首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Land-Use and Land-Cover Dynamics in the Central Rift Valley of Ethiopia   总被引:3,自引:0,他引:3  
Understanding the complexity of land-use and land-cover (LULC) changes and their driving forces and impacts on human and environmental security is important for the planning of natural resource management and associated decision making. This study combines and compares participatory field point sampling (pfps) and remote sensing to explore local LULC dynamics. The study was conducted in two peasant associations located in the central Ethiopian Rift Valley, which is a dry-land mixed farming area exposed to rapid deforestation. From 1973–2006, the area of cropland doubled at the expense of woodland and wooded-grassland in both of the study sites. Major deforestation and forest degradation took place from 1973–1986; woodland cover declined from 40% to 9% in one of the study sites, while the other lost all of its original 54% woodland cover. Our study concludes that assessing LULC dynamics using a combination of remote sensing and pfps is a valuable approach. The two methods revealed similar LULC trends, while the pfps provided additional details on how farmers view the changes. This study documents dramatic trends in LULC over time, associated with rapid population growth, recurrent drought, rainfall variability and declining crop productivity. The alarming nature of these trends is reflected in a decrease in the livelihood security of local communities and in environmental degradation. Given these dry-land conditions, there are few opportunities to improve livelihoods and environmental security without external support. If negative changes are to be halted, action must be taken, including building asset bases, instituting family planning services, and creating opportunities outside these marginal environments.  相似文献   

2.
With urban populations worldwide expected to witness substantial growth over the next decades, pressure on urban land and resources is projected to increase in response. For policy-makers to adequately meet the challenges brought about by changes in the dynamics of urban areas, it is important to clearly identify and communicate their causes. Floods in Douala (the most densely populated city in the central African sub-region), are being associated chiefly with changing rainfall patterns, resulting from climate change in major policy circles. We investigate this contention using statistical analysis of daily rainfall time-series data covering the period 1951–2008, and tools of geographic information systems. Using attributes such as rainfall anomalies, trends in the rainfall time series, daily rainfall maxima and rainfall intensity–duration–frequency, we find no explanation for the attribution of an increase in the occurrences and severity of floods to changing rainfall patterns. The culprit seems to be the massive increase in the population of Douala, in association with poor planning and investment in the city's infrastructure. These demographic changes and poor planning have occurred within a physical geography setting that is conducive for the inducement of floods. Failed urban planning in Cameroon since independence set the city up for a flood-prone land colonization. This today translates to a situation in which large portions of the city's surface area and the populations they harbor are vulnerable to the city's habitual annual floods. While climate change stands to render the city even more vulnerable to floods, there is no evidence that current floods can be attributed to the changes in patterns of rainfall being reported in policy and news domains.  相似文献   

3.
Soil degradation and desertification processes in the Mediterranean basin reflect the interplay between environmental and socioeconomic drivers. An approach to evaluate comparatively the multiple relationships between biophysical variables and socioeconomic factors is illustrated in the present study using the data collected from 586 field sites located in five Mediterranean areas (Spain, Greece, Turkey, Tunisia and Morocco). A total of 47 variables were chosen to illustrate land-use, farm characteristics, population pressure, tourism development, rainfall regime, water availability, soil properties and vegetation cover, among others. A data mining approach incorporating non-parametric inference, principal component analysis and hierarchical clustering was developed to identify candidate syndromes of soil degradation and desertification risk. While field sites in the same study area showed a substantial similarity, the multivariate relationship among variables diverged among study areas. Data mining techniques proved to be a practical tool to identify spatial determinants of soil degradation and desertification risk. Our findings identify the contrasting spatial patterns for biophysical and socioeconomic variables, in turn associated with different responses to land degradation.  相似文献   

