首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chongming, the world’s largest alluvial island, is located within the municipality of Shanghai, China. Recent projects have now linked peri-urban Chongming to Shanghai’s urban core and as a result will soon undergo substantial changes from urbanization. We quantitatively analyzed the structure and composition of woody vegetation across subtropical, peri-urban Chongming as a basis for sustainable management of these rapidly urbanizing subtropical ecosystems elsewhere. We used 178 permanent, random plots to statistically and spatially analyze woody plant composition and tree structure across the 1,041 km2 of Chongming. A total of 2,251 woody plants were measured comprising 42 species in 37 genera. We statistically and geospatially analyzed field data according to land uses and modeled air pollution removal by trees. Average tree diameter at breast height, total height, and crown widths on transportation land uses were greater than other land uses. These same values were lowest on forest land use and greater tree cover was associated with areas of increased anthropogenic activity. Less than 20 % of the woody vegetation was exotic and a species richness index was significantly different between land uses due to legacy effects. Composition of agriculture and forest land uses were similar to residential and transportation. Tree cover across Chongming was also estimated to annually remove 1,400 tons of air pollutants. We propose that this integrated and quantitative method can be used in other subtropical, peri-urban areas in developing countries to establish baseline trends for future sustainability objectives and to monitor the effects of urbanization and climate change.  相似文献   

2.
Urban forests are popular recreation areas in Europe. Several of these temperate broad-leaved forests also have a high conservation value due to sustainable management over many centuries. Recreational activities, particularly the use of fireplaces, can cause extensive damage to soil, ground vegetation, shrubs, and trees. Firewood collection depletes woody debris, leading to a loss of habitat for specialized organisms. We examined the effects of fireplace use on forest vegetation and the amount of woody debris by comparing disturbed and control plots in suburban forests in northwestern Switzerland. At frequently used fireplaces, we found reduced species densities in the ground vegetation and shrub layer and changes in plant species composition due to human trampling within an area of 150–200 m2. Picnicking and grilling also reduced the height and changed the age structure of shrubs and young trees. The amount of woody debris was lower in disturbed plots than in control plots. Pieces of wood with a diameter of 0.6–7.6 cm were preferentially collected by fireplace users. The reduction in woody debris volume extended up to a distance of 16 m from the fire ring, covering an area of 800 m2 at each picnic site. In order to preserve the ecological integrity of urban forests and to maintain their attractiveness as important recreation areas, we suggest depositing logging residues to be used as firewood and to restrict visitor movements near picnic sites.  相似文献   

3.
In 1986 and 1987, a study on factors governing revegetation on ski grounds was conducted at Teine ski ground (built in 1971) located near the city of Sapporo in northern Japan. Soil movement, slope gradient, distance from forest edge, vegetation cover, and number of species on the ski ground were examined. Although artificial sowing of exotic plants was undertaken in the whole ground surface at the time of opening, bare land occurred in ca. 50% of surveyed plots and the ski ground was mostly covered with native plants. The number of species was positively correlated to vegetation cover, which was low in the sites where intensive soil erosions occurred in winter. A principal component analysis of plant species distinguished three major groups of factors, i.e., vegetation cover (first axis, contribution rate 30.3%), soil erosion in winter and slope gradient (second, 23.1%), and distance from forest edge (third, 16.3%). The vegetation characteristics on the ski ground were not determined by a single environmental gradient but by the combination of factors described above. In particular, soil movements, which are mostly derived from snowmelt, are considered to be the initiator of vegetation changes.  相似文献   

