首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Soil and Water Assessment Tool (SWAT) is widely used in the United States (U.S.) to simulate hydrology and water quality simulation. Process‐based models like SWAT require a great deal of data to accurately represent the natural world, including topography, land use, soils, weather, and management. With the exception of management, all these data are available nationally from multiple sources. To date, credible SWAT studies in the U.S. have assembled suitable management data (operation scheduling, fertilization application rates, and plant growth parameterization). In this research, we develop a national management database for SWAT using existing U.S. Department of Agriculture data sources. These data are compatible with existing SWAT interfaces and are relatively easy to use. Although management data from local sources is preferred, these data are not always available. This work is intended to fill this void with more reasonable management data than the existing defaults. This national database covers all major cultivated crops and should facilitate improved SWAT applications in the U.S. These data were tested in two case studies and found to produce satisfactory SWAT predictions. The database developed in this research is freely available on the web.  相似文献   

2.
ABSTRACT: Simulated water quality resulting from three alternative future land‐use scenarios for two agricultural watersheds in central Iowa was compared to water quality under current and historic land use/land cover to explore both the potential water quality impact of perpetuating current trends and potential benefits of major changes in agricultural practices in the U.S. Corn Belt. The Soil Water Assessment Tool (SWAT) was applied to evaluate the effect of management practices on surface water discharge and annual loads of sediment and nitrate in these watersheds. The agricultural practices comprising Scenario 1, which assumes perpetuation of current trends (conversion to conservation tillage, increase in farm size and land in production, use of currently‐employed Best Management Practices (BMPs)) result in simulated increased export of nitrate and decreased export of sediment relative to the present. However, simulations indicate that the substantial changes in agricultural practices envisioned in Scenarios 2 and 3 (conversion to conservation tillage, strip intercropping, rotational grazing, conservation set‐asides and greatly extended use of best management practices (BMPs) such as riparian buffers, engineered wetlands, grassed waterways, filter strips and field borders) could potentially reduce current loadings of sediment by 37 to 67 percent and nutrients by 54 to 75 percent. Results from the study indicate that major improvements in water quality in these agricultural watersheds could be achieved if such environmentally‐targeted agricultural practices were employed. Traditional approaches to water quality improvement through application of traditional BMPs will result in little or no change in nutrient export and minor decreases in sediment export from Corn Belt watersheds.  相似文献   

3.
The ability to accurately simulate flow and nutrient removal in treatment wetlands within an agricultural, watershed‐scale model is needed to develop effective plans for meeting nutrient reduction goals associated with protection of drinking water supplies and reduction of the Gulf of Mexico hypoxic zone. The objectives of this study were to incorporate new equations for wetland hydrology and nutrient removal in Soil and Water Assessment Tool (SWAT), compare model performance using original and improved equations, and evaluate the ramifications of errors in watershed and tile drain simulation on prediction of NO3‐N dynamics in wetlands. The modified equations produced Nash‐Sutcliffe Efficiency values of 0.88 to 0.99 for daily NO3‐N load predictions, and percent bias values generally less than 6%. However, statistical improvement over the original equations was marginal and both old and new equations provided accurate simulations. The new equations reduce the model's dependence on detailed monitoring data and hydrologic calibration. Additionally, the modified equations increase SWAT's versatility by incorporating a weir equation and an irreducible nutrient concentration and temperature coefficient. Model improvements enhance the utility of SWAT for simulating flow and nutrients in wetlands and other impoundments, although performance is limited by the accuracy of inflow and NO3‐N predictions from the contributing watershed. Editor's note : This paper is part of the featured series on SWAT Applications for Emerging Hydrologic and Water Quality Challenges. See the February 2017 issue for the introduction and background to the series.  相似文献   

4.
Long‐term simulations of agricultural watersheds have often been done assuming constant land use over time, but this is not a realistic assumption for many agricultural regions. This paper presents the soil and water assessment tool (SWAT)‐Landuse Update Tool (LUT), a standalone, user‐friendly desktop‐based tool for updating land use in the SWAT model that allows users to process multi‐year land use data. SWAT‐LUT is compatible with several SWAT model interfaces, provides users with several options to easily prepare and incorporate land use changes (LUCs) over a simulation period, and allows users to incorporate past or emerging land use categories. Incorporation of LUCs is expected to provide realistic model parameterization and scenario simulations. SWAT‐LUT is a public domain interface written in Python programming language. Two applications at the Fort Cobb Reservoir Experimental Watershed located in Oklahoma and pertinent results are provided to demonstrate its use. Incorporating LUCs related to implementation of recommended conservation practices over the years reduced discharge, evapotranspiration, sediment, total nitrogen, and total phosphorus loads by 59%, 9%, 68%, 53%, and 88%, respectively. The user’s manual is included in this article as Supporting Information. The SWAT‐LUT executable file and an example SWAT project with three land use rasters and the user’s manual are available at the United States Department of Agriculture‐Agricultural Research Service Grazinglands Research Laboratory website under Software. Editor’s note : This paper is part of the featured series on Optimizing Ogallala Aquifer Water Use to Sustain Food Systems. See the February 2019 issue for the introduction and background to the series.  相似文献   

