首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
2015~2016年对广西钦州湾进行4个航次的调查,采集海水样品分析该港湾总溶解态氮(total dissolved nitrogen,TDN)、总溶解态磷(total dissolved phosphorus,TDP),以及溶解态有机氮(dissolved organic nitrogen,DON)和溶解有机磷(dissolved organic phosphorus,DOP)一年的浓度分布特征及季节变化。结果表明,2015~2016年间钦州湾海域TDN浓度为9.37~77.52 μmol/L,TDP的浓度为0.20~4.08 μmol/L。受河流径流的影响,钦州湾的TDN和TDP总体上都呈现出从内湾向外湾递减的空间分布特征。DON平均浓度在8月、11月和3月,DOP在8月和3月,都分别高于无机形态的氮、磷。其中,8月份DON和DOP分别占TDN和TDP的72.0%±19.7%和58.4%±20.1%,DON和DOP是钦州湾溶解态氮、磷的重要组成部分,为浮游植物的生长提供营养条件。  相似文献   

2.
巢湖溶解性有机物时空分布规律及其影响因素   总被引:4,自引:2,他引:2  
为研究巢湖溶解性有机物(dissolved organic matter,DOM)的时空分布规律及其影响因素,于2013年4月至2014年4月每月在巢湖3个不同湖区17个点位采集表层水样,测定了水体溶解性有机碳(dissolved organic carbon,DOC)和溶解性有机氮(dissolved organic nitrogen,DON)浓度.结果表明,东部、中部和西部这3个湖区DON浓度具有显著差异(P0.01,n=13),这可能与西湖区入湖河流的外源输入以及DON的可利用性有关.水华期间,水体总氮总磷比、总溶解性氮磷比以及溶解性无机氮(dissolved inorganic nitrogen,DIN)与溶解性活性磷(soluble reactive phosphorus,SRP)比值迅速降低,其中西湖区DIN/SRP在2013年8月降至5±7,表明水体出现氮限制.此外,DON浓度迅速降低,西部湖区叶绿素浓度与DON显著负相关(r=-0.265,P0.05,n=91),表明在氮限制条件下,DON具有一定生物可利用性.DOC浓度不存在显著空间差异,水温是控制这3个湖区DOC浓度变化的重要因素.东部和中部湖区DOC浓度还受叶绿素和硝态氮浓度的影响.此外,巢湖DOC/DON变幅较大,由于含氮化合物更易降解,因此DON是影响碳氮比值的主导因子,是表征DOM可利用性的重要组分.  相似文献   

3.
依据从2012年11月至2013年11月,每月一次对胶州湾海域溶解无机营养盐的调查资料,分析了该海域营养盐的分布特征和季节变化。结果表明:NO3-N是溶解无机氮(DIN)的主要存在形态,其次是NH4-N,NO2-N所占比例最低。从整体上来看,胶州湾溶解无机营养盐湾内浓度较高,湾外浓度较低,海域无机营养盐主要为陆源输入。湾内水体营养盐季节性变化明显,夏季7月水体中无机营养盐浓度较高,而冬末、春季无机营养盐浓度较低。湾口、湾外由于受陆源影响小,所以季节性变化不明显,且溶解无机营养盐浓度也偏低;但夏季7月各溶解无机营养盐浓度仍略高于其它月份。与上世纪90年代相比,NH4-N和PO4-P浓度明显降低,NO3-N和SiO3-Si的浓度增加两倍左右,NO2-N浓度没有明显变化。  相似文献   

4.
春季桑沟湾海域贝类养殖对海水中营养盐的影响研究   总被引:3,自引:0,他引:3  
根据2011年春季对桑沟湾海域8个监测点的营养盐的变化特征和历史资料的研究,分析了桑沟湾水域溶解性无机氮(DIN)、总氮(TN)、活性磷酸盐(PO34-)和总磷(TP)浓度变化及它们之间的相互关系,估算了贝类养殖的排泄物对海水污染的贡献率。结果表明,溶解性无机氮的平均浓度为0.106 1 mg/L,NO3-N为主要存在形式,占溶解性无机氮平均含量的78.3%,NH3-N、NO2-N分别占溶解性无机氮平均含量的14.2%和7.5%。总氮的平均浓度为0.234 7 mg/L,溶解性无机氮浓度占总氮浓度的45.2%。活性磷酸盐的平均浓度为0.013 3 mg/L,总磷的平均浓度为0.024 78 mg/L。春季桑沟湾贝类养殖对该海域海水磷含量的贡献率比氮的贡献率大,N/P为17.63,营养水平基本属于贫营养。  相似文献   

