首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: Unpaved roads are a primary sediment source in forested watersheds. Validation of erosion models and improvements to road management require information on road erosion rates and the factors controlling erosion. This study measured sediment yields from twenty ~0.05 ha unsurfaced (native) road plots in Belt Supergroup and glacial till parent materials of western Montana, and investigated the factors controlling erosion. Annual sediment yields for individual plots ranged from 0 to 96.9 Mg/ha/yr over 3 years (2002‐2004). Annual mean sediment yield ranged from 2.1 Mg/ha in 2003 to 9.9 Mg/ha in 2004 with an overall mean of 5.4 Mg/ha/yr. The mean of log‐transformed sediment yields for sites in glacial till parent materials was higher than Belt Supergroup parent materials (p = 0.063). A regression model with road slope, time since last grading, roadbed gravel content, and precipitation as predictive variables explained 68% of the variability in sediment yield (F = 28.2; p < 0.0001). Road erosion in western Montana is limited by low erodibility of the dominant parent materials and low rainfall. Management procedures such as reducing the frequency of grading can significantly reduce sediment yields from forest roads.  相似文献   

2.
Managed forests generally produce high water quality, but degradation is possible via sedimentation if proper management is not implemented during forest harvesting. To mitigate harvesting effects on total watershed sediment yield, it is necessary to understand all processes that contribute to these effects. Forest harvesting best management practices (BMPs) focus almost exclusively on overland sediment sources, whereas in‐and‐near stream sources go unaddressed although they can contribute substantially to sediment yield. Thus, we propose a new framework to classify forest harvesting effects on stream sediment yield according to their direct and indirect processes. Direct effects are those caused by erosion and sediment delivery to surface water from overland sources (e.g., forest roads). Indirect effects are those caused by a shift in hydrologic processes due to tree removal that accounts for increases in subsurface and surface flows to the stream such that alterations in water quality are not predicated upon overland sediment delivery to the stream, but rather in‐stream processes. Although the direct/indirect distinction is often implicit in forest hydrology studies, we have formalized it as a conceptual model to help identify primary drivers of sediment yield after forest harvesting in different landscapes. Based on a literature review, we identify drivers of these effects in five regions of the United States, discuss current forest management BMPs, and identify research needs.  相似文献   

3.
Several environmental protection policies have been implemented to prevent soil erosion and nonpoint source (NPS) pollutions in China. After severe Yangtze River floods, the “conversion cropland to forest policy” (CCFP) was carried out throughout China, especially in the middle and upper reaches of Yangtze River. The research area of the current study is located in Bazhong City, Sichuan Province in Yangtze River watershed, where soil erosion and NPS pollution are serious concerns. Major NPS pollutants include nitrogen (N) and phosphorus (P). The objective of this study is to evaluate the long-term impact of implementation of the CCFP on stream flow, sediment yields, and the main NPS pollutant loading at watershed level. The Soil and Water Assessment Tool (SWAT) is a watershed environmental model and is applied here to simulate and quantify the impacts. Four scenarios are constructed representing different patterns of conversion from cropland to forest under various conditions set by the CCFP. Scenario A represented the baseline, i.e., the cropland and forest area conditions before the implementation of CCFP. Scenario B represents the condition under which all hillside cropland with slope larger than 25° was converted into forest. In scenario C and D, hillside cropland with slope larger than 15° and 7.5° was substituted by forest, respectively. Under the various scenarios, the NPS pollution reduction due to CCFP implementation from 1996–2005 is estimated by SWAT. The results are presented as percentage change of water flow, sediment, organic N, and organic P at watershed level. Furthermore, a regression analysis is conducted between forest area ratio and ten years’ average NPS load estimations, which confirmed the benefits of implementing CCFP in reducing nonpoint source pollution by increasing forest area in mountainous areas. The reduction of organic N and organic P is significant (decrease 42.1% and 62.7%, respectively) at watershed level. In addition, this study also proves that SWAT modeling approach can be used to estimate NPS pollutants’ impacts of land use conversions in large watershed.  相似文献   

