首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Abstract: Increasing regional vegetation activity has been frequently found especially in middle and high latitude and alpine areas, but the effects of which on regional hydrology is still highly uncertain. The Upstream Catchment of Minjiang River is a large mountainous catchment covering 22,919 km2 with a diverse vegetation distribution pattern, including alpine group (A), subalpine group (SA), and temperate and subtropical group (T/ST). The Seasonal Mann‐Kendall test, a nonparametric trend test method, detected consistent upward trends in all groups in monthly accumulated growing degree days (AGDDM) time series from 1982 to 2003, but no significant trend in mean monthly precipitation (MMP) time series in any group. The alpine group had a significant (p = 0.024) upward trend in monthly Normalized Difference of Vegetation Index (NDVI) time series from 1982 to 2003, in contrast, the SA and T/ST groups had decreasing (although not significant) trends. AGDDM plays more important role than MMP in affecting NDVI change in alpine areas, indicating temperature was the main climatic driver. In contrast, water was the main driver for the T/ST group, as indicated by the significant correlation between NDVI and MMP and a weak correlation with AGDDM. Correlation coefficients of NDVI and river flow varied with seasons, mostly negative, especially during the growing season (April to October). A significant (p = 0.025) correlation was found only in August, indicating that an increase in peak‐NDVI decreased high flow significantly. TI‐NDVIc, which was developed in an attempt to track the vegetation change at the catchment scale, accounted for more than 40% of the evapotranspiration increase (r2 = 0.43).  相似文献   

2.
Understanding the ecological trends of the relict habitats in the Luoshan Nature Reserve (LNR) has an important role in the persistence of endangered species and the socio‐economic sustainability in the Ningxia section of the arid desertification belt in North China. Based on data from the Landsat Multispectral Scanner (MSS)/Thematic Mapper (TM)/Enhanced Thematic Mapper Plus (ETM+)/Operational Land Imager (OLI) sensors (from 1977 to 2017), the MODIS normalized difference vegetation index (NDVI) and net primary productivity (NPP) (from 2000 to 2017), the Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM), annual average air temperature and precipitation (from 1977 to 2017), typical anthropogenic factors (population size, cultivated land and residential area) and natural ecological elements (MSS/TM/ETM+/OLI/MODIS NDVI and NPP) were quantitatively contrasted and analyzed for potential correlations. Some indicators of human activities, ecological processes and landscape geography have changed in the LNR. The proportion of residential area increased 3.09‐fold from 1977 to 2017. The population increased 34.30‐fold due to ecological immigration policy implementation in the Hongsipu immigration district. Before immigration, cultivated land increased, but after immigration, this land decreased quickly. Most of the dry‐cultivated land was converted through afforestation and a small part of the land was converted to irrigate cultivation land. We conclude that natural evolution led to the ecological relics, the isolated management to the LNR has objectively created an ecological island that will accelerate inbreeding depression and reduce biodiversity.  相似文献   

3.
Baseline assessments and monitoring of protected areas are essential for making management decisions, evaluating the effectiveness of management practices, and tracking the effects of global changes. For these purposes, the analysis of functional attributes of ecosystems (i.e., different aspects of the exchange of matter and energy) has advantages over the traditional use of structural attributes, like a quicker response to disturbances and the fact that they are easily monitored through remote sensing. In this study, we described the spatiotemporal patterns of different aspects of the ecosystem functioning of the Spanish national parks and their response to environmental changes between 1982 and 2006. To do so, we used the NOAA/AVHRR-GIMMS dataset of the Normalized Difference Vegetation Index (NDVI), a linear estimator of the fraction of photosynthetic active radiation intercepted by vegetation, which is the main control of carbon gains. Nearly all parks have significantly changed during the last 25 years: The radiation interception has increased, the contrast between the growing and nongrowing seasons has diminished, and the dates of maximum and minimum interception have advanced. Some parks concentrated more changes than others and the degree of change varied depending on their different environmental conditions, management, and conservation histories. Our approach identified reference conditions and temporal changes for different aspects of ecosystem functioning, which can be used for management purposes of protected areas in response to global changes.  相似文献   