4.
Since the beginning of the 1960s, mass tourism has been the most important menace to the environmental stability of fragile and vulnerable Mediterranean microinsular systems. The socioeconomic changes introduced by tourism have produced important variations in the use of resources, including land. The result usually has been an increase in the level of artificiality of the territory, particularly in coastal areas. The intensity and frequency of change in the use of resources and the induced changes in the level of artificiality may be used as an estimation of environmental stability. The northern area of Formentera, Balearic islands, Spain, being the most environmentally important area of the island and simultaneously the most threatened by mass tourism development, has been chosen as a study case. Forty types of vegetation and land use have been estimated and mapped in the area. The stability level of each land use type has been estimated, before and after the development of tourism, and the main environmental processes have been identified. An attempt is made to predict some future trends and their variations.  相似文献   

5.
Land degradation in the Ethiopian highlands is considered to be one of the major problems threatening agricultural development and food security in the country. However, knowledge about the forces driving the long-term dynamics in land resources use is limited. This research integrates biophysical information with socio-economic processes and policy changes to examine the dynamics of land resource use and farmers' livelihoods in the Beressa watershed for over 40 years during the second half of the 20th century. It was found that there have been substantial dynamics in land resource use in the area. The natural vegetation cover has been extensively cleared, although most of the cleared areas have since been replaced with plantations. Grazing land has expanded remarkably at the expense of cropland and bare land. However, the expansion of cropland was minimal over the 43-year period despite a quadrupling of the population density. Yields have not increased to compensate for the reduction in per capita cropland, and the soil quality appears to be not that good. Though the farmers perceived it otherwise, the long-term rainfall pattern has improved. In response to soil degradation, water shortage, socio-economic and policy changes, farmers have tended to gradually change from annual cropping to tree planting and livestock production to cope with the problems of soil degradation, water scarcity and smaller farms. Income diversification through the sale of wood and cattle dung is becoming a major livelihood strategy. Apparently, however, little attention has been paid to investments in soil and water conservation (SWC) and local soil fertility amendments. In particular, increased erosion and related high nutrient losses in sediments, as well as the removal of potentially available soil nutrients through the sale of manure threatens to damage agricultural sustainability in the area.  相似文献   

6.
Increased interest in environmental change issues has led researchers to consider more integrated approaches to change dynamics. This paper examines change in terms of land degradation in north-central Botswana from both biophysical and human perspectives. Although seasonal and periodic droughts were prevalent, analysis of rainfall data over the past 70 years revealed no downward trend. However, indicators of declining productivity such as soil erosion, loss of vegetation cover, and a declining groundwater table were amply evident. The GIS analysis of remotely sensed data has shown that complete vegetation recovery after drought is not taking place, particularly in the south-central part of the study area. These areas contained the highest human and livestock population densities. The local people acknowledged facing increasing resource depletion and indicated drought as the main cause. Pressures on available resources, particularly during drought periods, appeared to have impeded the regenerative capacity of the natural vegetation cover, thereby inducing land degradation. This situation may not easily be rectified because of widespread poverty and inappropriate local perceptions of the solutions. Both of these hinder the adoption of sustainable land management.  相似文献   

7.
A vegetation cover increase has been identified at global scales using satellite images and vegetation indices. This fact is usually explained by global climatic change processes such as CO2 and temperature increases. Nevertheless, although these causes can be important, the role of socioeconomic transformations must be considered in some places, since in several areas of Northern Hemisphere an important change in management practices has been detected. Rural depopulation and land abandonment have reactivated the natural vegetation regeneration processes. This work analyses the vegetation evolution in the central Spanish Pyrenees from 1982 to 2000. The analysis has been done by using calibrated-NDVI temporal series from NOAA-AVHRR images. A positive and significant trend in NDVI data has been identified from 1982 to 2000 coinciding with a temperature increase in the study area. However, the spatial differences in magnitude and the sign of NDVI trends are significant. The role of land management changes in the 20th century is considered as a hypothesis to explain the spatial differences in NDVI trends. The role of land-cover and human land-uses on this process has been analyzed. The highest increment of NDVI is detected in lands affected by abandonment and human extensification. The importance of management changes in vegetation growth is discussed, and we indicate that although climate has great importance in vegetal evolution, land-management changes can not be neglected in our study area.  相似文献   

