首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT: Liquid dominated geothermal systems are expected to account for most of the growth in geothermal energy production in the coming decades. Production of water from such systems could significantly augment fresh water supplies. The feasibility of water exploitation is clouded by potential problems related to seismic impacts, land subsidence and the composition of geothermal brines. If these problems can be overcome at little cost, desalination of brines may be feasible. Estimates of water production costs are presented for a variety of desalination technologies, plant sizes and brine water compositions. These estimates show that production costs will range from $139.10/A.F. to $436.00/A.F. at the plant boundary. Economies of scale and brine composition are important determinants of cost. Production costs are substantially in excess of the value of water in alternative uses. However, in certain unique situations, it may be efficient to desalt brines for use in upgrading the quality of municipal water, industrial process water and irrigation water. Unique situations aside, geothermal brines are not likely to provide an economical source of fresh water in the absence of striking changes in the patterns of supply and demand for water.  相似文献   

2.
Recovery of minerals from desalination brines is considered to be a very attractive source of minerals. It is usually recommended for reducing fresh-water production cost and minimizing waste disposal. This paper discusses the production of magnesium from a Saudi desalination brine with reference to the Arabian Gulf conditions.  相似文献   

3.
The CO2SINK project in Ketzin represents a field laboratory for the storage of CO2 in a 650-m deep saline aquifer. The project is accompanied by a microbiological monitoring programme to characterise the composition and activity of the autochthonous microbial community in rock and brine samples and their changes in response to CO2 storage. A prerequisite of these studies is the acquisition of samples free of contamination from microorganisms and organic and inorganic components. Drilling mud and technical fluids are the main sources of contamination. This study describes the application of the fluorescent dye tracers fluorescein and rhodamine B as contamination controls for rock core and brine samples. Fluorescein was added to drilling mud that was used during the coring phase of the Ketzin wells Ktzi 200, 201 and 202. In addition, total organic carbon (TOC) concentrations, reflecting the carboxymethyl cellulose (CMC) component of the drilling mud, were determined to verify the tracer results. The fluorescence and TOC analyses revealed that drilling mud filtrate penetrated the outer 20 mm of mildly permeable sandstone cores. Rhodamine B was added to brines that were used to displace the drilling mud and to flush the wells after completion. The tracer monitoring during the discharge of drilling mud and displacement brines from the wells during hydraulic tests and nitrogen lifts enabled the quantification of reservoir fluid quality. After the production of 140–190 m3 (16–21 borehole volumes) of fluid, the drilling mud concentration was reduced to about 0.05%. The use of fluorescein emerged as a field-capable, sensitive and reliable method during the sampling of rock core and formation brine samples.  相似文献   

4.
Parts of the USA are facing impending shortages of freshwater. One proposed solution is the construction of desalination plants to turn seawater into freshwater. Although seawater desalination plants are widely used in the Middle East, especially Saudi Arabia, there are few desalination plants in the USA. In 2003, Tampa Bay Water built the largest desalination plant in North America. Persistent operating problems and escalating costs have caused the utility to re-evaluate its reliance on the seawater desalination plant as part of a long-term regional water supply strategy. In addition, environmental effects of the plant are uncertain. Advances in reverse osmosis technology have significantly reduced desalination costs. However, desalination of seawater is still more expensive than other freshwater supply sources and demand management measures. With time and research, seawater desalination may prove to be a sustainable, cost-effective source of new freshwater supplies, especially if plants are coupled with renewable energy sources. Until then, the development of small-scale groundwater desalination plants, the re-use of water, water conservation, and a more efficient allocation of water through higher prices and rising block rates will be important strategies in meeting growing water demand. Moreover, it is important to improve the coordination between water supply planning and land use planning as populations continue to increase.  相似文献   

5.
大连石化公司采用反渗透膜法海水淡化工艺为生产装置提供淡水资源,其用水取自炼化装置冷却换热后的海水,不额外增加海水的取用量,降低了成本。装置采用常规预处理加三级反渗透膜分离技术,同时配备了能量回收装置,将反渗透高压"浓水"的能量转换到低压的原海水中,使得能耗大大降低。文章介绍了该工艺的流程及其技术特点,该装置节能、节水,其产品水质量达到甚至超过了中压锅炉补给水的要求。工程运行稳定,对沿海同类企业有借鉴意义。  相似文献   