4.
For purposes of suggesting adaptive and policy options regarding the sustained use of forestry resources in Botswana, an analysis of the whole countrywide satellite data (showing the mean present distribution of vegetation in terms of species abundance and over all density) and the projection of vegetation cover changes using a simulation approach under different climatic scenarios were undertaken. The analysis revealed that changes in vegetation cover types due to human and natural causes have taken place since the first vegetation map was produced in 1971. In the southwest, the changes appear to be more towards an increasing prevalence of thorn trees; in the eastern part of the country where widespread bush encroachment is taking place, the higher population density suggests more human induced (agrarian-degradation) effects, while in the sparsely settled central Kalahari region, changes from tree savanna to shrubs may be indicative of the possible influence of climate with the associated effects of fires and local adaptations. Projection of future vegetation changes to about 2050 indicates degeneration of the major vegetation types due to the expected drying. Based on the projected changes in vegetation, current adaptive and policy arrangements are not adequate and as such a shift from the traditional adaptive approaches to community-based types is suggested. Defining forestry management units and adopting different management plans for the main vegetation stands that are found in Botswana are the major policy options.  相似文献   

5.
Long-term human impacts are considered to be the prime cause of unsustainable forest exploitation in Ethiopia. Yet there exist well-established systems and a wealth of local experience in maintaining and managing forests. This study explores the trends and driving forces of deforestation plus traditional practices regarding sustainable forest use and management in the Chencha and Arbaminch areas, Southern Ethiopia. Satellite image analysis (images from 1972, 1984 and 2006) combined with field surveys were used to detect and map changes in forest cover. Household interviews and group discussions with experienced and knowledgeable persons were also employed. The results show a 23 % decline in forest cover between 1972 and 2006 with the most significant change from 1986 to 2006. Change was greatest in the lowlands and remarkable episodic forest changes also occurred, suggesting nonlinear spatial and temporal forest cover dynamics. According to farmers, the main driver of deforestation is agricultural land expansion in response to local population increases and a decline in agricultural production. Growing local and regional fuel wood demand is another chief cause. Despite these issues, remarkable relicts of natural forests remain and trees on farmland, around homesteads and on fields in every village are basic elements of farm activities and social systems. This demonstrates the effect of cumulative traditional knowledge and long-term local experience with forest management and preservation. Therefore, these practices should be promoted and advanced through the integration of local knowledge and forest management practices in the design and implementation of sustainable environmental planning and management.  相似文献   

6.
Anthropogenic fires in Africa are an ancient form of environmental disturbance, which probably have shaped the savanna vegetation more than any other human induced disturbance. Despite anthropogenic fires having played a significant role in savanna management by herders, previous ecological research did not incorporate the traditional knowledge of anthropogenic fire history. This paper integrates ecological data and anthropogenic fire history, as reconstructed by herders, to assess landscape and regional level vegetation change in northeastern Namibia. We investigated effects of fire frequency (i.e. <5, 5-10 and >10 years) to understand changes in vegetation cover, life form species richness and savanna conditions (defined as a ratio of shrub cover to herbaceous cover). Additionally, we analysed trends in the vegetation variables between different fire histories at the landscape and regional scales. Shrub cover was negatively correlated to herbaceous cover and herbaceous species richness. The findings showed that bush cover homogenisation at landscape and regional scales may suggest that the problem of bush encroachment was widespread. Frequent fires reduced shrub cover temporarily and promoted herbaceous cover. The effects on tree cover were less dramatic. The response to fire history was scale-independent for shrub, herbaceous and tree cover, but scale-dependent for the richness of grass and tree life forms. Fire history, and not grazing pressure, improved savanna conditions. The findings emphasise the need to assess effects of anthropogenic fires on vegetation change before introducing new fire management policies in savanna ecosystems of northeastern Namibia.  相似文献   

