首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
ABSTRACT: The National Oceanic and Atmospheric Administration is developing a river forecast system for the Nile River in Egypt. The river forecast system operates on scientific work stations using hydrometeorological models and software to predict inflows into the high Aswan Dam and forecast flow hydrographs at selected gaging locations above the dam The Nile Forecasting System (NFS) utilizes satellite imagery from the METEOSAT satellite as the input to the forecast system. Satellite imagery is used to estimate precipitation over the Blue Nile Basin using five different techniques. Observed precipitation data and climatic statistics are used to improve precipitation estimation. Precipitation data for grid locations are input to a distributed water balance model, a hill slope routing model, and a channel routing model. A customized Geographic Information System (GIS) was developed to show political boundaries, rivers, terrain elevation, and gaging network. The GIS was used to develop hydrologic parameters for the basin and is used for multiple display features.  相似文献   

2.
Abstract: Physically based regional scale hydrologic modeling is gaining importance for planning and management of water resources. Calibration and validation of such regional scale model is necessary before applying it for scenario assessment. However, in most regional scale hydrologic modeling, flow validation is performed at the river basin outlet without accounting for spatial variations in hydrological parameters within the subunits. In this study, we calibrated the model to capture the spatial variations in runoff at subwatershed level to assure local water balance, and validated the streamflow at key gaging stations along the river to assure temporal variability. Ohio and Arkansas‐White‐Red River Basins of the United States were modeled using Soil and Water Assessment Tool (SWAT) for the period from 1961 to 1990. R2 values of average annual runoff at subwatersheds were 0.78 and 0.99 for the Ohio and Arkansas Basins. Observed and simulated annual and monthly streamflow from 1961 to 1990 is used for temporal validation at the gages. R2 values estimated were greater than 0.6. In summary, spatially distributed calibration at subwatersheds and temporal validation at the stream gages accounted for the spatial and temporal hydrological patterns reasonably well in the two river basins. This study highlights the importance of spatially distributed calibration and validation in large river basins.  相似文献   

3.
Gauge‐radar merging methods combine rainfall estimates from rain gauges and radar to capitalize on the strengths of the individual instruments. The performance of four well‐known gauge‐radar merging methods, including mean field bias correction, Brandes spatial adjustment, local bias correction using kriging, and conditional merging, are examined using Environment Canada radar and the Upper Thames River Basin in southwestern Ontario, Canada, as a case study. The analysis assesses the effect of gauge‐radar merging methods on: (1) the accuracy of predicted rainfall accumulations; and (2) the accuracy of predicted streamflows using a semi‐distributed hydrological model. In addition, several influencing factors (i.e., gauge density, storm type, basin type, proximity to the radar tower, and time‐step of adjustment) are analyzed to determine their effect on the performance of the rainfall estimation techniques. Confirming results of previous studies, the merging methods provide an increase in the accuracy of both rainfall accumulation estimations and predicted streamflows. The results also indicate specific factors such as gauge density, rainfall intensity, and time‐step of adjustment can reduce the accuracy of merging methods and play a key role in the examination of its use for operational purposes. Results provide guidance for hydrologists and engineers assessing how best to apply corrected radar products to improve rainfall estimation and hydrological modeling accuracy.  相似文献   

4.
ABSTRACT: The ability to apply a hydrologic model to large numbers of basins for forecasting purposes requires a quick and effective calibration strategy. This paper presents a step wise, multiple objective, automated procedure for hydrologic model calibration. This procedure includes the sequential calibration of a model's simulation of solar radiation (SR), potential evapotranspiration (PET), water balance, and daily runoff. The procedure uses the Shuffled Complex Evolution global search algorithm to calibrate the U.S. Geological Survey's Precipitation Runoff Modeling System in the Yampa River basin of Colorado. This process assures that intermediate states of the model (SR and PET on a monthly mean basis), as well as the water balance and components of the daily hydrograph are simulated consistently with measured values.  相似文献   

5.
ABSTRACT: Water from the Missouri River Basin is used for multiple purposes. The climatic change of doubling the atmospheric carbon dioxide may produce dramatic water yield changes across the basin. Estimated changes in basin water yield from doubled CO2 climate were simulated using a Regional Climate Model (RegCM) and a physically based rainfall‐runoff model. RegCM output from a five‐year, equilibrium climate simulation at twice present CO2 levels was compared to a similar present‐day climate run to extract monthly changes in meteorologic variables needed by the hydrologic model. These changes, simulated on a 50‐km grid, were matched at a commensurate scale to the 310 subbasin in the rainfall‐runoff model climate change impact analysis. The Soil and Water Assessment Tool (SWAT) rainfall‐runoff model was used in this study. The climate changes were applied to the 1965 to 1989 historic period. Overall water yield at the mouth of the Basin decreased by 10 to 20 percent during spring and summer months, but increased during fall and winter. Yields generally decreased in the southern portions of the basin but increased in the northern reaches. Northern subbasin yields increased up to 80 percent: equivalent to 1.3 cm of runoff on an annual basis.  相似文献   