6.
In the United States, thermal power plant electrical generators (EGs) are large water diverters and consumptive users who need water for cooling. Retrofitting existing cooling systems to dry cooling and building new facilities with dry cooling can save water and reduce EG's vulnerability to drought. However, this can be an expensive source of water. We estimate that the cost of water saved by retrofitting cooling in existing EGs ranges from $0.04/m3 to $18/m3 depending on facility characteristics. Also water savings from building new EGs with dry cooling ranges in cost per unit water from $1.29/m3 to $2.24/m3. We compare costs with that for water development projects identified in the Texas State Water Plan. We find the water cost from converting to dry cooling is lower than many of the water development possibilities. We then estimate the impact of climate change on the cost of water saved, finding climate change can increase EG water use by up to 9.3% and lower the costs of water saved. Generally, it appears that water planners might consider cooling alterations as a cost competitive water development alternative whose cost would be further decreased by climate change.  相似文献   

7.
A new system composed of a sequential flat plate and parabolic dish solar collector was applied to enhance the solar desalination productivity. Heated saline water was desalinated using the evaporation/condensation principle and an effort was made to achieve higher distillate production compared to previous studies. Desalination efficiency values were calculated between 23% and 57%. Maximum desalinated water productions were obtained as 1,038 mL/m2.h in autumn and 1,402 mL/m2.h in summer. The cost of solar desalination system was found as economically feasible with 3 years’ payback period and the produced water cost of 0.014 $/L. Physicochemical analyses revealed that as a result of the desalination process, salinity level decreased from 35.6‰ to 0.0–0.1‰, chloride concentration decreased from 21,407 mg/L to 10 mg/L, and electrical conductivity decreased from 53.1 mS/cm to 0.11 mS/cm.  相似文献   

8.
ABSTRACT: An essential component to the ground water budget for the Las Vegas Valley (LVV) in southern Nevada is discharge from the ground water system. Discharge for the LW has been based on estimates made more than 50 years ago of 35,524,224 m3 per year as evapotranspiration (ET) and 0 m3 per year as subsurface outflow. Newly published values for recharge based on a more robust data set (70,308,360 m3) indicate a large imbalance associated with the earlier discharge estimates, providing the basis for the reevaluation conducted in this study. ET estimates in this study, as opposed to previous studies, were assigned a range in values that included an approach that assigned higher weight to the unique soil, plant, water, and climatic conditions that existed in predevelopment (1905) LW. The earlier discharge estimates also assumed that the basin was hydrologically closed; however, based on our evaluation, a range in yearly discharge by subsurface outflow from 1,480,176 m3 to 19,735,680 m3 could be assigned. Likewise, a range in yearly ET from 20,475,768 m3 to 78,819,372 m3 could be assigned. Based on newly published recharge values, closure can only occur if higher values are assigned to both the subsurface outflow and/or ET components of ground water discharge. We cannot provide a complete water balance closure with our ground water discharge estimate of 64,140,960 m3. However our reevaluation gives support to the higher recharge estimates and provides the rationale for future studies to be conducted based on a more rigorous scientific assessment.  相似文献   

9.
James Androwski, Abraham Springer, Thomas Acker, and Mark Manone, 2011. Wind‐Powered Desalination: An Estimate of Saline Groundwater in the United States. Journal of the American Water Resources Association (JAWRA) 47(1):93‐102. DOI: 10.1111/j.1752‐1688.2010.00493.x Abstract: Increasing scarcity of freshwater resources in many regions of the world is leading water resource managers to consider desalination as a potential alternative to traditional freshwater supplies. Desalination technologies are energy intensive and expensive to implement making desalination using renewable energy resources a potentially attractive option. Unfortunately, saline groundwater resources are not well characterized for many regions hindering consideration of such technologies. In this assessment, we estimate the saline groundwater resources of the principal aquifers of the United States using a geographic information system and correlate these resources to wind resources potentially sufficient to supply the energy demand of desalination equipment. We estimate that 3.1 × 1014 m3 saline groundwater, total volume, are contained in 28 of the country’s principal aquifers known to contain saline groundwater. Of this volume, 1.4 × 1014 m3 saline groundwater are co‐located with wind resources sufficient for electrical generation to desalinate groundwater.  相似文献   