7.
Fires in mountain big sagebrush [Artemisia tridentata spp. vaseyana (Rydb.) Beetle] plant communities historically shifted dominance from woody to herbaceous vegetation. However, fire return intervals have lengthened with European settlement, and sagebrush dominance has increased at the expense of herbaceous vegetation in some plant communities. Management actions may be needed to decrease sagebrush in dense sagebrush stands to increase herbaceous vegetation. Prescribed fire is often used to remove sagebrush; however, mechanical treatments, such as mowing, are increasingly used because they are more controllable and do not pose an inherent risk of escape compared with fire. However, information on the effects of burned and mowed treatments on herbaceous vegetation and whether fire and mowed applications elicit similar vegetation responses are limited. We evaluated the effects of prescribed burning and mowing for 3?years after treatment in mountain big sagebrush plant communities. The burned and mowed treatments generally increased herbaceous cover, density, and production compared with untreated controls (P??0.05). In contrast, annual forb (predominately natives) cover, density, and biomass increased with mowing and burning (P?相似文献   

8.
When local resource users detect, understand, and respond to environmental change they can more effectively manage environmental resources. This article assesses these abilities among artisanal fishers in Roviana Lagoon, Solomon Islands. In a comparison of two villages, it documents local resource users’ abilities to monitor long-term ecological change occurring to seagrass meadows near their communities, their understandings of the drivers of change, and their conceptualizations of seagrass ecology. Local observations of ecological change are compared with historical aerial photography and IKONOS satellite images that show 56 years of actual changes in seagrass meadows from 1947 to 2003. Results suggest that villagers detect long-term changes in the spatial cover of rapidly expanding seagrass meadows. However, for seagrass meadows that showed no long-term expansion or contraction in spatial cover over one-third of respondents incorrectly assumed changes had occurred. Examples from a community-based management initiative designed around indigenous ecological knowledge and customary sea tenure governance show how local observations of ecological change shape marine resource use and practices which, in turn, can increase the management adaptability of indigenous or hybrid governance systems.  相似文献   

9.
This paper makes a proposition that Epworth's current housing management policies, regulations and practices do not promote easy access to formal standard housing and secure tenure in peri-urban and urban areas for low-income groups. In constructing this paper, both qualitative and quantitative methodologies were used. The qualitative methods adopted include key informant interviews, observations of the environmental aspects of the study area and documentary analysis of secondary data housed in the local board (Epworth Local Board) offices. The major findings demonstrate the reasons for high levels of squatting in Epworth, the local board's housing and development control policy, the relationship between poverty and informal settlements, the informal settlers' capacity to meet the costs of planned and serviced stands and policy options for both the central government and the local board which can be adopted to alleviate poverty in informal settlements. Evidence on the ground points to the fact that perpetuated animosity among groups in a settlement hinders the growth and development of that place. Epworth is a victim of disharmony of the groups residing there. It is the group dynamics that are very influential in making or breaking development in a place. The government official position on Epworth in this study stands unconvincing regarding the jeopardy of bad stewardship by the so-called responsible authority.  相似文献   

10.
Foci points, which are currently intensified by increased anthropogenic activities, have resulted in vegetation changes in the cattle-dominated grazing areas of Botswana. Bush encroachment species--for instance Acacia tortilis, A. erubescens, A. mellifera, Dichrostachys cinerea, Grewia flava, and Terminalia sericea--are increasing in cover and density around foci points (e.g. water points and kraals) at the expense of the grass cover. A number of factors have the effect of encouraging the germination and survival of bush encroachment species. The practice of cattle husbandry and continual shifting of foci points within grazing areas have resulted in the spread of the distribution of bush encroachment species across the country. This is evidenced by the potential extent of 37,000 km2 (6.4% of Botswana) of darkened and near infrared (NIR) reflective bush encroached areas in 1994. This paper suggests that specific management strategies should be adopted to help overcome the bush encroachment problem, which is causing a significant reduction in the extent of Botswana's high quality rangeland. These strategies may vary from the enforced reduction of grazing intensity in areas identified as being heavily bush encroached to the selective management of opportunistic (communal) grazing in better quality predominantly grassland areas. Further work is however required to update this analysis and especially to consider trends since 1994-1995. While some work on the extent of woody cover and the further causes of bush encroachment is being undertaken under the SAFARI2000 project, more research is needed in specific areas to pinpoint causes and responses to the bush encroachment problem.  相似文献   