4.
Using SPOT/VGT NDVI time series images (2002–2009) and MODIS/LST images (2002–2009) smoothed by a Savitzky–Golay filter, the land surface phenology (LSP) and land surface temperature (LST), respectively, are extracted for six cities in the Yangtze River Delta, China, including Shanghai, Hangzhou, Nanjing, Changzhou, Wuxi, and Suzhou. The trends of the averaged LSP and LST are analyzed, and the relationship between these values is revealed along the urban–rural gradient. The results show that urbanization advances the start of the growing season, postpones the end of the growing season, prolongs the growing season length (GSL), and reduces the difference between maximal NDVI and minimal NDVI in a year (NDVIamp). More obvious changes occur in surface vegetation phenology as the urbanized area is approached. The LST drops monotonously and logarithmically along the urban–rural gradient. Urbanization generally affects the LSP of the surrounding vegetation within 6 km to the urban edge. Except for GSL, the difference in the LSP between urban and rural areas has a significant logarithmic relationship with the distance to the urban edge. In addition, there is a very strong linear relationship between the LSP and the LST along the urban–rural gradient, especially within 6 km to the urban edge. The correlations between LSP and gross domestic product and population density reveal that human activities have considerable influence on the land surface vegetation growth.  相似文献   

5.
Land abandonment is an important cause of changes in landscape patterns in the Mediterranean area. There is a need to monitor land use and land cover changes in order to provide quantitative evidence of the relationship between land abandonment and the formation of new landscape patterns. Appropriate management policies to encourage sustainable development can then be developed. This paper describes how to monitor landscape dynamics using different temporal land use and land cover data generated from field survey and airborne information. The results showed that the abandonment of agricultural land generally results in an increase of vegetation biomass. This process leads to homogenization of the landscape. In addition, abandonment promotes fragmentation of agricultural land. Based on these results, the paper discusses the implications for rural management policies concerning the abandonment of agricultural land and suggests recommendations for the development of such policies.  相似文献   

6.
Spatial distributions of the leaf area index (LAI) needed for carbon cycle modeling in Xingguo County, China were estimated based on correlations between the field-measurements and vegetation indices (VIs). After making geometric and atmospheric corrections to two Landsat ETM+ images, one in January 2000 and the other in May 2003, three VIs (SR, NDVI, and RSR) were derived, and their separate correlations with ground LAI measurements were established. The correlation with RSR was the highest among the three VIs. The retrieved LAI values for January 2000 were lower than those for May 2003 because of a small seasonal variation in the coniferous forests (predominantly masson pine) and the decrease in the understorey vegetation during winter.  相似文献   

7.
Abstract: Natural forests in southern China have been severely logged due to high human demand for timber, food, and fuels during the past century, but are recovering in the past decade. The objective of this study was to investigate how vegetation cover changes in composition and structure affected the water budgets of a 9.6‐km2 Dakeng watershed located in a humid subtropical mountainous region in southern China. We analyzed 27 years (i.e., 1967‐1993) of streamflow and climate data and associated vegetation cover change in the watershed. Land use/land cover census and Normalized Difference of Vegetation Index (NDVI) data derived from remote sensing were used to construct historic land cover change patterns. We found that over the period of record, annual streamflow (Q) and runoff/precipitation ratio did not change significantly, nor did the climatic variables, including air temperature, Hamon’s potential evapotranspiration (ET), pan evaporation, sunshine hours, and radiation. However, annual ET estimated as the differences between P and Q showed a statistically significant increasing trend. Overall, the NDVI of the watershed had a significant increasing trend in the peak spring growing season. This study concluded that watershed ecosystem ET increased as the vegetation cover shifted from low stock forests to shrub and grasslands that had higher ET rates. A conceptual model was developed for the study watershed to describe the vegetation cover‐streamflow relationships during a 50‐year time frame. This paper highlighted the importance of eco‐physiologically based studies in understanding transitory, nonstationary effects of deforestation or forestation on watershed water balances.  相似文献   

8.
The aim of this work is the analysis of the dynamics in cultural landscapes, focused on the spatial distribution of changes in land cover and landscape patterns, and their possible linkages. These dynamics have been analyzed for the years 1957 and 2000 in a sector of the north of Galicia (NW Spain) characterized with diverse landscapes. Afforestation processes linked to agriculture abandonment and forestry specialization were the main processes observed in the study area, with the exception of the southern mountainous sector that was dominated by ploughing of scrubland for conversion into grassland, reflecting a specialization in livestock production. The structural changes that have taken place in most of the study area were related to the heterogeneity aspects, although the mountainous sectors were characterized by changes in heterogeneity and fragmentation. According to the tests performed, the comparison of the spatial distribution of both dynamics showed a certain statistical significance, reflecting the interrelationship between patterns and processes. This approach could be useful for the identification of areas with similar characteristics in terms of spatial dynamics so as to define more effective and targeted landscape planning and management strategies.  相似文献   