5.
This paper examines the performance of a semi‐distributed hydrology model (i.e., Soil and Water Assessment Tool [SWAT]) using Sequential Uncertainty FItting (SUFI‐2), generalized likelihood uncertainty estimation (GLUE), parameter solution (ParaSol), and particle swarm optimization (PSO). We applied SWAT to the Waccamaw watershed, a shallow aquifer dominated Coastal Plain watershed in the Southeastern United States (U.S.). The model was calibrated (2003‐2005) and validated (2006‐2007) at two U.S. Geological Survey gaging stations, using significant parameters related to surface hydrology, hydrogeology, hydraulics, and physical properties. SWAT performed best during intervals with wet and normal antecedent conditions with varying sensitivity to effluent channel shape and characteristics. In addition, the calibration of all algorithms depended mostly on Manning's n‐value for the tributary channels as the surface friction resistance factor to generate runoff. SUFI‐2 and PSO simulated the same relative probability distribution tails to those observed at an upstream outlet, while all methods (except ParaSol) exhibited longer tails at a downstream outlet. The ParaSol model exhibited large skewness suggesting a global search algorithm was less capable of characterizing parameter uncertainty. Our findings provide insights regarding parameter sensitivity and uncertainty as well as modeling diagnostic analysis that can improve hydrologic theory and prediction in complex watersheds. Editor's note : This paper is part of the featured series on SWAT Applications for Emerging Hydrologic and Water Quality Challenges. See the February 2017 issue for the introduction and background to the series.  相似文献   

6.
Abstract: The Soil and Water Assessment Tool (SWAT) model was evaluated for estimation of continuous daily flow based on limited flow measurements in the Upper Oyster Creek (UOC) watershed. SWAT was calibrated against limited measured flow data and then validated. The Nash‐Sutcliffe model Efficiency (NSE) and mean relative error values of daily flow estimations were 0.66 and 15% for calibration, and 0.56 and 4% for validation, respectively. Also, further evaluation of the model’s estimation of flow at multiple locations was conducted with parametric paired t‐test and nonparametric sign test at a 95% confidence level. Among the five main stem stations, four stations were statistically shown to have good agreement between predicted and measured flows. SWAT underestimated the flow of the fifth main stem station possibly because of the existence of complex flood control measures near to the station. SWAT estimated the daily flow at one tributary station well, but with relatively large errors for the other two tributaries. The spatial pattern of predicted flows matched the measured ones well. Overall, it was concluded from the graphical comparisons and statistical analyses of the model results that SWAT was capable of reproducing continuous daily flows based on limited flow data as is the case in the UOC watershed.  相似文献   

7.
This study focuses on the relationships of watershed runoff with historical land use/land cover (LULC) and climate trends. Over the 20th Century, LULC in the Southeast United States, particularly the North Carolina Piedmont, has evolved from an agriculture dominated to an extensively forested landscape with more recent localized urbanization. The regrowth of forest has an important influence on the hydrology of the region as it enhances ecosystem interaction with recent climate change. During 1920‐2009, the amount of precipitation in some parts of the North Carolina Piedmont forest regrowth area showed increasing trends without corresponding increments in runoff. We employed the Soil and Water Assessment Tool (SWAT) to backcast long‐term hydrologic behavior of watersheds in North Carolina with different LULC conditions: (1) LULC conversion from agricultural to forested area and (2) long‐term stable forested area. Comparing U.S. Geological Survey‐measured stream discharge with SWAT‐simulated stream discharge under the assumption of constant 2006 LULC, we found significant stream discharge underprediction by SWAT in two LULC conversion watersheds during the early simulation period (1920s) with differences gradually decreasing by the mid‐1970s. This model bias suggests that forest regrowth on abandoned agricultural land was a key factor contributing to mitigate the impact of increased precipitation on runoff due to increasing water consumption driven by changes in vegetation.  相似文献   