11.
Dry grasslands are one of the most species rich and endangered types of vegetation in Europe. In the Czech Republic, dry grasslands are mainly of anthropogenic origin and were formed as a result of grazing after the clear-cutting of thermophilous oak woods. Gradual changes in the farming landscape throughout the 20th century, particularly in the 1960s, resulted in the abandonment of the relatively infertile habitats of dry grasslands. After abandonment, dry grasslands decline and degrade due to the gradual overgrowth of woody species and expansion of perennial tall grasses. In the year 2000, a grazing management program was introduced in the protected areas within the territory of Prague City to maintain the species diversity of dry grasslands. The responses of the expansive grass species, Arrhenatherum elatius L. and multiple woody species (especially, Prunus spinosa L.) to differences in grazing periods were monitored for over a decade. Grazing in spring through the end of June had the greatest impact on the reduction of A. elatius and woody species. Grazing in the height of summer through autumn did not reduce the cover of these plants, and may support the prosperity of both A. elatius and the woody species due to higher levels of nutrients.  相似文献   

12.
N-nitrosodimethylamine (NDMA), a potential carcinogen, was commonly found in treated wastewater as a by-product of chlorination. As treated water is increasingly used for landscape irrigation, there is an imperative need to understand the leaching risk for NDMA in landscape soils. In this study, adsorption and incubation experiments were conducted using landscape soils planted with turfgrass, ground cover, and trees. Adsorption of NDMA was negligibly weak (K(d) < 1) in all soils, indicating that NDMA has a high potential for moving with percolating water in these soils. Degradation of NDMA occurred at different rates among these soils. At 21 degrees C, the half-life (t(1/2)) of NDMA was 4.1 d for the ground cover soil, 5.6 d for the turfgrass soil, and 22.5 d for the tree soil. The persistence was substantially prolonged after autoclaving or when incubated at 10 degrees C. The rate of degradation was not significantly affected by the initial NDMA concentration or addition of organic and inorganic nutrient sources. The relative persistence was inversely correlated with soil organic matter content, soil microbial biomass, and soil dehydrogenase activity, suggesting the importance of microorganisms in NDMA degradation in these soils. These results suggest that the behavior of NDMA depends closely on the vegetation cover in a landscape system, and prolonged persistence and increased leaching may be expected in soils with sparse vegetation due to low organic matter content and limited microbial activity.  相似文献   

13.
Abstract: Roots of riparian vegetation increase streambank erosion resistance and structural stability; therefore, knowledge of root density and distribution in streambanks is useful for stream management and restoration. The objective of this study was to compare streambank root distributions for herbaceous and woody vegetation and to develop empirical models to predict root density. Root length density, root volume ratio, soil physical and chemical properties, and above‐ground vegetation densities were measured at 25 sites on six streams in southwestern Virginia. The Mann‐Whitney test was used to determine differences in root density along stream segments dominated by either woody or herbaceous vegetation. Multiple linear regression was used to develop relationships between root density and site characteristics. Study results showed that roots were evenly distributed across the bank face with the majority of roots having diameters less than 2 mm. Soil bulk density and above‐ground vegetation were key factors influencing root density. While significant relationships were developed to predict root density, the predictive capabilities of the equations was low. Because of the highly variable nature of soil and vegetation properties, it is recommended at this time that soil erodibility and root density be measured in the field for design and modeling purposes, rather than estimated based on empirical relationships.  相似文献   