6.
Sharif, Hatim O., Almoutaz A. Hassan, Sazzad Bin-Shafique, Hongjie Xie, and Jon Zeitler, 2010. Hydrologic Modeling of an Extreme Flood in the Guadalupe River in Texas. Journal of the American Water Resources Association (JAWRA) 1-11. DOI: 10.1111/j.1752-1688.2010.00459.x Abstract: Many of the storms creating the greatest rainfall depths in Texas, measured over durations ranging from one minute to 48 hours, have occurred in the Texas Hill Country area. The upstream portion of the Guadalupe River Basin, located in the Texas Hill Country, is susceptible to flooding and rapid runoff due to thin soils, exposed bedrock, and sparse vegetation, in addition to the Balcones Escarpment uplift contributing to precipitation enhancement. In November 2004, a moist air mass from the Gulf of Mexico combined with moist air from the Pacific Ocean resulted in the wettest November in Texas since 1895. Although the peak discharges were not the highest on record, the U.S. Geological Survey (USGS) stream gauge on the Guadalupe River at Gonzales, Texas reported a daily mean discharge of 2,304 m3/s on November 23, 2004 (average discharge is 53 m3/s). In this paper, we examine the meteorological conditions that led to this event and apply a two-dimensional, physically based, distributed-parameter hydrologic model to simulate the response of a portion of the basin during this event. The study results clearly demonstrate the ability of physically based, distributed-parameter simulations, driven by operational radar rainfall products, to adequately model the cumulative effect of two rainfall events and route inflows from three upstream watersheds without the need for significant calibration.  相似文献   

7.
ABSTRACT: Integrated water resources management is important, especially in watersheds where substantial interactions exist between the ground and surface water sources. This management warrants the need for reliable estimates of both an overall basin water budget and hydrologic fluctuations between ground water and surface water sources. The objectives of this study were to estimate the total water budget and to simulate the effects of the management of water in the Big Lost River Basin in Idaho. The study used the FIPR Hydrological Model (FHM), a hydrological model developed by the University of South Florida for the Florida Institute of Phosphate Research (FIPR). The FHM is an integrated model that simulates the full water budget of the surface and ground water systems. It has two public domain components: Hydrological Simulation Program ‐ FORTRAN (HSPF) and Modular Three‐Dimensional Finite‐Difference Ground Water Flow Model (MODFLOW). This study quantified the hydrologic fluxes between ground water and surface water and determined a comprehensive and accurate water budget for the Big Lost River. The study showed an annual amount of 10.44 m3/sec leaves the basin and never to return to the system. The study is useful in developing and calculating the annual water budget in the Big Lost River, and this process should be applicable to estimating water budgets in other basins.  相似文献   

8.
ABSTRACT: Effective planning for use of water resources requires accurate information on hydrologic variability induced by climatic fluctuations. Tree-ring analysis is one method of extending our knowledge of hydrologic variability beyond the relatively short period covered by gaged streamflow records. In this paper, a network of recently developed tree-ring chronologies is used to reconstruct annual river discharge in the upper Gila River drainage in southeastern Arizona and southwestern Arizona since A.D. 1663. The need for data on hydrologic variability for this semi-arid basin is accentuated because water supply is inadequate to meet current demand. A reconstruction based on multiple linear regression (R2=0.66) indicates that 20th century is unusual for clustering of high-discharge years (early 1900s), severity of multiyear drought (1950s), and amplification of low-frequency discharge variations. Periods of low discharge recur at irregular intervals averaging about 20 years. Comparison with other tree-ring reconstructions shows that these low-flow periods are synchronous from the Gila Basin to the southern part of the Upper Colorado River Basin.  相似文献   