5.
上覆水环境因子对滨海水库沉积物氮磷释放的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
为了解我国滨海水库富营养化过程,以北大港水库沉积物为研究对象,通过室内模拟试验,考察上覆水环境因子〔扰动、ρ(Cl-)、pH、温度、ρ(DO)〕对滨海水库沉积物氮、磷释放的影响.结果表明:①扰动促进氮、磷的释放,ρ(NH3-N)、ρ(NO3--N)、ρ(TN)和ρ(TP)增加了54.4%~230.8%,扰动对滨海水库沉积物TN、TP释放通量的促进作用比淡水沉积物强;②ρ(Cl-)升高促进氮、磷释放,ρ(Cl-)越高,促进效果越强,ρ(Cl-)为1 000和5 000 mg/L时,ρ(NH3-N)、ρ(NO3--N)、ρ(TN)和ρ(TP)分别增加了4.2%、3.2%、35.0%、11.9%和8.4%、4.8%、44.7%、23.8%;③与pH为7.0时相比,pH为8.5和10.0时,ρ(TP)增加了21.3%~42.6%,ρ(NH3-N)降低了14.9%~18.6%,ρ(NO3--N)和ρ(TN)基本没有变化,但NO3--N释放通量增加了5.2%~10.3%,TN的释放通量降低了7.1%~21.5%;④温度升高促进了NH3-N、TN和TP释放,抑制了NO3--N释放,滨海水库沉积物中较高的盐度减弱了温度对TP释放的促进作用,25 ℃时,ρ(NH3-N)、ρ(TN)和ρ(TP)比5 ℃时增加了37.3%~71.0%,ρ(NO3--N)降低了34.0%;⑤好氧条件抑制了NH3-N、TN和TP释放,促进了NO3--N释放,好氧条件下ρ(NH3-N)、ρ(TN)和ρ(TP)降低了54.2%~85.6%,ρ(NO3--N)增加了20.5%.研究显示,上覆水环境因子会影响滨海水库沉积物氮、磷释放,其中以扰动、温度和ρ(DO)影响较大.   相似文献   

6.
颗粒态营养盐是海洋营养盐的重要组成部分。本文通过2015年8月(夏)、12月(冬),2016年3月(春)、10月(秋)4个季节的采样分析,探讨了大亚湾海域颗粒态氮(PN)、颗粒态磷(PP)的组成分布及其关键控制因素。结果表明,大亚湾水体中PN、PP含量范围分别为2.63~26.24 μmol/L、0.11~3.71 μmol/L,平均含量分别为8.20±4.75 μmol/L、0.39±0.37 μmol/L。PN以颗粒有机氮(PON)为主,占65.0%;PP则以颗粒无机磷(PIP)为主,占63.4%。PN和PP分别约占总氮(TN)、总磷(TP)的24.8%和37.0%。大亚湾PN、PP呈现湾顶至湾口浓度下降的趋势,仅冬季部分形态分布趋势较不明显。二者的含量和分布主要受浮游植物生长与径流输入影响。此外,大亚湾PIN/PIP年均值为13.2±11.1,接近16的Redfield比值,无明显失衡现象,而湾内DIN/DIP年均值高达49.1±39.7,远大于16,说明颗粒态营养盐在维持大亚湾水体中营养盐比例平衡中起到了重要缓冲作用。  相似文献   

7.
东苕溪水体氮、磷形态分析及其空间差异性   总被引:5,自引:0,他引:5  
于2009~2011年在东苕溪开展了4次全流域野外调研,系统分析了东苕溪水体氮、磷形态特征及其空间差异性.东苕溪可分为上游、中-上游、中-下游3个河段,分别具有山溪性河流、城镇影响河流、平原型河道特征.结果表明,水体中氮以溶解态为主,硝态氮(NO3--N)是溶解态总氮(DTN)的主要形态;颗粒态磷比例略高,溶解态总磷(DTP)的相对贡献沿程降低.溶解态有机氮(DON)、磷(DOP)分别占DTN和DTP比例的22%、42%,且TN与DON、TP与DOP之间显著正相关.中-上游河段的氨氮(NH4+-N),DOP和溶解性正磷酸盐(PO43--P)含量最高且电导率与NH4+-N、DOP之间存在显著正相关,表明城镇污、废水排放影响水体氮、磷含量及形态特征;浊度与各形态磷之间均存在极显著正相关,河段下游开矿、行船及挖沙引起的矿质颗粒输入或沉积物再悬浮是磷素的重要来源,但水体中部分溶解态磷吸附在矿质颗粒表面形成胶体物质,导致中-下游河段DTP略有降低.  相似文献   