10.
Large volumes of CO2 captured from carbon emitters (such as coal-fired power plants) may be stored in deep saline aquifers as a means of mitigating climate change. Storing these additional fluids may cause pressure changes and displacement of native brines, affecting subsurface volumes that can be significantly larger than the CO2 plume itself. This study aimed at determining the three-dimensional region of influence during/after injection of CO2 and evaluating the possible implications for shallow groundwater resources, with particular focus on the effects of interlayer communication through low-permeability seals. To address these issues quantitatively, we conducted numerical simulations that provide a basic understanding of the large-scale flow and pressure conditions in response to industrial-scale CO2 injection into a laterally open saline aquifer. The model domain included an idealized multilayered groundwater system, with a sequence of aquifers and aquitards (sealing units) extending from the deep saline storage formation to the uppermost freshwater aquifer. Both the local CO2-brine flow around the single injection site and the single-phase water flow (with salinity changes) in the region away from the CO2 plume were simulated. Our simulation results indicate considerable pressure buildup in the storage formation more than 100 km away from the injection zone, whereas the lateral distance migration of brine is rather small. In the vertical direction, the pressure perturbation from CO2 storage may reach shallow groundwater resources only if the deep storage formation communicates with the shallow aquifers through sealing units of relatively high permeabilities (higher than 10?18 m2). Vertical brine migration through a sequence of layers into shallow groundwater bodies is extremely unlikely. Overall, large-scale pressure changes appear to be of more concern to groundwater resources than changes in water quality caused by the migration of displaced saline water.  相似文献   

11.
The present study assesses the feasibility of exploiting single- and double-basin solar stills in our daily lives. An investigation is carried out to determine the thermal performance and economic viability of making use of solar stills in water desalination. The climatic conditions of Tehran (35°44?N, 51°30?E) are considered to assess the feasibility of the basins. Transient energy and mass balance equations are utilized for modeling the thermal performance. The equations are solved by using fourth-order Runge–Kutta method in FORTRAN. The daily productivities of single- and double-basin solar stills are found to be 5.22 kg/m2 and 7.73 kg/m2, respectively, while the effect of different water masses (20–100 kg) on the productivity of each system was found to be optimum at 20 kg/m2. The results are compared with experimental work performed under different climatic conditions to examine the validity of the feasibility of basins in general. A life cycle cost analysis performed for Tehran, yields that single- and double-basin solar stills have savings-to-investment ratios of 4.2 and 4.8, respectively, indicating that they are economically feasible.  相似文献   

12.
The major present hindrance in using desalination to help alleviate global water scarcity is the cost of this technology, which, in turn is due to energy cost involved. This study examines historical trends in desalination and breaks up the cost of desalination into energy based and nonenergy based. It then develops the learning curves (relationship between cumulative production and market price) for desalination. Assuming that the photovoltaic (PV) technology will be the dominant form of energy used in the desalination process, the existing PV learning curve and desalination learning curve are combined to explore the viability of large‐scale adoption of desalination in the future. The world has been divided into seven regions and it is assumed that water demand from desalinated water will be met only within the 100‐km coastal belt. It is shown that, in most of the regions, other than sub‐Saharan Africa, Central America, and South Asia (where water tariffs are low), the desalination (without considering energy) becomes viable by 2040. For PV technology, less than 1 million MW per annum growth is required till 2050 to make it affordable. Globally, desalination with renewable energy can become a viable option to replace domestic and industrial water demand in the 100‐km coastal belt by 2050.  相似文献   

13.
ABSTRACT: The economic feasibility of large-scale subsurface drainage projects in irrigated land is affected by construction costs. This study was conducted to evaluate the effect of two different types of subsurface drainage system layout on construction costs for a 1000 ha pilot area located in the Nile Delta of Egypt. The two types of layout studied were the conventional layout currently used in Egypt and the modified layout that was developed for reducing water losses from rice fields. When compared to the conventional layout, the modified layout resulted in a reduction of 6.74 percent in construction costs (714,464 US$ versus 766,142 US$). This cost reduction is explained by the need for lesser lengths of large diameter collector pipes with the modified layout, which results from the smaller drainage area of subsurface drainage systems (average 23.7 versus 30.8 ha). We have found that the cost of subsurface drainage can be minimized by reducing the area drained by each subsurface drainage system.  相似文献   