4.
Forestry best management practices (BMPs) reduce sedimentation by minimizing soil erosion and trapping sediment. These practices are particularly important in relation to road construction and use due to the heightened potential for sediment delivery at stream crossings. This study quantifies the implementation and effectiveness of BMPs at 75 randomly selected forest road stream crossings on recent timber harvests in the Mountains, Piedmont, and Coastal Plain regions of Virginia. Road characteristics at stream crossings were used to estimate erosion using the Universal Soil Loss Equation for Forests and the Water Erosion Prediction Project for Roads. Stream crossings were evaluated based on the Virginia Department of Forestry (VDOF) BMP manual guidelines and categorized as BMP?, BMP‐standard, or BMP+ based on the quality of road template, drainage, ground cover, and stream crossing structure. BMP implementation scores were calculated for each stream crossing using VDOF audit questions. Potential erosion effects due to upgrading crossings were estimated by adjusting ground cover percentage and approach length parameters in the erosion models. Results indicate that erosion rates decrease as BMP implementation scores increase (p < 0.05). BMP‐standard and BMP+ ratings made up 83% of crossings sampled, with an average erosion rate of 6.8 Mg/ha/yr. Hypothetical improvements beyond standard BMP recommendations provided minimal additional erosion prevention.  相似文献   

5.
ABSTRACT: The watershed model GAMES is used for the evaluation of a targeting approach to control fluvial sedimentation arising from soil erosion in agricultural areas. The data considered for the analysis consists of output from the application of the model to existing and hypothetical soil and crop management systems in two small watersheds of southern Ontario, one in the rolling uplands and the other in a very flat lowland area. The model output includes estimates of spring sediment yield from field-size cells to the stream outlet for existing agricultural management conditions, and estimates of sediment yield resulting from the successive implementation of two levels of soil erosion controls under four remedial measures strategies. The results reveal that, for the rolling upland watershed exhibiting a wide range of soil erosion and sediment yield rates, targeted control programs can be expected to provide an extremely effective approach to sediment control. For flat lowland watersheds, exhibiting relatively uniform soil erosion and sediment yield rates, the strategy of targeting controls may be somewhat more effective than a random approach to control, but not as efficient as in the case of watersheds in more rolling terrain. It is evident from the study that a screening model such as GAMES provides a very useful tool for the planning and evaluation of erosion and sediment control programs.  相似文献   

6.
Turton, Donald J., Michael D. Smolen, and Elaine Stebler, 2009. Effectiveness of BMPs in Reducing Sediment From Unpaved Roads in the Stillwater Creek, Oklahoma Watershed. Journal of the American Water Resources Association (JAWRA) 45(6):1343‐1351. Abstract: Erosion from rural unpaved roads is thought to be an important source of sediment in sediment‐impaired streams in Oklahoma and other locations. However, no direct measurements of sediment yields from rural unpaved roads were previously available for Oklahoma. Four rural unpaved road segments in the Stillwater Creek Watershed were instrumented in a paired watershed design to measure sediment yields to streams before and after the installation of Best Management Practices (BMPs). One segment of each pair remained under current management to serve as a control. The second segment received BMPs after a 1‐year calibration period. One BMP consisted of widening the ditches, re‐shaping ditches and cutslopes, putting a proper crown on the road surface, and vegetating disturbed areas with grass. The other BMP consisted of creating a proper crown on the road bed, applying a geo‐synthetic fabric to the road bed and surfacing with 127 mm of crusher run gravel containing 12‐15% fines to serve as a binder. Road segment sediment yields for individual storms varied, depending on factors such as rainfall amount and intensity. During the pre‐BMP year, storm sediment yields ranged from 0 to 4.3 Mg on one pair of segments and from 0 to 2.8 Mg on the other. The storm sediment yields and annual yields were in the same order of magnitude as sediment yields from unpaved rural or forest roads reported in other studies. Sediment yields were significantly reduced on both segments by the installation of BMPs, approximately 80% on one segment pair and 20% on the other. The average sediment yield (across the four segments) for the pre‐BMP year was 138 Mg/ha or 120 Mg/km of road. By extrapolating these average yields across the 479 km of unpaved roads in the Stillwater Creek Watershed and comparing it to estimated sediment yields for other land uses obtained from other sources, we conclude that unpaved roads may contribute up to 35% of the total sediment load to Stillwater Creek.  相似文献   