8.
ABSTRACT: Soil data comprise a basic input of SWAT (Soil and Water Assessment Tool) for a watershed application. For watersheds where site specific soil data are unavailable, the two U.S. Department of Agriculture (USDA) soil databases, the State Soil Geographic (STATSGO) and Soil Survey Geographic (SSURGO) databases, may be the best alternatives. Although it has been noted that SWAT models using the STATSGO and SSURGO data may give different simulation results for water, sediment, and agricultural chemical yields, information is scarce on the effects of using these two databases in predicting streamflows that are predominantly generated from melting snow in spring. The objective of this study was to assess the effects of using STATSGO versus SSURGO as an input for the SWAT model's simulation of the streamflows in the upper 45 percent of the Elm River watershed in eastern North Dakota. Designating the model as SWAT‐STATSGO when the STATSGO data were used and SWAT‐SSURGO when the SSURGO data were used, SWAT‐STATSGO and SWAT‐SSURGO were separately calibrated and validated using the observed daily streamflows. The results indicated that SWAT‐SSURGO provided an overall better prediction of the discharges than SWAT‐STATSGO, although both did a good and comparable job of predicting the high streamflows. However, SWAT‐STATSGO predicted the low streamflows more accurately and had a slightly better performance during the validation period. In addition, the discrepancies between the discharges predicted by these two SWAT models tended to be larger at upstream locations than at those farther downstream within the study area.  相似文献   

9.
10.
Wise, Daniel R. and Henry M. Johnson, 2011. Surface‐Water Nutrient Conditions and Sources in the United States Pacific Northwest. Journal of the American Water Resources Association (JAWRA) 47(5):1110‐1135. DOI: 10.1111/j.1752‐1688.2011.00580.x Abstract: The SPAtially Referenced Regressions On Watershed attributes (SPARROW) model was used to perform an assessment of surface‐water nutrient conditions and to identify important nutrient sources in watersheds of the Pacific Northwest region of the United States (U.S.) for the year 2002. Our models included variables representing nutrient sources as well as landscape characteristics that affect nutrient delivery to streams. Annual nutrient yields were higher in watersheds on the wetter, west side of the Cascade Range compared to watersheds on the drier, east side. High nutrient enrichment (relative to the U.S. Environmental Protection Agency’s recommended nutrient criteria) was estimated in watersheds throughout the region. Forest land was generally the largest source of total nitrogen stream load and geologic material was generally the largest source of total phosphorus stream load generated within the 12,039 modeled watersheds. These results reflected the prevalence of these two natural sources and the low input from other nutrient sources across the region. However, the combined input from agriculture, point sources, and developed land, rather than natural nutrient sources, was responsible for most of the nutrient load discharged from many of the largest watersheds. Our results provided an understanding of the regional patterns in surface‐water nutrient conditions and should be useful to environmental managers in future water‐quality planning efforts.  相似文献   

11.
构建增江流域非点源污染数据库,包括DEM、土地利用,土壤类型,气象数据等,应用分布式流域水文模型SWAT(Soil andWater Assessment Tool,swat 2009版)对增江流域的非点源污染进行模拟。模型运行阶段为2000-2003年,分别应用2000-2001年和2002-2003年的实测月均流量及硝酸盐氮监测数据对模型的参数率定和验证,采用决定系数R2和Nash-Suttcliffe系数对模拟结果进行评定。其中水文模拟的R2均>0.9,Nash-Suttcliffe模型效率系数均>0.8;硝酸盐氮模拟的R2均>0.7,Nash-Suttcliffe模型效率系数均>0.6,表明SWAT模型在增江流域具有较好的适用性。  相似文献   

12.
Tile drainage significantly alters flow and nutrient pathways and reliable simulation at this scale is needed for effective planning of nutrient reduction strategies. The Soil and Water Assessment Tool (SWAT) has been widely utilized for prediction of flow and nutrient loads, but few applications have evaluated the model's ability to simulate pathway‐specific flow components or nitrate‐nitrogen (NO3‐N) concentrations in tile‐drained watersheds at the daily time step. The objectives of this study were to develop and calibrate SWAT models for small, tile‐drained watersheds, evaluate model performance for simulation of flow components and NO3‐N concentration at daily intervals, and evaluate simulated soil‐nitrogen dynamics. Model evaluation revealed that it is possible to meet accepted performance criteria for simulation of monthly total flow, subsurface flow (SSF), and NO3‐N loads while obtaining daily surface runoff (SURQ), SSF, and NO3‐N concentrations that are not satisfactory. This limits model utility for simulating best management practices (BMPs) and compliance with water quality standards. Although SWAT simulates the soil N‐cycle and most predicted fluxes were within ranges reported in agronomic studies, improvements to algorithms for soil‐N processes are needed. Variability in N fluxes is extreme and better parameterization and constraint, through use of more detailed agronomic data, would also improve NO3‐N simulation in SWAT. Editor's note : This paper is part of the featured series on SWAT Applications for Emerging Hydrologic and Water Quality Challenges. See the February 2017 issue for the introduction and background to the series.  相似文献   