14.
Two sets of experiments on typical Class G well cement were carried out in the laboratory to understand better the potential processes involved in well leakage in the presence of CO2. In the first set, good-quality cement samples of permeability in the order of 0.1 μD (10?19 m2) were subjected to 90 days of flow through with CO2-saturated brine at conditions of pressure, temperature and water salinity characteristic of a typical geological sequestration zone. Cement permeability dropped rapidly at the beginning of the experiment and remained almost constant thereafter, most likely mainly as a result of CO2 exsolution from the saturated brine due to the pressure drop along the flow path which led to multi-phase flow, relative-permeability effects and the observed reduction in permeability. These processes are identical to those which would occur in the field as well if the cement sheath in the wellbore annulus is of good quality. The second set of experiments, carried out also at in situ conditions and using ethane rather than CO2 to eliminate any possible geochemical effects, assessed the effect of annular spaces between wellbore casing and cement, and of radial cracks in cement on the effective permeability of the casing-cement assemblage. The results show that, if both the cement and the bond are of good quality, the effective permeability of the assemblage is extremely low (in the order of 1 nD, or 10?21 m2). The presence of an annular gap and/or cracks in the order of 0.01–0.3 mm in aperture leads to a significant increase in effective permeability, which reaches values in the range of 0.1–1 mD (10?15 m2). The results of both sets of experiments suggest that good cement and good bonding with casing and the surrounding rock will likely constitute a good and reliable barrier to the upward flow of CO2 and/or CO2-saturated brine. The presence of mechanical defects such as gaps in bonding between the casing or the formation, or cracks in the cement annulus itself, leads to flow paths with significant effective permeability. This indicates that the external and internal interfaces of cements in wells would most probably constitute the main flow pathways for fluids leakage in wellbores, including both gaseous/supercritical phase CO2 and CO2-saturated brine.  相似文献   

15.
To reduce the consumption of freshwater in the laundry industry, a new trend of closing the water cycle has resulted in the reuse/recycling of water. In this study, the performance of a full-scale submerged aerobic membrane bioreactor (9 m3) used to treat/reuse industrial laundry wastewater was examined over a period of 288 days. The turbidity and total solids (TS) were reduced by 99%, and the chemical oxygen demand (COD) effluent removal efficiencies were between 70% and 99%. The levels of COD removed by the membrane were significantly greater than the levels of biodegraded COD. This enabled the bioreactor to sustain COD levels that were below 100 mg/L, even during periods of low wastewater biodegradation due to bioreactor sludge. An economic evaluation of the membrane bioreactor (MBR) system showed a savings of 1.13 € per 1 m3 of water. The payback period for this system is approximately 6 years. The energy and maintenance costs represent only 5% of the total cost of the MBR system.  相似文献   

16.
This experimental work has been conducted to compare the performance of the modified stills with that of the conventional still. Three modified stills (S1, S2, and S3) and conventional still (S4) were fabricated, each with 0.5 m2 of the basin area. S1 and S3 had transparent double glass walls with air in between acting as insulation, whereas S2 has a single transparent wall. S4 has insulated plywood walls painted black from inside. A mixture of coco peat and charcoal was used in S1, S2, and S3, whereas there was no basin material for S4. Experiments were conducted by changing the water quantity in the solar still ranging from 5 to 10 kg. Maximum distillate output of 5.46 l/m2-d was obtained for S2, whereas it was 3.80 l/m2-d for S4 for an average solar radiation intensity of 675 W/m2 (24.3 MJ/m2-d). Use of transparent walls with troughs to collect condensate increased the condenser area by 78.4%. The distillate water cost per liter was estimated as Rs. 0.86 (0.013 US$) and Rs. 1.61 (0.025 US$) for S2 and S4, respectively. Energy payback time for S2 was estimated as 4 months. Theoretical and experimental values showed that there is a significant loss of incoming solar radiation due to wall shadow.  相似文献   

