首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 398 毫秒
1.
铬黄生产中含铅含铬废水治理   总被引:1,自引:0,他引:1  
《化工环保》1991,11(5):305-307
采用合成沉淀法与中和沉淀法分别治理铬黄生产中的含铬废水和含铅废水,获得成功。处理后废水中的铬含量和铅含量都低于国家排放标准。本工艺操作简便,技术可行;同时还可回收铬黄和氢氧化铅。  相似文献   

2.
用硫化铁作转化剂,通过难溶硫化物沉淀的转化,把废水中砷(V)、砷(Ⅲ)转变成硫化物沉淀而被除去。“转化法”兼有离子交换法、硫化物沉淀法、铁盐凝聚法和中和法的共同作用。在较宽pH(2—10)范围内,含砷废水通过转化处理后,除砷效果好;废水中所含的Cu~(2+)、Cd~(2+)、Hg~(2+)、Pb~(2+)、zn~(2+)等重金属离子亦可同时被除去。  相似文献   

3.
徐海林  童仕唐 《化工环保》2011,31(6):486-489
利用脱硫废碱液对酸化后的含铬废水进行处理,研究了废水初始pH、脱硫废碱液加入量和静置时间等对Cr(Ⅵ)转化率的影响.实验结果表明,在废水初始pH为1.4、静置时间为30 min的条件下,处理30 mL Cr(Ⅵ)质量浓度为126.5 mg/L的含铬废水,适宜的脱硫废碱液加入量为6 mL,此条件下Cr(Ⅵ)转化率接近10...  相似文献   

4.
二壬基萘磺酸反胶团萃取模拟废水中的铅   总被引:1,自引:0,他引:1       下载免费PDF全文
以二壬基萘磺酸(DNNSA)反胶团煤油溶液萃取模拟含铅废水中的铅。在萃取前水相中铅离子浓度为3×10-4 mol/L、DNNSA浓度为0.010 mol/L、油水比为1∶20、模拟含铅废水pH为6、萃取温度为303 K、萃取时间为40 min的条件下,萃取后水相中铅离子浓度为0.845×10-4 mol/L,有机相中铅离子浓度为4.517×10-3 mol/L,铅萃取率为71.83%。DNNSA反胶团萃取铅离子萃取容量为1 188.62 mg/g,热力学焓变为2.595 kJ/mol。  相似文献   

5.
电镀废水中镍的回收和利用   总被引:2,自引:0,他引:2  
采用化学沉淀法回收电镀含镍废水中的Ni~(2+),研究了各工艺因素对回收效果的影响.实验结果表明,回收电镀含镍废水中Ni~(2+)的最佳工艺条件为:反应温度30 ℃,废水pH 12~13,0.1 mol/L的NaOH溶液加入量70 mL,以聚丙烯酸钠为絮凝剂,搅拌转速1 250 r/min,搅拌时间2 min.将回收产物Ni(OH)_2用作润滑油添加剂可有效改善润滑油的摩擦磨损性能.  相似文献   

6.
改性高岭土处理含酸性媒介染料的印染废水   总被引:1,自引:1,他引:0  
用十六烷基三甲基溴化铵(CTMAB)改性的高岭土处理以水溶性酸性媒介染料为主的印染废水.实验结果表明,当CTMAB-高岭土加入量为0.6 g/L、用石灰乳控制废水pH为9.5~10.0、聚丙烯酰胺的加入量为2.0 mg/L时,废水的处理效果最佳,废水色度和COD去除率分别达到98.0%和92.0%以上,出水色度和COD达到了GB4287-92<纺织染整工业水污染物排放标准>一级排放标准.  相似文献   

7.
分别采用传统沉淀法和并流加料沉淀法处理含铜锌废水,考察了废水进样速率、废水pH、搅拌速率对重金属离子残留质量浓度的影响。采用FTIR、XRD和SEM表征了所得污泥的物相和形貌。实验结果表明:并流加料沉淀法所得滤液中Zn~(2+)、Cu~(2+)和Al3+的质量浓度远低于传统沉淀法;在废水进样速率1.0 mL/min、废水pH 9、搅拌速率500 r/min的最佳工艺条件下,滤液中Cu~(2+)和Zn~(2+)基本没有残留,Al3+质量浓度仅为0.2 mg/L,达到工业排放标准;所得污泥结晶度良好,为类水滑石Cu_3Zn_3Al_2(OH)_(16)CO_3·4H_2O(PDF#37-0629)结构。  相似文献   