8.
ABSTRACT: Water quality data collected at inflows to Everglades National Park (ENP) are analyzed for trends using the seasonal Kendall test (Hirsch et al., 1982; Hirsch and Slack, 1984). The period of record is 1977–1989 for inflows to Shark River Slough and 1983–1989 for inflows to Taylor Slough and ENP's Coastal Basin. The analysis considers 20 water quality components, including nutrients, field measurements, inorganic species, and optical properties. Significant (p<0.10) increasing trends in total phosphorus concentration are indicated at eight out of nine stations examined. When the data are adjusted to account for variations in antecedent rainfall and water surface elevation, increasing trends are indicated at seven out of nine stations. Phosphorus trend magnitudes range from 4 percent/year to 21 percent/year Decreasing trends in the Total N/P ratio are detected at seven out of nine stations. N/P trend magnitudes range from -7 percent/year to -15 percent/year. Trends in water quality components other than nutrients are observed less frequently and are of less importance from a water-quality-management perspective. The apparent nutrient trends are not explained by variations in marsh water elevation, antecedent rainfall, flow, or season.  相似文献   

9.
ABSTRACT: Results from studies in the Illinois-Indiana and Texas-Oklahoma areas indicate that satellite microwave observations at the 1.55 cm wavelength are responsive to relative moisture variations in the near surface layer of the soil. Because significant vegetation cover absorbs the 1.55 cm microwave emission from the soil, the target area must be predominately bare soil or low density vegetation cover for meaningful measurements to result. The 25 km resolution of the satellite sensor limits application of the microwave techniques to large areas such as watersheds or agricultural districts rather than individual fields. In general, at 1.55 cm. there is an inverse relationship between microwave brightness temperature and changes in soil moisture levels (as indicated by antecedent rainfall) in agricultural regions before the planting of crops or during the early growing season when vegetation cover is sparse. Even early season observations should be of great value in deciding on the time and type of crop planting and for initial irrigation scheduling when the root zone is still in close proximity to the surface.  相似文献   

10.
Depletion of vegetation by overgrazing in arid environments has long-lasting effects on the environmental quality over extended geographic areas. An adequate inspection of habitat changes requires scaled up procedures that would allow assessing end-points of environmental status in broad areas that would be based on processes occurring at the plant canopy level. Our purpose was to find indicators of land degradation–conservation status for use in land monitoring programs and in planning management practices that would be amenable to further up-scaling for use with remotely sensed imagery. In several sites of the Patagonian Monte differing in the impact of grazing management, we evaluated vegetation attributes at three spatial scales. At the population scale, we found that the severity of grazing impact was characterized by the reduction of the palatable grass, P. ligularis, outside and inside shrub canopies. At the vegetation patch scale, we found that land degradation by domestic herbivore impact was characterized by changes in attributes of patch shape (radius, height, internal canopy cover) and patch abundance. At the plant community scale, we found that the structure of the plant canopy as described using Fourier analysis of cover data changed after long-term grazing impact consistently with the modifications in plant population and patch structures. We present a conceptual multiscale scenario of structural changes triggered by domestic herbivore impact, and quantitative indicators of plant structure and processes useful to develop management strategies of the Patagonian-Monte that would conserve its natural habitats. The developed end-points are also amenable for use in land conservation assessment through remotely sensed imagery.  相似文献   

11.
Land Degradation: A Challenge to Ethiopia   总被引:11,自引:3,他引:8  
Land degradation is a great threat for the future and it requires great effort and resources to ameliorate. The major causes of land degradation in Ethiopia are the rapid population increase, severe soil loss, deforestation, low vegetative cover and unbalanced crop and livestock production. Inappropriate land-use systems and land-tenure policies enhance desertification and loss of agrobiodiversity. Utilization of dung and crop residues for fuel and other uses disturbs the sustainability of land resources. The supply of inputs such as fertilizer, farm machinery and credits are very low. The balance between crop, livestock, and forest production is disturbed, and the farmer is forced to put more land into crop production. For environmentally and socially sustainable development, there is an urgent need to promote awareness and understanding of the interdependence of natural, socioeconomic, and political systems at local and national levels. Understanding the current status and causes of land degradation is very important. This paper reveals the important elements of land degradation in Ethiopia and suggests possible solutions that may help to ameliorate the situation.  相似文献   