17.
A protocol was developed with the purpose of assessing the main costs implied in the set-up, operation and maintenance of a waste gas-treating conventional biofilter. The main operating parameters considered in the protocol were the empty bed residence time and the gas flow rate. A wide variety of investment and operating costs were considered. In order to check its reliability, the protocol was applied to a number of scenarios, with biofilter volumes ranging from 8.3 to 4000 m3. Results show that total annualized costs were between 20?000 and 220?000 €/year and directly dependent, among other factors, on the size of the system. Total investment and operating costs for average-size compost biofilters were around 60?000 € and 20?000 €/year, respectively, which are concordant with actual costs. Also, a sensitivity analysis was performed in order to assess the relative influence of a series of selected costs. Results prove that operating costs are those that influence the total annual costs to a higher extent. Also, packing material replacement costs contribute significantly to the total yearly costs in biofilters with a volume higher than 800 m3. Among operating costs, the electricity consumption is the main influencing factor in biofilters with a gas flow rate above 50?000 m3/h, while labor costs are critical at lower gas flow rates. In addition, the use of a variety of packing materials commonly employed in biofiltration was assessed. According to the results obtained, special attention should be paid to the packing material selected, as it is the main parameter influencing the medium replacement costs, and one of the main factors affecting investment costs.  相似文献   

18.
Jang, Cheng‐Shin, Chen‐Wuing Liu, Shih‐Kai Chen, and Wen‐Sheng Lin, 2011. Using a Mass Balance Model to Evaluate Groundwater Budget of Seawater‐Intruded Island Aquifers. Journal of the American Water Resources Association (JAWRA) 48(1): 61‐73. DOI: 10.1111/j.1752‐1688.2011.00593.x Abstract: The study developed a mass balance model to evaluate the groundwater budget of seawater‐intruded island aquifers using limited available data. The Penghu islands were selected as a study area. As sparse observed data were available in the islands, methods of combining water and chloride balances were used to determine the amounts of groundwater pumping, seawater intrusion, aquifer storages, and safe yields in the shallow and deep aquifers. The groundwater budget shows that seawater intrusion to freshwater aquifers was 1.38 × 106 and 0.29 × 106 m3/year in the shallow and deep aquifers, respectively, indicating that the seawater intrusion is severe in the both aquifers. The safe yield of the shallow aquifer was 14.56 × 106 m3/year in 2005 which was four times higher than that of the deep aquifer (3.70 × 106 m3/year). However, the annual pumping amounts in the shallow and deep aquifers were 4.77 × 106 and 3.63 × 106 m3/year, respectively. Although the safe yield of the shallow aquifer is enough for all water resources demands, only 55% of exploitation amount was extracted from the shallow aquifer due to its poor water quality. Groundwater exploitation in the deep aquifer should be significantly reduced and regulated by a dynamic management of pumping scheme because the annual pumping amounts are close to the safe yield and seawater intrusion occurs continually. Additionally, to alleviate further aquifer salination, at least half of the current annual groundwater abstraction should be reduced.  相似文献   

19.
ABSTRACT: An analysis is undertaken to determine the conditions under which membrane desalination becomes an economically preferable alternative for treating brackish water supplies. While membrane desalination is more expensive than conventional treatment, it affords benefits beyond those of conventional processes by reducing salinity related damages. An important and largely unexplored issue regards how the added cost of desalination compares to its benefits in terms of damages avoided. A comparative analysis is undertaken over a range of scenarios with the objective of identifying the treatment technology the leads to the lowest “total economic cost,” a term described by the sum of costs related to supply, treatment, and salinity related damages. Using data from a representative region, desalination yields the lowest total economic cost for source waters that exceed “threshold” salinity concentrations below 1,000 mg/l total dissolved solids (TDS). In instances where standard conventional processes require upgrades to maintain compliance with pending regulations (e.g., disinfection byproducts), the cost gap between membrane and conventional processes is reduced and the threshold concentration lowered. Given the inherent uncertainty in both treatment cost and damage estimates, a sensitivity analysis is conducted to determine which factors have the greatest impact on the treatment decision. Results suggest that considering salinity related damages when selecting a treatment technology makes membrane desalination of brackish waters economically attractive under a wider range of circumstances.  相似文献   

20.
The article states the case for greatly enhanced reliance on desalination in the provision of freshwater. It argues that the concept of integrated water resource management (IWRM), should be expanded to routinely include desalination, and that sea water and brackish water should be listed among available sources of freshwater. In recent years, the price per m3 of freshwater obtained from desalination has steadily declined, and is now within competitive range of conventional sources, especially as extracting water from surface sources (rivers, lakes) is becoming increasingly expensive as well as ecologically harmful, and groundwater in many locations is saline or depleted. With the expectation that by 2020, five billion people will reside in megacities, today's conventional water resources are likely to become insufficient. As many of these megacities are located near ocean coasts, sea water seems a logical solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号