13.
14.
ABSTRACT: A curve number based model, Soil and Water Assessment Tool (SWAT), and a physically based model, Soil Moisture Distribution and Routing (SMDR), were applied in a headwater watershed in Pennsylvania to identify runoff generation areas, as runoff areas have been shown to be critical for phosphorus management. SWAT performed better than SMDR in simulating daily streamflows over the four‐year simulation period (Nash‐Sutcliffe coefficient: SWAT, 0.62; SMDR, 0.33). Both models varied streamflow simulations seasonally as precipitation and watershed conditions varied. However, levels of agreement between simulated and observed flows were not consistent over seasons. SMDR, a variable source area based model, needs further improvement in model formulations to simulate large peak flows as observed. SWAT simulations matched the majority of observed peak flow events. SMDR overpredicted annual flow volumes, while SWAT underpredicted the same. Neither model routes runoff over the landscape to water bodies, which is critical to surface transport of phosphorus. SMDR representation of the watershed as grids may allow targeted management of phosphorus sources. SWAT representation of fields as hydrologic response units (HRUs) does not allow such targeted management.  相似文献   

15.
ABSTRACT: A survey of numerous field studies shows that nitrogen and phosphorous export coefficients are significantly different across forest, agriculture, and urban land‐cover types. We used simulations to estimate the land‐cover composition at which there was a significant risk of nutrient loads representative of watersheds without forest cover. The results suggest that at between 20 percent and 30 percent nonforest cover, there is a 10 percent or greater chance of N or P nutrient loads being equivalent to the median values of predominantly agricultural or urban watersheds. The methods apply to environmental management for assessing the risk to increased nonpoint nutrient pollution. Interpretation of the risk measures are discussed relative to their application for a single watershed and across a region comprised of several watersheds.  相似文献   

16.
Abstract: The U.S. Environmental Protection Agency (USEPA) Office of Pesticide Programs (OPP) has completed an evaluation of three watershed‐scale simulation models for potential use in Food Quality Protection Act pesticide drinking water exposure assessments. The evaluation may also guide OPP in identifying computer simulation tools that can be used in performing aquatic ecological exposure assessments. Models selected for evaluation were the Soil Water Assessment Tool (SWAT), the Nonpoint Source Model (NPSM), a modified version of the Hydrologic Simulation Program‐Fortran (HSPF), and the Pesticide Root Zone Model‐Riverine Water Quality (PRZM‐RIVWQ) model. Simulated concentrations of the pesticides atrazine, metolachlor, and trifluralin in surface water were compared with field data monitored in the Sugar Creek watershed of Indiana’s White River basin by the National Water Quality Assessment (NAWQA) program. The evaluation not only provided USEPA with experience in using watershed models for estimating pesticide concentration in flowing water but also led to the development of improved statistical techniques for assessing model accuracy. Further, it demonstrated the difficulty of representing spatially and temporally variable soil, weather, and pesticide applications with relatively infrequent, spatially fixed, point estimates. It also demonstrated the value of using monitoring and modeling as mutually supporting tools and pointed to the need to design monitoring programs that support modeling.  相似文献   

17.
Stratton, Benjamin T., Venakataramana Sridhar, Molly M. Gribb, James P. McNamara, and Balaji Narasimhan, 2009. Modeling the Spatially Varying Water Balance Processes in a Semiarid Mountainous Watershed of Idaho. Journal of the American Water Resources Association (JAWRA) 45(6):1390‐1408. Abstract: The distributed Soil Water Assessment Tool (SWAT) hydrologic model was applied to a research watershed, the Dry Creek Experimental Watershed, near Boise Idaho to investigate its water balance components both temporally and spatially. Calibrating and validating SWAT is necessary to enable our understanding of the water balance components in this semiarid watershed. Daily streamflow data from four streamflow gages were used for calibration and validation of the model. Monthly estimates of streamflow during the calibration phase by SWAT produced satisfactory results with a Nash Sutcliffe coefficient of model efficiency 0.79. Since it is a continuous simulation model, as opposed to an event‐based model, it demonstrated the limited ability in capturing both streamflow and soil moisture for selected rain‐on‐snow (ROS) events during the validation period between 2005 and 2007. Especially, soil moisture was generally underestimated compared with observations from two monitoring pits. However, our implementation of SWAT showed that seasonal and annual water balance partitioning of precipitation into evapotranspiration, streamflow, soil moisture, and drainage was not only possible but closely followed the trends of a typical semiarid watershed in the intermountain west. This study highlights the necessity for better techniques to precisely identify and drive the model with commonly observed climatic inversion‐related snowmelt or ROS weather events. Estimation of key parameters pertaining to soil (e.g., available water content and saturated hydraulic conductivity), snow (e.g., lapse rates, melting), and vegetation (e.g., leaf area index and maximum canopy index) using additional field observations in the watershed is critical for better prediction.  相似文献   

