献,对目前ARGs在土壤中的积累、转移情况及消减特征进行了综述。已有调查结果发现,农业发达及经济发地区土壤是ARGs积累的热区。有机肥施用及污水灌溉等原因导致ARGs在土壤中持续积累,其丰度可达102 gene copies/16S rRNA gene copies。胞内抗生素抗性基因(i ARGs)、胞外游离抗生素抗性基因(eARGs)是ARGs的两种赋存形态,其中,i ARGs是主要的赋存形态。i ARGs通过接合转移、转导在土壤中传播,其中接合转移是目前研究最多及最主要的水平转移方式。eARGs通过转化在土壤中传播。胞外DNA可以在土壤中留存几个月甚至一年以上,由于检测方法的限制eARGs在土壤中的自然转化并不经常被发现,因此,对土壤eARGs的风险研究有所忽略。外源ARGs进入土壤后的命运受到ARGs种类、形态、土壤特性、污染物等因素的影响。ARB进入土壤后...  相似文献   

8.
人类农业生产活动显著影响农田生态系统中抗生素抗性基因的增殖与扩散,为探究粪肥与铜施加对土壤抗生素抗性基因增殖与传播的长期影响,采用高通量荧光定量聚合酶链式反应分析猪粪和铜停施10年后土壤中抗生素抗性基因多样性和丰度.结果显示:猪粪和铜停施10年后,土壤抗生素抗性基因相对丰度仍分别处于2.16倍和2.01倍于对照组的较高水平,说明猪粪和铜施用可导致土壤抗生素抗性基因的长期存在,其中ycel_mdtH和cphA基因在猪粪和铜施用两种处理中均显著富集. PCA结果显示,猪粪和铜处理土壤中抗生素抗性基因的分布格局无明显差别,铜处理土壤中所检出的抗生素抗性基因数量的90%以上均可在猪粪施用土壤中检出,而铜是唯一在两种处理土壤中检出浓度均显著高于(P 0.001)对照并处于同一浓度水平的元素.本研究表明铜可能是导致土壤中抗生素抗性基因增殖扩散的主要因素之一,施加重金属含量较高的粪肥对农田土壤抗生素抗性基因有着长期影响的风险;结果可为农业中的粪肥施用提供新的风险评价参数.(图4参26)  相似文献   

9.
本文从养殖场空气中分离出360株E.coli(大肠杆菌,Escherichia coli),应用肉汤微量稀释法和PCR方法,分离磺胺甲唑敏感菌株,检测抗生素抗性和抗性基因.在分离的E.coli中,对磺胺甲唑敏感菌株为95株(26.4%),有48株含有青霉素、氯霉素、四环素、环丙沙星、庆大霉素和利福平的抗性,而47株未含有抗性.其中,7株菌株含有1种抗生素抗性、11株菌株含有2种抗生素抗性、17株菌株含有3种抗生素抗性、6株菌株含有4种抗生素抗性、4株菌株含有5种抗生素抗性、3株菌株含有6种抗生素抗性.对抗生素的耐受能力依次为:氯霉素、青霉素、四环素、环丙沙星、庆大霉素、利福平.磺胺甲唑敏感菌株共检出163个抗性基因,sul1、int1、sul2、Int2、sul3检出数量依次为49、44、29、20和19;含一种、二种、三种、四种、五种抗性基因菌株分别为45、22、10、7、2;但有6株未检测出抗性基因.结果表明养殖场建场时间、抗生素使用、养殖规模等与抗生素抗性菌的抗性呈正相关;养殖场空气中分离的E.coli抗生素抗性较高,且具有多重抗性;抗生素抗性的表现型与其基因型之间出现不完全吻合现象.  相似文献   

10.
城市垃圾填埋场抗生素抗性基因的污染特征   总被引:1,自引:0,他引:1  
抗生素抗性基因是一种新型的环境污染物,为探究抗生素抗性基因在垃圾填埋场的污染特征,采集上海老港垃圾填埋场中固体垃圾和渗滤液样品,采用实时荧光定量PCR技术检测磺胺类抗生素抗性基因(sul1、sul2)、四环素类抗性基因(tetM、tetQ)、氨基糖苷类抗性基因(strB、aadA1)、大环内酯类抗生素抗性基因(ermB、mefA)、多重抗性基因(mexF)及I类整合子(intl1)等6类目标基因的丰度.结果显示,6类目标基因均在固体垃圾和渗滤液中检测到,丰度分别介于10~2-10~6、10~3-10~7/ng,且多重抗性基因、氨基糖苷类及磺胺类抗生素抗性基因检出丰度较高.在填埋场固体垃圾中,部分目标基因在1.5 m深处的丰度高于0.5 m深处;在渗滤液中,目标基因丰度和呈现老龄渗滤液大于新鲜渗滤液,部分目标基因在秋季的丰度大于春季.上述结果说明垃圾填埋场是抗生素抗性基因潜在的储存库,目标基因的丰度在垃圾填埋场中存在时空差异.(图8表2参41)  相似文献   