8.
采用臭氧氧化—曝气生物滤池( BAF)联合工艺处理低温高浓度苯酚模拟废水.应用Design - Expert 7.1设计系统对臭氧氧化高浓度苯酚模拟废水进行了参数优化.实验结果表明:在低温(5 ~ 10℃)、臭氧加入量为0.67 g/L、进水pH为9.85的条件下,臭氧氧化出水苯酚质量浓度为1 237.6 mg/L,苯酚去除率为38.12%;臭氧氧化后的废水经调节pH至7.00 ~8.00后进入BAF,经BAF处理后的出水苯酚质量浓度小于0.5 mg/L.该工艺操作简单,处理效果稳定,出水水质达到GB8978-1996《污水综合排放标准》.  相似文献   

9.
分步沉淀法处理酸性矿山废水   总被引:1,自引:0,他引:1  
采用分步沉淀工艺处理酸性矿山废水,考察了工艺条件对废水中有价金属元素回收效果的影响。实验结果表明:Ca(OH)_2为适宜的废水pH调节剂;调节废水pH至4.00左右并投加0.05 mL/L的H_2O_2,可首先去除Fe~(2+)及Fe~(3+),得到富Fe渣(w(Fe)=51.00%);调节废水pH至6.00~6.50,先投加50 mg/L的Na_2S,去除废水中的Cu~(2+),获得富Cu渣(w(Cu)=10.89%),再将Na_2S的投加量增至100 mg/L,去除废水中的Zn与Mn,获得富Zn-Mn渣(w(Cu)=2.37%,w(Mn)=6.79%,w(Pb)=1.61%);进一步调节废水pH至8.40,可去除剩余的Zn、Mn及其他重金属。分步沉淀工艺处理后的废水可达标排放,产生的富Fe渣、富Cu渣及富Zn-Mn渣可直接出售或具有利用价值。分步沉淀工艺可实现有价金属元素的高效回收,大幅度降低废水处理的实际成本,值得工程应用与推广。  相似文献   

10.
采用Fenton试剂氧化—原水调节出水pH法预处理碱性印染废水,考察了n(H2O2):n(Fe2+)、Fenton试剂加入量、反应时间和原水与Fenton试剂氧化反应后出水体积比(配水比)对COD去除率及废水pH的影响.实验结果表明,在原水COD为986 mg/L、原水pH为9.31、Fe2+加入量为12 mmol/L、n(H2O2):n(Fe2+)为2、反应时间为30 min、配水比为2的最佳条件下,COD去除率为26.9%,出水pH为6.60.药剂成本较普通Fenton试剂氧化法减少70%.  相似文献   

11.
采用向含氟废水中加入适量石灰和聚合氯化铝,然后投加适量钙盐、磷酸和聚丙烯酰胺的二级处理工艺除氟,通过控制合适的pH、钙盐和磷酸的投加量、反应时间、反应温度、搅拌强度和絮凝剂的投加量,可使黄磷废水中氟的质量浓度降至5mg/L,氟的去除率达到99%以上,出水中氟的质量浓度达到GB8978-1996一级排放标准。  相似文献   

12.
络合沉淀—Fenton试剂氧化法处理高浓度含氰废水   总被引:1,自引:0,他引:1       下载免费PDF全文
采用络合沉淀—Fenton试剂氧化法处理高浓度含氰废水。实验结果表明,在初始废水p H为9、曝气时间为20 min、搅拌时间为20 min、Fe SO4溶液加入量为1.62 m L/L、搅拌转速为40 r/min的络合沉淀反应条件下,在絮凝阶段废水p H为8、n(H2O2)∶n(Fe2+)=20的Fenton试剂氧化反应条件下,处理初始CN-质量浓度为450~550 mg/L的高浓度含氰废水,总CN-去除率达99.9%以上,剩余CN-质量浓度小于0.02 mg/L,COD为50~70 mg/L,BOD5小于20 mg/L,浊度小于0.5 NTU,悬浮物质量浓度小于10 mg/L,满足GB 8978—1996《污水综合排放标准》的要求。  相似文献   