12.
This study examines precipitation accumulation and intensity trends across a region in southwest Saudi Arabia characterized by distinct seasonal weather patterns and mountainous terrain. The region is an example of an arid/semiarid area faced with maintaining sustainable water resources with a growing population. Annual and seasonal trends in precipitation amount were examined from 29 rain gages divided among four geographically unique regions from 1945/1946 to 2009. Two of the regions displayed significantly declining annual trends over the time series using a Mann‐Kendall test modified for autocorrelation (α < 0.05). Seasonal analysis revealed insignificant declining trends in at least two of the regions during each season. The largest and most consistent declining trends occurred during wintertime where all regions experienced negative trends. Several intensity metrics were examined in the study area from four additional stations containing daily data from 1985 to 2011. Intensity metrics included total precipitation, wet day count, simple intensity index, maximum daily annual rainfall, and upper/lower precipitation distribution changes. In general, no coherent trends were found among the daily stations suggesting precipitation is intensifying across the study area. The work represents the first of its size in the study area, and one of few in the region due to the lack of available long‐term data needed to properly examine precipitation changes.  相似文献   

13.
A thorough understanding of past and present hydrologic responses to changes in precipitation patterns is crucial for predicting future conditions. The main objectives of this study were to determine temporal changes in rainfall‐runoff relationship and to identify significant trends and abrupt shifts in rainfall and runoff time series. Ninety‐year rainfall and runoff time series datasets from the Gasconade and Meramec watersheds in east‐central Missouri were used to develop data screening procedure to assess changes in the rainfall and runoff temporal patterns. A statistically significant change in mean and variance was detected in 1980 in the rainfall and runoff time series within both watersheds. In addition, both the rainfall and runoff time series indicated the presence of nonstationary attributes such as statistically significant monotonic trends and/or change in mean and variance, which should be taken into consideration when using the time series to predict future scenarios. The annual peak runoff and the annual low flow in the Meramec watershed showed significant temporal changes compared to that in the Gasconade watershed. Water loss in both watersheds was found to be significantly increasing which is potentially due to the increase in groundwater pumping for water supply purposes.  相似文献   

14.
Abstract: Land‐use/land‐cover changes in Mākaha valley have included the development of agriculture, residential dwellings, golf courses, potable water supply facilities, and the introduction of alien species. The impact of these changes on surface water and ground water resources in the valley is of concern. In this study, streamflow, rainfall, and ground‐water pumping data for the upper part of the Mākaha valley watershed were evaluated to identify corresponding trends and relationships. The results of this study indicate that streamflow declined during the ground‐water pumping period. Mean and median annual streamflow have declined by 42% (135 mm) and 56% (175 mm), respectively, and the mean number of dry stream days per year has increased from 8 to 125. Rainfall across the study area appears to have also declined though it is not clear whether the reduction in rainfall is responsible for all or part of the observed streamflow decline. Mean annual rainfall at one location in the study area declined by 14% (179 mm) and increased by 2% (48 mm) at a second location. Further study is needed to assess the effect of ground‐water pumping and to characterize the hydrologic cycle with respect to rainfall, infiltration, ground‐water recharge and flow in the study area, and stream base flow and storm flow.  相似文献   