9.
Quality of precipitation products from the Integrated Multi‐satellitE Retrievals for Global Precipitation Measurement mission (IMERG) was evaluated over the Lower Colorado River Basin of Texas. Observations of several rainfall events of a wide range of magnitudes during May 2015 by a very dense network of 241 rain gauges over the basin were used as a reference. The impact of temporal and spatial downscaling of different satellite products (near/post‐real‐time) on their accuracy was studied. Generally, all IMERG products perform better when the temporal and spatial resolutions are downscaled. The Final product shows relatively better performance compared to the near‐real‐time products in terms of basic performance measures; however, regarding rainfall detection, all products show nearly similar performance. When considering rainfall detection, IMERG adequately captures the precipitation events; however, in terms of spatial patterns and accuracy, more improvements are needed. IMERG products analysis results may help developers gain insight into the regional performance of the product, improve the product algorithms, and provide information to end users on the products’ suitability for potential hydrometeorological applications. Overall, the IMERG products, even the uncalibrated product at its finest resolution, showed reasonable performance indicating their great potential for applications such as water resources management, prevention of natural disasters, and flood forecasting.  相似文献   

10.
Tobin, Kenneth J. and Marvin E. Bennett, 2012. Validation of Satellite Precipitation Adjustment Methodology From Seven Basins in the Continental United States. Journal of the American Water Resources Association (JAWRA) 48(2): 221‐234. DOI: 10.1111/j.1752‐1688.2011.00604.x Abstract: The precipitation science community has expressed concern regarding the ability of satellite‐based precipitation products to accurately capture rainfall values over land. There has been some work that has focused on addressing the deficiencies of satellite precipitation products, particularly on the adjustment of bias. This article outlines a methodology that adjusts satellite products utilizing ground‐based precipitation data. The approach is not a simple bias adjustment, but is a three‐step process that transforms a satellite product based on a ground‐based precipitation product (NEXRAD‐derived Multisensor Precipitation Estimator [MPE] product or rain‐gauge data). The developed methodology was successfully applied to seven moderate‐to‐large sized watersheds from continental United States (CONUS) and northern Mexico over a spectrum of climatic regimes ranging from dry to humid settings. Methodology validation is based on comparison of observed and simulated streamflow generated with SWAT (Soil and Water Assessment Tool) model using unadjusted and adjusted precipitation products as input. Streamflow comparison is based on mass balance error and Nash‐Sutcliffe efficiency coefficient. Finally, the contribution of how adjustment to correct misses, false alarms, and bias impacts adjusted datasets and the potential impact that the adjustment methodology can have on hydrological applications such as water resource monitoring and flood prediction are explored.  相似文献   

11.
2 Copper Basin in southeastern Tennessee became the site of increasingly extensive and successful reforestation efforts. To determine the effectiveness of more than 50 years of reforestation efforts, we compared rainfall infiltration, sediment detachment, and soil organic matter of reforested sites to those properties of unvegetated sites and forested reference sites outside the basin. Results of 54 rainfall simulation experiments conducted in zones of the basin known to have been planted during different decades demonstrate that hydrologic recovery of soils in the Copper Basin lags significantly behind the establishment of tree cover and the protection offered by vegetation against soil erosion. Soils in new “forests” have significantly less organic matter and lower infiltration than forests more than 50 years old. The long-term persistence of low infiltration rates serves as a reminder that, at sites where the A and B soil horizons have been lost, restoration of the hydrologic function of a landscape requires decades, at least.  相似文献   

12.
This study evaluates a remotely sensed and two ground‐based potential evapotranspiration (PET) products for hydrologic application in the Upper Colorado River Basin (UCRB). The remotely sensed Moderate Resolution Imaging Spectroradiometer product (MODIS‐PET) is a continuous, daily time series with 250 m resolution derived using the Priestley‐Taylor (P‐T) equation. The MODIS‐PET is evaluated against regional flux tower data as well as a synthetic pan product (Epan; 0.125°, daily) derived from the North American Land Data Assimilation System (NLDAS) and a Hargreaves PET derived from DAYMET variables (DAYMET‐PET; 1 km, daily). Compared to point‐scale PET computed using regional flux tower data, the MODIS‐PET had lower errors, with RMSE values ranging from 2.24 to 2.85 mm/day. Epan RMSE values ranged from 3.70 to 3.76 mm/day and DAYMET‐PET RMSE values ranged from 3.55 to 4.58 mm/day. Further investigation showed biases in temperature and radiation data contribute to uncertainty in the MODIS‐PET values, while bias in NLDAS temperature, downward shortwave (SW↓), and downward longwave (LW↓) propagate in the Epan estimates. Larger discrepancies between methods were observed in the warmer, drier regions of the UCRB, however, the MODIS‐PET was more responsive to landcover transitions and better captured basin heterogeneity. Results indicate the satellite‐based MODIS product can serve as a viable option for obtaining spatial PET values across the UCRB.  相似文献   