7.
ABSTRACT: An intensive water quality investigation was conducted in western North Carolina to determine whether water quality problems existed from point and nonpoint source inputs of sediment from surface mining activities. Depth integrated measurements of sediment transport and biological sampling of benthic communities indicated that very serious water quality problems were caused by erosion from a concentrated area of open pit mining for mica, kaolin, and feldspar. The erosion occurred on haul roads, active mines, inactive mines, and tailings disposal piles. The need for using specific “Best Management Practices” for erosion control on the mining operation is discussed. These practices need to be implemented to restore populations of trout to the degraded reaches of the river. Additional monitoring data are presented that indicate that the biological integrity of surface waters can be preserved in the vicinity of point source mining discharges when the operators utilize proper practices in settling and neutralizing their effluent. While much has been done to abate the point source discharges, attention now needs to be focused on the nonpoint sources of sediment from mining operations.  相似文献   

8.
Accelerated erosion and increased sediment yields resulting from changes in land use are a critical environmental problem. Resource managers and decision makers need spatially explicit tools to help them predict the changes in sediment production and delivery due to unpaved roads and other types of land disturbance. This is a particularly important issue in much of the Caribbean because of the rapid pace of development and potential damage to nearshore coral reef communities. The specific objectives of this study were to: (1) develop a GIS-based sediment budget model; (2) use the model to evaluate the effects of unpaved roads on sediment delivery rates in three watersheds on St. John in the US Virgin Islands; and (3) compare the predicted sediment yields to pre-existing data. The St. John Erosion Model (STJ-EROS) is an ArcInfo-based program that uses empirical sediment production functions and delivery ratios to quantify watershed-scale sediment yields. The program consists of six input routines and five routines to calculate sediment production and delivery. The input routines have interfaces that allow the user to adjust the key variables that control sediment production and delivery. The other five routines use pre-set erosion rate constants, user-defined variables, and values from nine data layers to calculate watershed-scale sediment yields from unpaved road travelways, road cutslopes, streambanks, treethrow, and undisturbed hillslopes. STJ-EROS was applied to three basins on St. John with varying levels of development. Predicted sediment yields under natural conditions ranged from 2 to 7Mgkm(-2)yr(-1), while yield rates for current conditions ranged from 8 to 46Mgkm(-2)yr(-1). Unpaved roads are estimated to be increasing sediment delivery rates by 3-6 times for Lameshur Bay, 5-9 times for Fish Bay, and 4-8 times for Cinnamon Bay. Predicted basin-scale sediment yields for both undisturbed and current conditions are within the range of measured sediment yields and bay sedimentation rates. The structure and user interfaces in STJ-EROS mean that the model can be readily adapted to other areas and used to assess the impact of unpaved roads and other land uses sediment production and delivery.  相似文献   

9.
Riparian buffers have the potential to improve stream water quality in agricultural landscapes. This potential may vary in response to landscape characteristics such as soils, topography, land use, and human activities, including legacies of historical land management. We built a predictive model to estimate the sediment and phosphorus load reduction that should be achievable following the implementation of riparian buffers; then we estimated load reduction potential for a set of 1598 watersheds (average 54 km2) in Wisconsin. Our results indicate that land cover is generally the most important driver of constituent loads in Wisconsin streams, but its influence varies among pollutants and according to the scale at which it is measured. Physiographic (drainage density) variation also influenced sediment and phosphorus loads. The effect of historical land use on present-day channel erosion and variation in soil texture are the most important sources of phosphorus and sediment that riparian buffers cannot attenuate. However, in most watersheds, a large proportion (approximately 70%) of these pollutants can be eliminated from streams with buffers. Cumulative frequency distributions of load reduction potential indicate that targeting pollution reduction in the highest 10% of Wisconsin watersheds would reduce total phosphorus and sediment loads in the entire state by approximately 20%. These results support our approach of geographically targeting nonpoint source pollution reduction at multiple scales, including the watershed scale.  相似文献   