9.
Land abandonment is a major issue worldwide. In Argentina, the Monte Desert is the most arid rangeland, where the traditional conservation practices are based on successional management of areas excluded to disturbances or abandoned. Some areas subjected to this kind of management may be too degraded, and thus require active restoration. Therefore, the aim of this study was to assess whether passive succession-based management is a suitable approach by evaluating the status of land degradation in a protected area after 17–41 years of farming abandonment. Soil traits and plant growth forms were quantified and compared between sites according to time since abandonment and former land use (cultivation and grazing). Two variables were calculated using the CORINE-CEC method, i.e., potential (PSER) and actual (ASER) soil erosion risk. PSER indicates the erosion risk when no vegetation is present, while ASER includes the protective role of vegetation cover. Results showed that land use history had no significant effect on plant growth forms or soil traits (p > 0.05). After more than 25 years since abandonment of farming activities, soil conditions and vegetation cover had improved, thus having a lower ASER. Nevertheless, the present soil physical crusts may have delayed the full development of vegetation, enhancing erosion processes. Overall, this study indicates that succession-based management may not be the best practice in terms of conservation. Therefore, any effort for conservation in the Monte Desert should contemplate the current status of land degradation and potential vegetation recovery.  相似文献   

10.
This paper describes a remote sensing approach used to monitor temporal land use/cover (LULC) changes in Cukurova, an extensive coastal plain in the southeast Mediterranean coast of Turkey. The area has varied terrain ranging from low-lying alluvial deposits to rocky hills and mountains characterized by limestone outcrops. The ecological and economic importance of the area can be attributed to the existence of important coastal ecosystems (e.g., wetlands and sand dunes) and a wide range of industries located along the eastern coast. Temporal changes in the coastal landscape between 1984 and 2000 were evaluated using digital interpretation of remotely sensed satellite data. Pairwise comparison methods were used to quantify changes from 1984 to 1993 and 1993 to 2000 using multitemporal Landsat TM and ETM+ images, acquired in 1984, 1993, and 2000, respectively. Total change area was 2448 ha from 1984 to 1993 and increased more than twofold, to 6072 ha from 1993 to 2000. Change trends were determined using the information provided from individual change detection outputs of different periods. The most prominent changes were estimated to have occurred in agriculture, urban, and natural vegetation cover. Agriculture has increasingly grown over marginal areas, whereas urban development occurred at the expense of prime croplands across both time steps.  相似文献   

11.
Australian reporting requirements for native vegetation require improved spatial and temporal information on the anthropogenic effects on vegetation. This includes better linkage of information on vegetation type (e.g., native vegetation association), extent and change, vegetation condition, or modification. The Vegetation Assets, States and Transitions (VAST) framework is presented as a means for ordering vegetation by degree of anthropogenic modification as a series of condition states, from a residual or base-line condition through to total removal. The VAST framework facilitates mapping and accounting for change and trends in the status and condition of vegetation. The framework makes clear the links between land management and vegetation condition states, provides a mechanism for describing the consequences of land management practices on vegetation condition, and contributes to an understanding of resilience. VAST is a simple communication and reporting tool designed to assist in describing and accounting for anthropogenic modification of vegetation. A benchmark is identified for each vegetation association. Benchmarks are based on structure, composition, and current regenerative capacity. This article describes the application of the VAST framework as a consistent national framework to translate and compile existing mapped information on the modification of native vegetation. We discuss the correspondence between these compiled VAST datasets at national and regional scales and describe their relevance for natural resource policy and planning.  相似文献   

12.
Spatial and temporal variations in vegetation are examined in relation to land tenure, population increase, and rainfall variation in a part of Peddie district, Eastern Cape. Sequential aerial photographs between 1938 and 1988 are analyzed to determine trends in vegetation and population change in three different land-tenure units. The areal extent at each date of four distinct vegetation categories is determined using PC ARC/INFO GIS. Long-term annual rainfall trends for the area are analyzed and juxtaposed with vegetation changes. Extensive ground-truthing exercises are carried out to verify the present condition of vegetation condition in terms of cover and species composition. Differences in land-tenure systems are discerned as the dominant factor controlling variations in vegetation degradation. The study also reveals that neither population changes nor rainfall variations can explain the observed trends in vegetation degradation. Earlier injudicious land-use practices, sustained since the turn of the last century, may provide plausible explanations for the trends and present status of vegetation degradation in the area.  相似文献   