13.
ABSTRACT: The Nonpoint Source Model (NPSM) was chosen for nonpoint source pollutant modeling within three different watersheds. The first step in using NPSM, hydrologic calibration, is discussed here for three 8‐digit Hydrologic Unit Codes (HUCs) from the White River Basin in Indiana (Driftwood HUC), the Albemarle‐Pamlico River Basin in Virginia and North Carolina (Contentnea HUC), and the Apalachicola‐Chattahoochee‐Flint River Basin in Alabama, Georgia, and Florida (Ichawaynochaway HUC). Model predicted flows were compared statistically with USGS gauge data at the HUC outflow points for an uncalibrated and calibrated model run for the period from January 1, 1990, through December 31, 1992, and a validation run for the period from January 1, 1993, through December 31, 1995. Least squares regression of NPSM predicted flows versus USGS gauge data were 0.75, 0.44, and 0.69 for the calibration runs and 0.71, 0.69, and 0.64 for the validation runs in the Driftwood, Contentnea, and Ichawaynochaway HUCs, respectively. Nash Sutcliffe coefficient values were not as strong, ranging from ?0.66 to 0.45 for the calibration runs and 0.31 to 0.37 for the validation runs of the model. The Ichawaynochaway HUC proved the most difficult to calibrate indicating that the model may not be as useful in some geographic locations.  相似文献   

14.
This paper develops a framework for regional scale flood modeling that integrates NEXRAD Level III rainfall, GIS, and a hydrological model (HEC-HMS/RAS). The San Antonio River Basin (about 4000 square miles, 10,000 km2) in Central Texas, USA, is the domain of the study because it is a region subject to frequent occurrences of severe flash flooding. A major flood in the summer of 2002 is chosen as a case to examine the modeling framework. The model consists of a rainfall-runoff model (HEC-HMS) that converts precipitation excess to overland flow and channel runoff, as well as a hydraulic model (HEC-RAS) that models unsteady state flow through the river channel network based on the HEC-HMS-derived hydrographs. HEC-HMS is run on a 4 x 4 km grid in the domain, a resolution consistent with the resolution of NEXRAD rainfall taken from the local river authority. Watershed parameters are calibrated manually to produce a good simulation of discharge at 12 subbasins. With the calibrated discharge, HEC-RAS is capable of producing floodplain polygons that are comparable to the satellite imagery. The modeling framework presented in this study incorporates a portion of the recently developed GIS tool named Map to Map that has been created on a local scale and extends it to a regional scale. The results of this research will benefit future modeling efforts by providing a tool for hydrological forecasts of flooding on a regional scale. While designed for the San Antonio River Basin, this regional scale model may be used as a prototype for model applications in other areas of the country.  相似文献   

15.
Assessment of water resources requires reliable rainfall data, and rain gauge networks may not provide adequate spatial representation due to limited point measurements. The Tropical Rainfall Measuring Mission (TRMM) provides rainfall data at global scale, and has been used with good results. However, TRMM data are an indirect measurement of rainfall, and therefore must be validated for its proper use. In this work, a validation scheme was designed and implemented to compare the TRMM Version 7 (V7) monthly rainfall product at different time frames with data measured in two hydrologic subregions of the Santiago River Basin (SRB) in Mexico: Río Alto Santiago and Río Bajo Santiago (RBS). Additionally, three physio‐climatic regions provide an assessment of the interplay of topography, distance from coastal regions, and seasonal weather patterns on the correspondence between both datasets. The TRMM V7 rainfall product exhibited good agreement with the rain gauge data particularly for the RBS and for the whole SRB during wettest summer and autumn seasons. However, strong regional dependence was observed due to differences in climate and topography. Overall, in spite of some noted underestimations, the monthly TRMM V7 rainfall product was found to provide useful information that can be used to complement limited monitoring as is the case of RBS. An improved combined rainfall product could be generated and thus gaining the most benefits from both data sources.  相似文献   