10.
The article considers the impact of introducing government co-management policy in the form of Joint Forest Management (JFM) in an area with a five-decade-old self-organized community forest management system in Orissa, India. We ask a question that appears not to have been previously examined: What happens when JFM replaces an already existing community forest management arrangement? Our comparison of the JFM arrangement with the self-organized community forest management regime (pre- and post-2002 in a selected village) provides three conclusions: (1) The level of villager participation in forest management has declined, along with the erosion of the bundle of common rights held by them; (2) multiple institutional linkages between the village and outside agencies, and reciprocal relations with neighboring villages have been abandoned in favor of a close relationship with the Forestry Department; and (3) the administration of the forestry resource has become politicized. We conclude that the “one-size-fits-all” approach of the JFM, with its pre-packaged objectives and its narrow scope of forest management, is likely to limit experimentation, learning, and institutional innovation that characterizes community forest management.  相似文献   

11.
ABSTRACT: Forest management activities may substantially alter the quality of water draining forests, and are regulated as nonpoint sources of pollution. Important impacts have been documented, in some cases, for undesirable changes in stream temperature and concentrations of dissolved oxygen, nitrate-N, and suspended sediments. We present a comprehensive summary of North American studies that have examined the impacts of forest practices on each of these parameters of water quality. In most cases, retention of forested buffer strips along streams prevents unacceptable increases in stream temperatures. Current practices do not typically involve addition of large quantities of fine organic material to streams, and depletion of streamwater oxygen is not a problem; however, sedimentation of gravel streambeds may reduce oxygen diffusion into spawning beds in some cases. Concentrations of nitrate-N typically increase substantially after forest harvesting and fertilization, but only a few cases have resulted in concentrations approaching the drinking-water standard of 10 mg of nitrate-NIL. Road construction and harvesting increase suspended sediment concentrations in streamwater, with highly variable results among regions in North America. The use of best management practices usually prevents unacceptable increases in sediment concentrations, but exceptionally large responses (especially in relation to intense storms) are not unusual.  相似文献   

12.
Abstract: Unpaved road‐stream crossings increase sediment yields in streams and alter channel morphology and stability. Before restoration and sedimentation reduction strategies can be implemented, a priority listing of unpaved road‐stream crossings must be created. The objectives of this study were to develop a sedimentation risk index (SRI) for unpaved road‐stream crossings and to prioritize 125 sites in the Choctawhatchee watershed (southeastern Alabama) using this model. Field surveys involved qualitative and quantitative observations of 73 metrics related to waterway conditions, crossing structures, road approaches, and roadside soil erosion. The road‐stream crossing risk analyses involved elimination of candidate metrics based on redundancy, skewness, lack of data, professional judgment, lack of nonzero values, unbalanced box plots, and limited ranges of values. A final selection of 12 metrics formed the SRI and weighed factors involving soil erodibility, road sedimentation abatement features, and stream morphology alteration. The SRI was organized into narrative categories (excellent, good, fair, poor, and very poor) based on the distribution of scores. No excellent sites (scores ≥55) were found in this study, 17 (20.7%) were good (low sedimentation risk), 37 (45.1%) were fair (moderate sedimentation risk), 26 (31.7%) were poor (high sedimentation risk), and two (2.5%) were very poor (high sedimentation risk). There was no significant difference in SRI scores among crossing structure type (round culverts, box culverts, and bridges) (H = 4.31, df = 2, p = 0.058). A future study of the Choctawhatchee watershed involving the same study sites could assess the success of restoration plans and activities based on site score improvement or decline.  相似文献   