13.
Satellite images have been used extensively to study temporal changes in land use and land cover (LULC) in China. However, few studies have been conducted in the karst areas despite the large area and population involved and the fragile ecosystem. In this study, LULC changes were examined in part of Guizhou Province of southern China from 1991 to 2001 based on Landsat Thematic Mapper (TM) images of November 7, 1991, December 5, 1994, and December 19, 2001. Land surface temperature (LST) and normalized difference vegetation index (NDVI) were computed based on LULC types. The results show that agricultural land decreased, while urban areas expanded dramatically, and forest land increased slightly. Barren land increased from 1991 to 1994, and then decreased from 1994 to 2001. These changes in LULC widened the temperature difference between the urban and the rural areas. The change in LST was mainly associated with changes in construction materials in the urban area and in vegetation abundance both in the urban and rural areas. Vegetation had a dual function in the temperatures of different LULC types. While it could ease the warming trend in the urban or built-up areas, it helped to keep other lands warmer in the cold weather. The study also reveals that due to the government's efforts on reforestation, rural ecosystems in some of the study area were being restored. The time required for the karst ecosystem to recover was shorter than previously thought.  相似文献   

14.
Aboveground biomass (AGB) of forests is an important component of the global carbon cycle. In this study, Landsat ETM(+) images and field forest inventory data were used to estimate AGB of forests in Liping County, Guizhou Province, China. Three different vegetation indices, including simple ratio (SR), reduced simple ratio (RSR), and normalized difference vegetation index (NDVI), were calculated from atmospherically corrected ETM(+) reflectance images. A leaf area index (LAI) map was produced from the RSR map using a regression model based on measured LAI and RSR. The LAI map was then used to develop an initial AGB map, from which forest stand age was deduced. Vegetation indices, LAI, and forest stand age were together used to develop AGB estimation models for different forest types through a stepwise regression analysis. Significant predictors of AGB changed with forest types. LAI and NDVI were significant predictors of AGB for Chinese fir (R(2)=0.93). The model using LAI and stand age as predictors explained 94% of the AGB variance for coniferous forests. Stand age captured 79% of the AGB variance for broadleaved forests (R(2)=0.792). AGB of mixed forests was predicted well by LAI and SR (R(2)=0.931). Without differentiating among forest types, the model with SR and LAI as predictors was able to explain 90% of AGB variances of all forests. In Liping County, AGB shows a strong gradient that increases from northeast to southwest. About 64% of the forests have AGB in the range from 90 to 180 t ha(-1).  相似文献   

15.
The recent greening of the Sahel region and increase in vegetation cover around pastoral settlements previously described as “man-made deserts”, have raised important questions on the permanency of land degradation associated with the over-exploitation of woody plants. Evidence presented is mostly on increased wetness, while management by local communities has received limited attention. This study evaluated changes in woody vegetation cover around the settlements of Kargi and Korr in northern Kenya, using satellite imagery (1986/2000), ecological ground surveys and interviews with local elders, in order to understand long-term changes in vegetation cover and the role of local community in vegetation dynamics. At both settlements, there were increments in vegetation cover and reduction in the extent of bare ground between 1986 and 2000. At Kargi settlement, there were more tree seedlings in the centre of settlement than further away. Mature tree class was more abundant in the centre of Korr than outside the settlement. The success of the regeneration and recovery of tree cover was attributed to the actions of vegetation management initiative including stringent measures by the local Environmental Management Committees. This study provides good evidence that local partnership is important for sustainable management of resources especially in rural areas where the effectiveness of government initiative is lacking.  相似文献   

16.
17.
The objective of this work is to test a hypothesis formulated on the basis of former results which considers that there might be a “global geomorphic change,” due to activities related to land management and not determined by climate change, which could be causing an acceleration of geomorphic processes. Possible relationships between some geomorphic processes related to land instability (landslides or sediment generation) and potential triggering factors are analyzed in study areas in northern Spain. The analysis is based on landslide inventories covering different periods, as well as the determination of sedimentation rates. Temporal landslide and sedimentation rate trends are compared with different indicators of human activities (land-use change, logging, forest fires) and with potential natural triggers (rainfall, seismicity). The possible influence of the road network in the distribution of landslides is also analyzed. Results obtained show that there is a general increase of both landslide and sedimentation rates with time that cannot be explained satisfactorily by observed rainfall trends and even less by seismicity. Land-use change appears to be by far the main factor leading to land instability, with some changes producing up to a 12-fold increase of landslide rate. A relationship between road network and the spatial distribution of landslides has also been observed. These results do confirm the existence of an acceleration of geomorphic processes in the region, and also suggest that climate-related factors play a limited role in the changes observed.  相似文献   