14.
Experimental trials were undertaken over four years to assess the impact of recreational trampling in undisturbed alpine and sub-alpine vegetation communities in the Western Arthur Range, western Tasmania. Data on 'pad' formation due to human trampling were collected using vegetation cover assessments, biomass estimates and detailed cross-sectional surface profiles. In sub-alpine buttongrass and alpine herbfield, prolonged and sustained damage may occur after 100 passes by walkers. The environmental threshold of the flat alpine herbfield site was breached after 200 passes. Plant morphology was one determinant of resistance and resilience, with upright woody shrubs and tall tussock graminoids most vulnerable to sustained trampling damage. Cushions are susceptible to trampling impacts at 500 passes. Loss of vegetation cover peaks 6-12 months after trampling. Our results show that pads formed with as few as 30-100 passes per annum and tracks form at between 100 and 500 passes per annum. Two years after the cessation of trampling, there is some small recovery in vegetation cover after 30 and 100 passes per annum applied for three years, but no evidence of recovery at the 500 pass treatments. The low trampling threshold and slow recovery rates in western Tasmania suggest that concentrating walkers on a minimal number of sites may be the best management option for these untracked alpine and sub-alpine environments.  相似文献   

15.
Geothermal features such as geysers, mud pools, sinter terraces, fumaroles, hot springs, and steaming ground are natural attractions often visited by tourists. Visitation rates for such areas in the Taupo Volcanic Zone of New Zealand are in the order of hundreds of thousands annually. These areas are also habitat for rare and specialized plant and microbial communities that live in the steam-heated soils of unusual chemical composition. We evaluated historical and current trampling impacts of tourists on the thermotolerant vegetation of the Waimangu and Waiotapu geothermal areas near Rotorua, and compared the results to experimental trampling at a third site (Taheke) not used by tourists. Historical tourism has removed vegetation and soil from around key features, and remaining subsoil is compacted into an impervious pavement on which vegetation recolonization is unlikely in the short term. Social tracks made by tourists were present at both tourist sites often leading them onto hotter soils than constructed tracks. Vegetation height and cover were lower on and adjacent to social tracks than further from them. Thermotolerant vegetation showed extremely low resistance to experimental trampling. This confirms and extends previous research that also shows that thallophytes and woody shrubs, life forms that dominate in thermotolerant vegetation, are vulnerable to trampling damage. Preservation of these vulnerable ecosystems must ensure that tourist traffic is confined to existing tracks or boardwalks, and active restoration of impacted sites may be warranted.  相似文献   

16.
A vegetation cover increase has been identified at global scales using satellite images and vegetation indices. This fact is usually explained by global climatic change processes such as CO2 and temperature increases. Nevertheless, although these causes can be important, the role of socioeconomic transformations must be considered in some places, since in several areas of Northern Hemisphere an important change in management practices has been detected. Rural depopulation and land abandonment have reactivated the natural vegetation regeneration processes. This work analyses the vegetation evolution in the central Spanish Pyrenees from 1982 to 2000. The analysis has been done by using calibrated-NDVI temporal series from NOAA-AVHRR images. A positive and significant trend in NDVI data has been identified from 1982 to 2000 coinciding with a temperature increase in the study area. However, the spatial differences in magnitude and the sign of NDVI trends are significant. The role of land management changes in the 20th century is considered as a hypothesis to explain the spatial differences in NDVI trends. The role of land-cover and human land-uses on this process has been analyzed. The highest increment of NDVI is detected in lands affected by abandonment and human extensification. The importance of management changes in vegetation growth is discussed, and we indicate that although climate has great importance in vegetal evolution, land-management changes can not be neglected in our study area.  相似文献   

17.
This work analyses land cover changes occurring between 1990 and 2000 within a Natural Protected Area, southwest of Madrid (Spain). We develop a new methodology that considers the net change in different land cover categories in each municipality of the study area. Our methodology, which uses Factorial Correspondence Analysis, allows identification of the most important changes at the municipality level and groups the municipalities where land use dynamics are similar. This method is a powerful tool for synthesis and can potentially be applied to non-spatial geographical data sources (e.g. agrarian census statistics). Our results show that the land cover around SW Madrid is highly dynamic. The shrub vegetation, arable land, heterogeneous agricultural and human-created area categories show the highest total change. The dynamics of the changes detected are dominated by decreases in the area of different types of crops and increases in forest areas. These changes may have indirect effects on the conservation of natural resources and wildlife if not managed appropriately.  相似文献   