13.
Factors influencing sediment availability are assessed and erosion rates are quantified for an off‐highway vehicle (OHV) trail system in the Ouachita Mountains of Arkansas. As of May 2012, the Wolf Pen Gap trail system included 77.0 km of "trails" which consist of county roads; open and closed Forest Service roads; and open and closed OHV trails. For a given trail length, the sediment volume available to be eroded is determined by bare trail width and sediment depth. Four condition types are defined that group trail sections based on statistically different trail widths or depths. Trail construction method appears to influence sediment availability differences more than erosion potential (as indexed by trail slope gradient and length). The range for annual trail erosion rates is estimated as 75 and 210 tonne/ha/yr. The high and low rates are obtained using two independent methods. The 210 tonne/ha/yr rate is computed from mean sediment capture at 30 sediment traps installed for 0.5–1.0 year. The 75 tonne/ha/yr rate is computed assuming all available trail sediment measured in a one‐time sampling is eroded over the next year. We argue in support of this assumption and suggest both rate values may be conservative. Trail erosion rates and sediment trap observations indicate frequent trap cleanout will be needed to continue sediment capture from All Terrain Vehicle trails.  相似文献   

14.
Abstract: Sediments and soils were analyzed using stable carbon and nitrogen isotope ratio mass spectrometry and carbon and nitrogen elemental analyses to evaluate the their ability to indicate land‐use and land management disturbance and pinpoint loading from sediment transport sources in forested watersheds disturbed by surface coal mining. Samples of transported sediment particulate organic matter were collected from four watersheds in the Southern Appalachian forest region of southeastern Kentucky. The four watersheds had different surface coal mining history that were classified as undisturbed, active mining, and reclaimed conditions. Soil samples were analyzed including reclaimed grassland soils, undisturbed forest soils, geogenic organic matter associated with coal fragments in mining spoil, and soil organic matter from un‐mined grassland soils. Statistically significant differences were found for all biogeochemical signatures when comparing transported sediments from undisturbed watersheds and surface coal mining disturbed watersheds, and the results were attributed to differences in erosion sources and the presence of geogenic organic matter. Sediment transport sources in the surface coal mining watersheds were analyzed using Monte Carlo mass balance un‐mixing and it was found that: δ15N showed the ability to differentiate streambank erosion and surface soil erosion; and δ13C showed the ability to differentiate soil organic matter and geogenic organic matter. Results from the analyses suggest that streambank erosion downstream of surface coal mining sites is an especially significant source of sediment in coal mining disturbed watersheds. Further, the results suggest that the sediment transport processes governing streambank erosion loads are taking longer to reach geomorphologic equilibrium in the watershed as compared with the surface erosion processes. The dual‐isotope technique provides a useful method for further investigation of the impact of surface coal mining in the uplands of the watershed upon the geomorphologic state of the channel and the source of organic matter in aquatic systems impacted by surface coal mining.  相似文献   

15.
16.
17.
Road-related erosion was estimated by measuring 100 randomly located plots on a 180 km road network in the middle reach of R'dwood Creek in northwestern California. The estimated erosion ratn of 177 m3 km-1 was contrasted with two earlier studies in nearby parts of the same watershed. A sizable proportion of the great reduction in erosion from that reported in the earlier studies is attributed to changes in forest practice rules. Those changes have resulted in better placement and sizing of culverts and, especially, to less reliance on culverts to handle runoff from logging roads.  相似文献   