18.
文章利用1989、1994、2000和2005年的4期Landsat/TM,ETM+遥感影像,在几何校正、辐射定标、大气校正的基础上计算了归一化植被指数(NDVI),建立最小二乘法线性回归方程对多时相NDVI进行同化处理,基于二分模型提取植被覆盖度并转换成荒漠化指数(DI),对理塘县城附近约103.1km2范围的分类研究结果表明:(1)分为无沙化、轻度、中度、重度和严重沙化5级,其中2005年中度、重度和严重沙化面积分别为2.562km2、2.925km2和1.576km2;中度沙化比1989年减少9.69%,重度和严重沙化分别增多35.79%和161.8%;(2)2005年中度以上沙化面积比1989年增加1.470km2,增加了26.3%,年增加率为1.47%;(3)沙化面积呈前期小、中期大幅增加、后期增加减缓的总体趋势;(4)降水量和风速因子的变化趋势有利于缓解沙化,气温变化趋势没有反映出对沙化的促进作用。人类活动是造成沙化趋于恶化的主要因素;(5)沙化增加趋势与同类研究结果一致。  相似文献   

19.
The protection and regeneration of wetlands has been of crucial importance as a goal in ecological research and in nature conservation for some time and is more important than ever now. Knowledge about the biophysical properties of wetlands' vegetation retrieved from satellite images enables us to improve the monitoring of these unique areas, which are otherwise very often impenetrable and therefore difficult to examine, analyze and assess by means of site visits. The Biebrza Wetlands are situated in the North-East part of Poland and are one of the largest areas made up of marshes and swamps in the entire EU. This is still one of the wildest areas and one of the least destroyed, damaged or changed by human impact. However, in the recent decades there have been attempts made to intensify and overexploit the natural resources of the region and implement new agriculture practices in the area. In this period, drainage canals have been built, and a good deal of the area has been drained. The area of this precious ecosystem covers 25 494 ha. This valuable area of peat with unique vegetation species and with very special birds is one of the most valuable areas in Europe and in 1995 was added to the list of Ramsar sites. The investigation of wetlands in the Biebrza River Valley has been carried out at ground level by taking measurements of soil moisture, evapotranspiration, Leaf Area Index, wet and dry biomass and the levels of ground water and meteorological parameters. Also examined were radiative temperature, detailed vegetation mapping, and APAR. For some years the deterioration of peat lands has been noticed due to the drying out of the area and the frequent outbreak of fires. The consequence is the succession of new vegetation and the appearance of new ecosystems. The Remote Sensing Centre in the Institute of Geodesy and Cartography has undertaken the investigation by applying ERS-2.SAR and ENVISAT ASAR of IS2 and IS4 and VV, HH, HV polarization for the purpose of modeling soil moisture and humidity changes of the area under investigation. The investigation also aimed at finding the best biophysical properties of wetlands' vegetation to characterize marshland habitats and its changes. At the same time as registering the microwave data, the optical data from Landsat ETM+, SPOT VEGETATION, ERS-2.ATSR, ENVISAT MERIS, and NOAA/AVHRR have been registered and information about the biomass and heat fluxes as sensible and latent heat has also been calculated. The vegetation indices are calculated from EO satellite data taking into account jointly the features of vegetation responsible for reflection in various bands and combining this information from several spectral bands. Also, the changes in the humidity of the area have been examined by extracting the backscattering coefficients from two SAR images that were taken at a similar period of the year but with a gap of 5 years. The information about soil moisture as retention, soil moisture changes, heat fluxes and evapotranspiration are all very important for estimates of CO(2) sequestration. The ENVISAT images have been obtained for the ESA AO-ID122 project. Also the SMOS and ALOS data will be applied for the Biebrza Wetlands in the future.  相似文献   

20.
In the last decades, due to climate changes, soil deterioration, and Land Use/Land Cover Changes (LULCCs), land degradation risk has become one of the most important ecological issues at the global level. Land degradation involves two interlocking systems: the natural ecosystem and the socio-economic system. The complexity of land degradation processes should be addressed using a multidisciplinary approach. Therefore, the aim of this work is to assess diachronically land degradation dynamics under changing land covers. This paper analyzes LULCCs and the parallel increase in the level of land sensitivity to degradation along the coastal belt of Sardinia (Italy), a typical Mediterranean region where human pressure affects the landscape characteristics through fires, intensive agricultural practices, land abandonment, urban sprawl, and tourism concentration. Results reveal that two factors mainly affect the level of land sensitivity to degradation in the study area: (i) land abandonment and (ii) unsustainable use of rural and peri-urban areas. Taken together, these factors represent the primary cause of the LULCCs observed in coastal Sardinia. By linking the structural features of the Mediterranean landscape with its functional land degradation dynamics over time, these results contribute to orienting policies for sustainable land management in Mediterranean coastal areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号