16.
Data scarcity has been a huge problem in modeling the water resources of the Upper Blue Nile basin, Ethiopia. Satellite data and different statistical methods have been used to improve the quality of conventional meteorological data. This study assesses the applicability of the National Centers for Environmental Prediction's Climate Forecast System Reanalysis (CFSR) climate data in modeling the hydrology of the region. The Soil and Water Assessment Tool was set up to compare the performance of CFSR weather with that of conventional weather in simulating observed streamflow at four river gauging stations in the Lake Tana basin — the upper part of the Upper Blue Nile basin. The conventional weather simulation performed satisfactorily (e.g., NSE ≥ 0.5) for three gauging stations, while the CFSR weather simulation performed satisfactorily for two. The simulations with CFSR and conventional weather yielded minor differences in the water balance components in all but one watershed, where the CFSR weather simulation gave much higher average annual rainfall, resulting in higher water balance components. Both weather simulations gave similar annual crop yields in the four administrative zones. Overall the simulation with the conventional weather performed better than the CFSR weather. However, in data‐scarce regions such as remote parts of the Upper Blue Nile basin, CFSR weather could be a valuable option for hydrological predictions where conventional gauges are not available.  相似文献   

17.
Hydrological models have been increasingly used by hydrologists and water resource managers to understand natural processes and human activities that affect watersheds. In this study, we use the physically based model, Soil and Water Assessment Tool (SWAT), to investigate the hydrological processes in the East River Basin in South China, a coastal area dominated by monsoonal climate. The SWAT model was calibrated using 8-year (1973–1980) record of the daily streamflow at the basin outlet (Boluo station), and then validated using data collected during the subsequent 8 years (1981–1988). Statistical evaluation shows that SWAT can consistently simulate the streamflow of the East River with monthly Nash–Sutcliffe efficiencies of 0.93 for calibration and 0.90 for validation at the Boluo station. We analyzed the model simulations with calibrated parameters, presented the spatiotemporal distribution of the key hydrological components, and quantified their responses to different land uses. Watershed managers can use the results of this study to understand hydrological features and evaluate water resources of the East River in terms of sustainable development and effective management.  相似文献   

18.
A technique is presented for developing an isohyet map for the Hualapai Valley, a closed hydrologic basin of about 315 square miles in the northwestern Great Basin in Nevada. In this basin there is practically no climatic data, and in the northwest Great Basin there are too few stations for determination of rainfall on a detailed basis. Using a vegetational typing to represent a range in elevation and precipitation, an initial mean annual rainfall is determined for selected points on a grid pattern. This rainfall is then modified by using topographic parameters of slope, orientation, exposure, and rainfall shadow effect. The resulting point determinations of mean annual rainfall are then smoothed using a trend surface analysis, and an isohyetal map is drawn from the smoothed points. The technique provides an estimated accuracy of one inch of mean annual precipitation and one mile of resolution on isohyets.  相似文献   

19.
Abstract: A stochastic, spatially explicit method for assessing the impact of land cover classification error on distributed hydrologic modeling is presented. One‐hundred land cover realizations were created by systematically altering the North American Landscape Characterization land cover data according to the dataset’s misclassification matrix. The matrix indicates the probability of errors of omission in land cover classes and is used to assess the uncertainty in hydrologic runoff simulation resulting from parameter estimation based on land cover. These land cover realizations were used in the GIS‐based Automated Geospatial Watershed Assessment tool in conjunction with topography and soils data to generate input to the physically‐based Kinematic Runoff and Erosion model. Uncertainties in modeled runoff volumes resulting from these land cover realizations were evaluated in the Upper San Pedro River basin for 40 watersheds ranging in size from 10 to 100 km2 under two rainfall events of differing magnitudes and intensities. Simulation results show that model sensitivity to classification error varies directly with respect to watershed scale, inversely to rainfall magnitude and are mitigated or magnified by landscape variability depending on landscape composition.  相似文献   

20.
Abstract: The calibration of basin‐scale hydrologic models consists of adjusting parameters such that simulated values closely match observed values. However, due to inevitable inaccuracies in models and model inputs, simulated response hydrographs for multiyear calibrations will not be perfectly synchronized with observed response hydrographs at the daily time step. An analytically derived formula suggests that when timing errors are significant, traditional calibration approaches may generally underestimate the total event‐flow volume. An event‐adaptive time series is developed and incorporated into the Nash‐Sutcliffe Efficiency objective function to diagnose the potential impact of event‐flow synchronization errors. Test sites are the 50 km2 Subwatershed I of the Little River Experimental Watershed (LREWswI) in southeastern Georgia, and the 610 km2 Little Washita River Experimental Watershed (LWREW) in southwestern Oklahoma, with the Soil and Water Assessment Tool used as the hydrologic model. Results suggest that simulated surface runoff generation is 55% less for LREWswI when the daily time series is used compared with when the event‐adaptive technique is used. Event‐flow generation may also be underestimated for LWREW, but to a lesser extent than it may be for LREWswI, due to a larger portion of the event flow being lateral flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号