18.
Coastal sandplains provide habitat for a suite of rare and endangered plant and wildlife species in the northeastern United States. These early successional plant communities were maintained by natural and anthropogenic disturbances including salt spray, fire, and livestock grazing, but over the last 150 years, a decrease in anthropogenic disturbance frequency and intensity has resulted in a shift towards woody shrub dominance at the expense of herbaceous taxa. This study quantified the effects of more than a decade of dormant season disturbance-based vegetation management (mowing and prescribed fire) on coastal sandplain plant community composition on Nantucket Island, Massachusetts, USA. We used time-series plant cover data from two similar sites to evaluate the effectiveness of disturbance management for restoring herbaceous species cover and reducing woody shrub dominance. Our results indicate that applying management outside of the peak of the growing season has not been effective in maintaining or increasing the cover of herbaceous species. While management activities resulted in significant (P < 0.01) increases in herbaceous species immediately after treatment, woody species recolonized and dominated treated sites within 3-years post treatment at the expense of graminoids and forbs. These results highlight the difficulties associated with directing ecological succession using disturbance-based management to maintain rare, herbaceous species in coastal sandplain systems that were once a prevalent landscape component under historically chronic anthropogenic disturbance. Further experimentation with growing season disturbance-based management and different combinations of management techniques could provide insights into management alternatives for maintaining herbaceous conservation targets in coastal sandplains.  相似文献   

19.
Data are presented on the vegetation dynamics of two impounded marshes along the Indian River Lagoon, in east-central Florida, USA. Vegetation in one of the marshes (IRC 12) was totally eliminated by overflooding and by hypersaline conditions (salinities over 100 ppt) that developed there in 1979 after the culvert connecting the marsh with the lagoon was closed. Over 20% recovery of the herbaceous halophytesSalicornia virginica, S. bigelovii, andBatis maritima was observed at that site after the culvert was reopened in 1982, but total cover in the marsh remains well below the original 75%. No recovery of mangroves was observed at this site. The second site (SLC 24), while remaining isolated from the lagoon during much of the study, did not suffer the complete elimination of vegetation experienced at the first site. At this location, mangroves increased in cover and frequency with a concomitant decrease in herbaceous halophytes. Considerable damage to the vegetation was evident at IRC 12 when the impoundment was closed and flooded for mosquito control in 1986. Although the damage was temporary, its occurrence emphasizes the need of planning and constant monitoring and adjustment of management details as conditions within particular marshes change. Storms and hurricanes may be important in promoting a replacement of black mangroves by red mangroves in closed impoundments because the former cannot tolerate pneumatophore submergence for long periods of time. University of Florida-IFAS Journal Series R-00521.  相似文献   

20.
ABSTRACT: Stability of vegetated and bare riprap revetments along a Sacramento River reach during the flood of record was assessed. Revetment damages resulting from the flood were identified using records provided by the U.S. Army Corps of Engineers and verified by contacts with local interests. Vegetation on revetments along a 35.6-mile reach was mapped using inspection records and stereo interpretation of aerial phoths taken shortly before and after the flood. A follow-up field inspection was conducted in September 1989. Revetment age, material, bank curvature, vegetation, and damage were mapped from a boat. Mapping results from both 1986 and 1989 were placed in a data base. About 70 percent of the bank line of the study reach was revetted. About two-thirds of the revetment was cobble; one-third was quarry stone. Revetment vegetation varied from none to large (> 50-inch diameter) cotton-woods. About 10 percent of the revetted bank line supported some type of woody vegetation. Damage rates for revetments supporting woody vegetation tended to be lower than for unvegetated revetments of the same age located on banks of similar curvature. Chisquared tests indicated damage rates were greater for older (pre-1950 construction) revetments, but were unable to detect differences based on vegetation or bank curvature. Research is needed to generate design criteria and construction techniques to allow routine use of woody plants in bank protection structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号