13.
泡沫分离法处理含Cr~(6+)废水   总被引:6,自引:3,他引:3  
采用间歇式泡沫分离法处理含Cr~(6+)废水,考察了各因素对Cr~(6+)去除效果的影响。通过正交实验分析确定的废水处理最佳工艺条件:废水pH 4.00,气体流量0.90 L/min,阳离子表面活性剂加入量300 mg/L。进水Cr~(6+)质量浓度为10 mg/L时,间歇运行的Cr~(6+)去除率为97.80%,连续运行的Cr~(6+)去除率为95.89%,出水均可达标排放。动力学实验结果表明,泡沫分离法去除Cr~(6+)的过程符合一级动力学的特征。对泡沫分离柱放大后的废水连续流实验分析结果表明,泡沫分离Cr~(6+)的效果比较稳定,但分离设备对废水处理效果有一定的影响。  相似文献   

14.
采用氧化—还原法对某钢厂的粗铬渣进行提纯回收,对各项工艺参数进行了优化,探讨了铬渣零排放处理工艺的可行性。实验结果表明:在氧化温度80 ℃、氧化时间1.5 h、双氧水加入量2.35 mL/g(以铬渣计),还原时间15 min、还原pH 1.5、NaHSO3加入量0.445 g/g(以铬渣计),沉淀pH 8.0,煅烧温度1 050 ℃、煅烧时间1 h的条件下,所得废渣的w(Cr)为1.29%,回收铬绿产品的w(Cr2O3)为97.20%,铬回收率为94.40%;处理后废水的ρ(总铬)约为0.06 mg/L,低于GB 13456—2012《钢铁工业水污染物排放标准》中规定的1.50 mg/L,既可作为循环用水,也可排放;处理后废渣中含大量硅元素,可作为生产水泥发泡节能砖或砌块的原料;整个回收过程清洁无污染,零排放,且具备一定的盈利空间。  相似文献   

15.
以天然磷矿粉制备的羟基磷灰石(HAP)作为吸附剂,处理模拟含Fe3+废水。实验结果表明,在HAP加入量为1.0g/L、初始模拟废水pH为3.00、反应温度为室温的最佳条件下,处理初始Fe3+质量浓度为150mg/L的模拟废水,反应90min后Fe3+去除率为99.89%,处理后模拟废水中Fe3+质量浓度为0.15mg/L,低于0.30mg/L,达到GB5749—2006《生活饮用水卫生标准》的要求。  相似文献   

16.
采用化学沉淀—混凝—软化工艺对江苏某燃煤电厂湿法烟气脱硫废水进行物化法预处理,预处理后的废水再进行蒸发结晶,回收工业盐及冷凝水,最终实现了电厂脱硫废水的零排放。实验结果表明:在化学沉淀p H为9、混凝剂聚合硫酸铝铁(PAFS)加入量为2.5 m L/L、絮凝剂聚丙烯酰胺(PAM)加入量为2.0 m L/L的条件下,废水浊度可降至4.13 NTU,废水中的重金属、氟离子以及悬浮物被有效去除,预处理后废水的水质可达到GB8978—1996《污水综合排放标准》;蒸发结晶处理得到的工业盐和冷凝水分别符合GB/T 5462—2003《工业盐》的国家精制工业盐二级标准和GB 1576—2008《工业锅炉水质》的给水标准;脱硫废水的工业盐产率量为30 g/L。  相似文献   

17.
采用Fenton试剂氧化—SBR工艺处理阿莫西林制药废水生化处理出水。实验结果表明:当初始废水pH为3.0、H2O2加入量为10 mL/L、V(H2O2):m(FeSO4.7H2O)为5(mL):1(g)、Fenton试剂氧化反应时间为3 h时,Fenton试剂氧化COD去除率达72.25%,色度由100倍降为2倍,BOD5/COD由0.06提高到0.38,可生化性显著提高。经Fenton试剂氧化—SBR工艺处理后,出水COD为72.7 mg/L,达到国家排放标准。  相似文献   

18.
用絮凝#x02014;微波辐射#x02014;Fenton试剂氧化法深度处理焦化废水,研究了微波辐射时间、微波功率、FeSO4加入量、H2O2加入量和废水pH对废水处理效果的影响。实验结果表明:在聚合氯化铝加入量为350mg/L、聚丙烯酰胺加入量为12mg/L、废水pH=5、FeSO4加入量为250mg/L、H2O2总加入量为1400mg/L、H2O2分3次投加、微波功率为400W、微波辐射时间为60min的条件下,处理后出水的浊度、色度和COD去除率分别为98.59%,97.62%,86.21%。处理后出水澄清透明,COD为50.34mg/L,满足GB50050#x02014;2007《工业循环冷却水处理设计规范》的要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号