11.
抗生素抗性基因作为一种新型“污染物”已经受到广泛关注.研究边缘海中抗生素抗性基因和人类致病菌的组成特征,有助于深入认识海洋环境中抗生素抗性基因的起源和海洋致病菌的潜在健康风险.使用基于高通量测序的宏基因组学分析方法在中国边缘海沉积物中发现了多种抗生素抗性基因,主要以多重耐药基因为主,其中南海沉积物中抗生素抗性基因的总丰度约是黄渤海的2倍.与中国边缘海相比,珠江口沉积物中抗生素抗性基因丰度更高,与人类常用抗生素(如磺胺类、氨基糖苷类、β-内酰胺类、四环素类等)的耐药性更为相关.此外,中国边缘海沉积物中几乎没有发现质粒携带的抗性基因,而珠江口有约20%的抗性基因由质粒携带.中国边缘海沉积物中主要人类致病菌种包括肺炎链球菌(24.4%)、肺炎克雷伯菌(19.9%)、无乳链球菌(9.2%)、铜绿假单胞菌(6.9%)等.珠江口沉积物中致病菌群落组成与中国边缘海显著不同,副溶血性弧菌和空肠弯曲杆菌的丰度相对更高.上述研究表明,中国边缘海沉积物中存在高多样性的抗生素抗性基因和人类致病菌,人类活动干扰可导致其污染水平提高.  相似文献   

12.
吴楠  乔敏 《生态毒理学报》2010,5(5):618-627
近年来,致病菌耐药性的增加和扩散已成为全世界关注的热点问题,而人类医疗和畜禽养殖业抗生素的滥用正不断加剧这一问题.众多研究表明土壤环境作为一个巨大的抗性基因储存库,在抗性微生物和抗性基因的传播中起重要的作用,具有潜在的生态与健康风险.在总结国内外最新研究基础上,对土壤环境中典型抗生素-四环素类抗生素的主要污染源以及其在土壤中的基本环境行为等进行了分析,并探讨了土壤中四环素类抗性基因的来源、迁移和扩散及分子检测手段等问题.我国作为抗生素的生产和消费大国,抗生素污染问题较其他国家更为严重,而国内相关研究才刚刚起步,迫切需要开展有关环境中抗生素和抗生素抗性基因污染的系统研究.  相似文献   

13.
抗生素在养殖、制药及医疗卫生行业中的广泛使用导致环境中的抗性细菌(Antibiotic resistance bacteria,ARB)及抗性基因(Antibiotic resistance genes,ARGs)浓度日益增加,甚至已经威胁到人体健康.本文在总结大量文献的基础上,阐述了ARB和ARGs在抗生素典型行业(包括养殖业、制药业和医疗卫生业)和市政污水中的污染特征,重点介绍了污水处理系统(Wastewater treatment plants,WWTPs)不同处理工艺对抗性细菌和抗性基因消长的影响及机制,最后针对污水处理系统中抗性基因的消减提出了新的见解,并对今后研究方向进行了展望.  相似文献   

14.
抗生素作为兽药和饲料添加剂广泛用于世界各国的畜禽养殖,造成环境中抗生素/抗性基因传播扩散问题日益突出,严重威胁到生态环境和人类健康。笔者梳理了国内外在兽药抗生素登记、使用、标准以及防控计划等各环节的管理政策,从不同角度分阶段提出了我国兽药抗生素环境风险控制管理政策建议,包括:建立兽药环境监管机制,从源头控制抗生素抗性基因污染;制定兽药抗生素环境风险评估导则,从登记环节规避环境与健康风险;加快制定粪便和污水中抗生素/抗性基因的控制标准,从使用末端消除污染;加强含有抗生素的粪便处置与管理,限制抗生素/抗性基因的环境溢出;推广生态有机农业的开展,以期为我国兽药抗生素的环境管理提供基础支撑。  相似文献   

15.
抗性基因是与抗生素的滥用密切关联的一种新型环境污染物.DNA作为抗性基因的载体,其在环境中的赋存、迁移与水平转移对于环境中抗药性的传播十分重要.基于文献,本文针对与抗药性传播密切关联的各个环节,系统讨论了环境因子对DNA分子的损伤、保护和修复等影响DNA的赋存与归趋的机制,DNA吸附、解吸与迁移等影响其在环境中移动性的机制,以及水平转移等引发细菌产生抗药性的机制.文末提出了值得进一步研究的科学问题.  相似文献   