18.
Reliable water quality models are needed to forecast the water quality consequences of different agricultural nutrient management scenarios. In this study, the Soil and Water Assessment Tool (SWAT), version 2000, was applied to simulate streamflow, riverine nitrate (NO(3)) export, crop yield, and watershed nitrogen (N) budgets in the upper Embarras River (UER) watershed in east-central Illinois, which has extensive maize-soybean cultivation, large N fertilizer input, and extensive tile drainage. During the calibration (1994-2002) and validation (1985-1993) periods, SWAT simulated monthly and annual stream flows with Nash-Sutcliffe coefficients (E) ranging from 0.67 to 0.94 and R(2) from 0.75 to 0.95. For monthly and annual NO(3) loads, E ranged from -0.16 to 0.45 and R(2) from 0.36 to 0.74. Annual maize and soybean yields were simulated with relative errors ranging from -10 to 6%. The model was then used to predict the changes in NO(3) output with N fertilizer application rates 10 to 50% lower than original application rates in UER. The calibrated SWAT predicted a 10 to 43% decrease in NO(3) export from UER and a 6 to 38% reduction in maize yield in response to the reduction in N fertilizer. The SWAT model markedly overestimated NO(3) export during major wet periods. Moreover, SWAT estimated soybean N fixation rates considerably greater than literature values, and some simulated changes in the N cycle in response to fertilizer reduction seemed to be unrealistic. Improving these aspects of SWAT could lead to more reliable predictions in the water quality outcomes of nutrient management practices in tile-drained watersheds.  相似文献   

19.
Masih Ilyas, Shreedhar Maskey, Stefan Uhlenbrook, and Vladimir Smakhtin, 2011. Assessing the Impact of Areal Precipitation Input on Streamflow Simulations Using the SWAT Model. Journal of the American Water Resources Association (JAWRA) 47(1):179‐195. DOI: 10.1111/j.1752‐1688.2010.00502.x Abstract: Reduction of input uncertainty is a challenge in hydrological modeling. The widely used model Soil Water Assessment Tool (SWAT) uses the data of a precipitation gauge nearest to the centroid of each subcatchment as an input for that subcatchment. This may not represent overall catchment precipitation conditions well. This paper suggests an alternative – using areal precipitation obtained through interpolation. The effectiveness of this alternative is evaluated by comparing its simulations with those based on the standard SWAT precipitation input procedure. The model is applied to mountainous semiarid catchments in the Karkheh River basin, Iran. The model performance is evaluated at daily, monthly, and annual scales by using a number of performance indicators at 15 streamflow gauging stations each draining an area in the range of 590‐42,620 km2. The comparison suggests that the use of areal precipitation improves model performance particularly in small subcatchments in the range of 600‐1,600 km2. The modified areal precipitation input results in increased reliability of simulated streamflows in the areas of low rain gauge density. Both precipitation input methods result in reasonably good simulations for larger catchments (over 5,000 km2). The use of areal precipitation input improves the accuracy of simulated streamflows with spatial resolution and density of rain gauges having significant impact on results.  相似文献   

20.
The Soil and Water Assessment Tool (SWAT) model (Arnold et al., 1998) is a popular watershed management tool. Currently, the SWAT model, actively supported by the U.S. Department of Agriculture and Texas A&M, operates only on Microsoft® Windows, which hinders modelers that use other operating systems (OS). This technical note introduces the Comprehensive R Archive Network (CRAN) distributed “SWATmodel” package which allows SWAT 2005 and 2012 to be widely distributed and run as a linear model‐like function on multiple OS and processor platforms. This allows researchers anywhere in the world using virtually any OS to run SWAT. In addition to simplifying the use of SWAT across computational platforms, the SWATmodel package allows SWAT modelers to utilize the analytical capabilities, statistical libraries, modeling tools, and programming flexibility inherent to R. The software allows watershed modelers to develop a simple hydrological watershed model conceptualization of the SWAT model and to obtain a first approximation of the minimum expected results a more complicated model should deliver. As a proof of concept, we test the SWAT model by initializing and calibrating 314 U.S. Geological Survey stream gages in the Chesapeake Bay watershed and present the results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号