15.
ABSTRACT: In order to assess the effects. of silvicultural and drainage practices on water quality it is necessary to understand their impacts on hydrology. The hydrology of a 340 ha artificially drained forested watershed in eastern North Carolina was studied for a five-year period (1988–92). Effects of soils, beds and changes in vegetation on water table depth, evapotranspiration (ET) and drainage outflows were analyzed. Total annual outflows from the watershed varied from 29 percent of the rainfall during the driest year (1990) when mostly mature trees were present to as much as 53 percent during a year of normal rainfall (1992) after about a third of the trees were harvested. Annual ET from the watershed, calculated as the difference between annual rainfall and outflow, varied from 76 percent of the calculated potential ET for a dry year to as much as 99 percent for a wet year. Average estimated ET was 58 percent of rainfall for the five-year period. Flow rates per unit area were consistently higher from a smaller harvested block (Block B - 82 ha) of the watershed than from the watershed as a whole. This is likely due to time lags, as drainage water flows through the ditch-canal network in the watershed, and to timber harvesting of the smaller gaged block.  相似文献   

16.
The influence of slash-and-burn agriculture and tree extraction on the spatial and temporal pattern of forest fragmentation in two municipalities in the highlands of Chiapas, Mexico was analyzed. The data series were derived from two subsets of satellite images taken in 1974 and 1996. The analysis was based on area, edge, shape, core area, and neighbor indices. During the 22 years, the dense forest decreased by 8.9%/yr in Huistán and by 8.6%/yr in Chanal, while open/disturbed forest, secondary vegetation, and developed area increased in both municipalities. The total number of fragments increased by 1.4%/yr and 2.3%/yr in Huistán and Chanal, respectively. Dense forest showed the highest increase in the number of fragments (6%/yr in Huistán and 12%/yr in Chanal), while edge length, core area, and number of dense forest core areas decreased. The larger fragments of dense forest present in 1974 were divided into smaller fragments in 1996; at the same time, they experienced a process of degradation toward open/disturbed forest and secondary vegetation. Two different fragmentation patterns could be distinguished based on agricultural or forestry activities. Forest fragmentation did not occur as a continuous process; the pattern and degree of fragmentation were functions of land tenure, environmental conditions, and productive activities. The prevalence of rather poor soil conditions, small-holdings, growing human population densities, increasing poverty, and the absence of alternative economic options will maintain a high rate of deforestation and forest fragmentation in the studied region.  相似文献   

17.
Overstocking is believed to be one of the principal causes for grassland degradation in northern China. For this reason, quantification of overstocking and spatiotemporal analysis are needed for this area. In this study, the relationship between annual rainfall and grassland aboveground net primary production (ANPP) was analyzed using data from 1982 to 1991 in the Inner Mongolia Autonomous Region (IMAR), China. Subsequently, rainfall-based livestock carrying capacity was estimated and combined with livestock density calculated from county-level livestock data from 1982 to 1991 to determine spatial and temporal patterns of a stocking rate index and its relationship with climatic factors. The results indicate the following. First, there was a significant linear relationship between annual rainfall and ANPP in IMAR and the slope of ANPP versus rainfall was greater than those found in South America and Africa, indicating higher rain-use efficiency. Second, temporally averaged livestock density showed overstocking in most of the rural counties except for those in the cold north, where human populations are low and transportation systems are poor. Third, the stocking rate index increased with temperature, from less than 1.0 in the north, to greater than 2.0 in most of the southern IMAR. Within the central IMAR, the index increased from west to east, along the gradient of increasing rainfall. Fourth, long-term dynamics of livestock density depicted continuous overstocking, more than 20%, from 1982 to 1991 along the western part of the NorthEast China Transect (NECT) within IMAR. Spatial planning of livestock densities according to carrying capacities and improved pastoral management are needed in this area.  相似文献   