18.
Merten, Eric C., Nathaniel A. Hemstad, Randall K. Kolka, Raymond M. Newman, Elon S. Verry, and Bruce Vondracek, 2010. Recovery of Sediment Characteristics in Moraine, Headwater Streams of Northern Minnesota After Forest Harvest. Journal of the American Water Resources Association (JAWRA) 46(4): 733-743. DOI: 10.1111/j.1752-1688.2010.00445.x Abstract: We investigated the recovery of sediment characteristics in four moraine, headwater streams in north-central Minnesota after forest harvest. We examined changes in fine sediment levels from 1997 (preharvest) to 2007 (10 years postharvest) at study plots with upland clear felling and riparian thinning, using canopy cover, proportion of unstable banks, surficial fine substrates, residual pool depth, and streambed depth of refusal as response variables. Basin-scale year effects were significant (p < 0.001) for all responses when evaluated by repeated-measures ANOVAs. Throughout the study area, unstable banks increased for several years postharvest, coinciding with an increase in windthrow and fine sediment. Increased unstable banks may have been caused by forest harvest equipment, increased windthrow and exposure of rootwads, or increased discharge and bank scour. Fine sediment in the channels did not recover by summer 2007, even though canopy cover and unstable banks had returned to 1997 levels. After several storm events in fall 2007, 10 years after the initial sediment input, fine sediment was flushed from the channels and returned to 1997 levels. Although our study design did not discern the source of the initial sediment inputs (e.g., forest harvest, road crossings, other natural causes), we have shown that moraine, headwater streams can require an extended period (up to 10 years) and enabling event (e.g., high storm flows) to recover from large inputs of fine sediment.  相似文献   

19.
ABSTRACT: Forest and grass riparian buffers have been shown to be effective best management practices for controlling nonpoint source pollution. However, little research has been conducted on giant cane [Arundinaria gigantea (Walt. Muhl.)], a formerly common bamboo species, native to the lower midwestern and southeastern United States, and its ability to reduce nutrient loads to streams. From May 2002 through May 2003, orthophosphate or dissolved reactive phosphate (DRP) concentrations in ground water were measured at successive distances from the field edge through 12 m of riparian buffers of both giant cane and mixed hardwood forest along three streams draining agricultural land in the Cache River watershed in southern Illinois. Giant cane and mixed hardwood forest did not differ in their DRP sequestration abilities. Ground water DRP concentrations were significantly reduced (14 percent) in the first 1.5 m of the buffers, and there was an overall 28 percent reduction in DRP concentration by 12 m from the field edge. The relatively low DRP reductions compared to other studies could be attributed to high DRP input levels, narrow (12 m) buffer lengths, and/or mature (28 to 48 year old) riparian vegetation.  相似文献   

20.
We quantified annual sediment deposition, bank erosion, and sediment budgets in nine riverine wetlands that represented a watershed continuum for 1 year in the unregulated Yampa River drainage basin in Colorado. One site was studied for 2 years to compare responses to peak flow variability. Annual mean sediment deposition ranged from 0.01 kg/m2 along a first-order subalpine stream to 21.8 kg/m2 at a sixth-order alluvial forest. Annual mean riverbank erosion ranged from 3 kg/m-of-bank at the first-order site to 1000 kg/m at the 6th-order site. Total sediment budgets were nearly balanced at six sites, while net export from bank erosion occurred at three sites. Both total sediment deposition (R2 = 0.86, p < 0.01) and bank erosion (R2 = 0.77, p < 0.01) were strongly related to bankfull height, and channel sinuosity and valley confinement helped to explain additional variability among sites. The texture and organic fraction of eroded and deposited sediment were relatively similar in most sites and varied among sites by watershed position. Our results indicate that bank erosion generally balances sediment deposition in riverine wetlands, and we found no distinct zones of sediment retention versus export on a watershed continuum. Zones of apparent disequilibrium can occur in unregulated rivers due to factors such as incised channels, beaver activity, and cattle grazing. A primary function of many western riverine wetlands is sediment exchange, not retention, which may operate by transforming materials and compounds in temporary sediment pools on floodplains. These results are considered in the context of the Hydrogeomorphic approach being implemented by the U.S. government for wetland resource management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号