16.
污水处理厂的现有工艺主要针对化学需氧量(COD)和氮/磷的处理,忽视了对抗生素的去除,导致污水厂出水及污泥中抗生素含量较高.厌氧消化是污水及城市污泥资源化的常用手段,但容易受残留抗生素的影响.从抗生素的残留情况、抗生素对生物气/甲烷产量及挥发性脂肪酸代谢过程的影响、抗生素对微生物群落结构的影响以及去除抗生素抑制的方法4个方面,综述污水/城市污泥中抗生素对厌氧消化体系影响的研究进展.研究表明,大多数抗生素会抑制生物气/甲烷产量并造成挥发性脂肪酸累积;水解酸化菌大多对抗生素不敏感,但互营有机酸氧化菌的活性容易受抗生素抑制;与氢营养型产甲烷菌相比,乙酸营养型产甲烷菌更容易受抗生素影响;预处理(热水解、臭氧氧化、碱处理)及添加外源介质(零价铁、活性炭等)等手段可以在一定程度上缓解抗生素对厌氧消化的抑制作用.未来应在属/种水平上深入探讨单一及联合抗生素对微生物群落结构的影响,并进一步开发削减抗生素和抗生素抗性基因的厌氧消化工艺,以加速实现污水/城市污泥的资源化进程并降低抗性传播风险.(表5参77)  相似文献   

17.
抗生素抗性基因(Antibiotic resistance genes,ARGs)在饮用水系统中的传播和扩散已成为全球公共健康的主要威胁之一.饮用水厂处理工艺对抗生素抗性基因的去除效果对保证饮用水水质安全具有重要意义,但是水处理工艺、消毒方式以及管网输配系统对不同抗生素抗性基因的影响差异较大.本文在总结了大量文献的基础上,阐述了饮用水系统中抗生素抗性基因的污染特征,综述了臭氧、混凝、砂滤、生物活性炭以及氯消毒和超滤膜等不同水处理工艺对抗生素抗性基因去除的影响及其机理.  相似文献   

18.
抗生素抗性基因在环境中的来源、传播扩散及生态风险   总被引:10,自引:1,他引:9  
近年来,由于抗生素的滥用首先诱导动物体内产生抗生素抗性基因(antib iotic resistance genes,ARGs),从而加速了抗性基因在环境中细菌间的传播扩散.目前,抗生素抗性基因作为一类新型环境污染物,在不同环境介质中的传播、扩散可能比抗生素本身的环境危害更大.本文针对抗生素抗性基因在地表水、地下水、医疗废水、城市污水处理厂、养殖场、土壤、沉积物以及大气环境中的来源、分布、传播情况以及国内外最新研究动态进行综述.分析了抗生素抗性基因在环境中的潜在传播途径及其可能影响因素,并指出光照,厌氧,高温处理可以有效遏制抗生素抗性基因在环境中的传播和扩散.揭示了抗生素抗性基因可能造成的生态风险,针对我国对该类污染物的研究现状,提出了今后的研究重点.  相似文献   

19.
世界卫生组织在2000年的报告中将抗生素抗性列为本世纪人类在健康领域面临的最大挑战之一,有关抗药基因传播机制与控制技术的研究已经成为国际环境科学领域的一个前沿问题.本文以生产量大、使用历史长的几种发酵类和化学合成类生素为对象,以典型城市污水厂为对照系统,全面评估抗生素生产及废水处理过程中抗生素与抗药基因的排放特征;把传统的筛选培养方法与高通量测序技术及生物信息学手段有机结合,深入研究抗生素胁迫下整合子对抗性基因的重组作用及质粒介导的结合转移作用,以揭示抗药基因在抗生素压力驱动下主要的水平转移机制;构建多通道生物膜流动暴露系统进行抗生素最小选择浓度评价;研究针对抗生素生产全过程的抗生素及抗药基因控制多级屏障技术,为抗药基因的污染控制与管理提供全面系统的科学基础.  相似文献   

20.
我国是世界养猪第一大国,生猪饲养量和猪肉产量均位居世界第一。养猪业每年所产生的粪便、废水中含有大量畜用抗生素及其代谢产物,使养猪业废弃物成为环境中重要的抗生素污染源之一,随之产生的抗性基因污染及传播问题也不容忽视。本文结合近年来国内外的研究数据,对我国养猪业废弃物中四环素类、磺胺类抗生素及其相关抗性基因的检测方法、污染状况及影响抗性基因传播的因素进行了分析,并基于控制我国养猪行业抗生素及抗性基因污染的目的,提出了今后的研究重点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号