18.
Land Degradation at the Stara Planina Ski Resort   总被引:1,自引:0,他引:1  
The environmental impacts of ski resorts in the Balkan region are great and can lead to landscape degradation and loss of land functionality. In this study, we present an example of the negative effects of human activities at the Stara Planina ski resort in southeastern Serbia. The objective of this study is detailed analysis of the characteristics of environmental impacts at the Stara Planina. The management of the ski area and ski slope development caused severe degradation of topsoil and native vegetation. The morphological characteristics of the area, lithological properties of the exposed material and climate conditions resulted in various geomorphic impacts, including rills, deep gullies, solifluctions and debris from rock weathering. Significant changes in land usage altered hydrological conditions, resulting in more frequent torrential floods in the downstream sections of the Zubska River and increased the sediment yield. Environmental impacts were analyzed in the immediate and wider zones of the ski resort in accordance with the specific topography and visual exposure. The restoration and erosion control measures have stopped degradation processes and helped to rehabilitate the appearance and functions of the landscape. The results show the importance of considering lithological (the type and characteristics of minerals present) and hydrological (precipitation, water storage capacity of soil, runoff) factors under the conditions of significant changes in land usage. The results of this investigation can contribute to the improvement of planning processes and the implementation of development projects in ski areas.  相似文献   

19.
/ Management problems arise in semiarid rangeland that are characterized by marked wet and dry seasons because of forage deficiencies in the dry season. These natural vegetation rangelands can sustain livestock all year long when forage and senesced grass are available into the dry season. Seasonal range condition data are required to provide a basis for pasture management to help locate dry season cover and thereby minimize overstocking and degradation. The generation of seasonal data using Thematic Mapper (TM) imagery was undertaken to assess changes in natural vegetation cover in the southern Botswana Kalahari. Visual analysis of spectral reflectance curves, the development of spectral separability indexes, and conventional classification analysis techniques were used to identify and differentiate rangeland features. Results from reflectance curves indicated that most rangeland cover types could be preferentially distinguished using mainly wet season data, especially on the longer TM wavebands, and that range feature differentiation was more problematic on darker soils than on lighter soils. Spectral separability indexes (SSIs) confirmed that range feature separation varied considerably as a function of waveband and was more effective in the wet than the dry season. The SSIs also showed that range feature differentiation in both seasons was most effective using a combination of the chlorophyll absorpance band (TM3) and two mid-infrared bands (TM5 and TM7). Wet season data were more effectively classified in terms of range features than dry season data although some class similarity was inferred across the two classified data sets. The work shows that overall trends may be generated by comparing seasonal data sets, thereby providing an overall basis for dry season decision making. However, particular problems arise within the dry season data sets probably because of spectral similarities between shadow and darkened vegetation cover, thereby implying that further work is needed. KEY WORDS: Semiarid rangelands; Botswana; Kalahari; Spectral differentiation; Seasonal change; Darkened vegetation cover  相似文献   

20.
Soil is one of the main non-renewable natural resources in the world. In the Valencian Community (Mediterranean coast of Spain), it is especially important because agriculture and forest biomass exploitation are two of the main economic activities in the region. More than 44% of the total area is under agriculture and 52% is forested. The frequently arid or semi-arid climate with rainfall concentrated in few events, usually in the autumn and spring, scarcity of vegetation cover, and eroded and shallow soils in several areas lead to soil degradation processes. These processes, mainly water erosion and salinization, can be intense in many locations within the Valencian Community. Evaluation of soil degradation on a regional scale is important because degradation is incompatible with sustainable development. Policy makers involved in land use planning require tools to evaluate soil degradation so they can go on to develop measures aimed at protecting and conserving soils. In this study, a methodology to evaluate physical, chemical and biological soil degradation in a GIS-based approach was developed for the Valencian Community on a 1/200,000 scale. The information used in this study was obtained from two different sources: (i) a soil survey with more than 850 soil profiles sampled within the Valencian Community, and (ii) the environmental information implemented in the Geo-scientific map of the Valencian Community digitised on an Arc/Info GIS. Maps of physical, chemical and biological soil degradation in the Valencian Community on a 1/200,000 scale were obtained using the methodology devised. These maps can be used to make a cost-effective evaluation of soil degradation on a regional scale. Around 29% of the area corresponding to the Valencian Community is affected by high to very high physical soil degradation, 36% by high to very high biological degradation, and 6% by high to very high chemical degradation. It is, therefore, necessary to draw up legislation and to establish the policy framework for actions focused on preventing soil degradation and conserving its productive potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号