8.
本文分析了2016-2018年乐清湾养殖区水体中pH、温度、盐度、溶解氧(dissolved oxygen,DO)、叶绿素(chlorophyl A,Chl a)、氨氮(ammonia nitrogen,NH4-N)、亚硝酸盐氮(nitrite nitrogen,NO2-N)、硝酸盐氮(nitrate nitrogen,NO3-N)、可溶性磷酸盐(soluble active phosphors,DIP)等海水水质质量指标,并研究了其水质质量状况。通过单因子污染指数法的评价结果表明,乐清湾养殖区的pH、温度、盐度、DO等指标均符合国家二类水质标准。与其他海域养殖区比较,DO浓度处于偏低状态;而DIN和DIP的浓度较高。利用水质质量富营养化指标分析法(the analysis of water quality eutrophication index,TRIX),本研究发现乐清湾养殖区的水质富营养指标值较大,处于较高的富营养化状态。通过主成分分析(principal component analysis,PCA)可知,第一主成分相关指标主要是NO2-N、NH4-N、DIP、温度以及NO3-N,且NH4-N、NO3-N、DIN与TRIX之间存在良好的正相关关系。  相似文献   

9.
鲁磊  信欣  鲁航  朱辽东  谢思建  武勇 《环境科学》2015,36(10):3778-3785
在连续流合建式反应器中接种成熟好氧颗粒污泥处理低碳氮比(COD/N)的实际生活污水,研究了曝气量和水力停留时间(hydraulic retention time,HRT)对连续流好氧颗粒污泥系统脱氮除磷和颗粒污泥稳定性的影响.结果表明,当曝气量为300 m L·min-1(表观气速为1.2 cm·s-1)、HRT为7.5 h时,反应器对化学需氧量(chemical oxygen demand,COD)、总氮(total nitrogen,TN)和总磷(total phosphorus,TP)去除率达到最高,分别为76.34%、51.23%和53.70%.整个系统在此条件下能够稳定运行,污泥浓度(mixed liquor suspended solids,MLSS)为2 000 mg·L-1左右,污泥体积指数(sludge volume index,SVI)保持在50 m L·g-1以下,好氧颗粒污泥形态完整,沉降性能良好.低COD/N的实际生活污水促进了好氧颗粒污泥胞外多聚物(extracellular polymeric substance,EPS)的增长,蛋白质(protein,PN)和多聚糖(polysaccharide,PS)的比值高达17.9,相对于PS,PN对颗粒污泥的稳定性有更大的促进作用.  相似文献   

10.
微电解-电极生物膜法在污水深度处理中的应用   总被引:1,自引:0,他引:1       下载免费PDF全文
为考察微电解-电极生物膜法的污水深度处理效果,以受污染河水为处理对象,以碳素纤维作为微电解和电极生物膜的电极材料,研究微电解和电极生物膜的污水处理特点及运行条件. 结果表明:微电解可有效去除污水中PN(颗粒态总氮)、PP(颗粒态总磷)、DTP(溶解性总磷)和NH3-N,去除率分别达到94%、95%、93%和98%;其中DTP的去除以与微电解产生的Fe2+的沉淀反应为主,NH3-N的去除以硝化反应为主. 微电解提高了有机物的去除率,但对DTN(溶解性总氮)的去除率较低. 电极生物膜能有效去除污水中的NO3--N,对不同进水水质的适应性较强,脱氮以自养反硝化为主,异养反硝化可有效去除剩余有机物,ρ(NO3--N)低于45.0 mg/L的污水经过电极生物膜处理后,NO3--N可被完全去除. 在HRT(水力停留时间)为8 h、电流密度为0.10 mA/cm2的条件下,微电解-电极生物膜法对各种污染物去除效果显著,工艺运行稳定,出水ρ(TN)和ρ(CODMn)平均值均低于0.5 mg/L,ρ(TP)低于0.05 mg/L,浊度小于1.0 NTU,可实现污水的深度处理.   相似文献   

11.
于2016年6~7月采集了青岛近岸以及黄渤海大气气溶胶样品,并于8月6~15日连续采集了青岛近岸气溶胶昼夜样品,分别测定了不同形态的氮磷(溶解无机氮、溶解无机磷、溶解态总氮、溶解态总磷、总氮和总磷)质量浓度,并分析了气溶胶中这些不同形态氮磷的组成特征.结果表明,青岛近岸大气气溶胶中不同形态氮磷的浓度明显高于同时期黄渤海气溶胶中氮磷浓度.青岛近岸气溶胶总氮中溶解态占比为56%,溶解态与不溶态差别不大;黄渤海气溶胶总氮中溶解态为主要部分,所占比例达72%.青岛以及黄渤海气溶胶中,无机氮是溶解态总氮的主要贡献者,分别占溶解总氮的67%和75%.青岛以及黄渤海气溶胶总磷中,溶解态与不溶态磷的贡献相近,溶解态分别占总磷的49%和58%;气溶胶溶解总磷中无机磷的贡献略高于有机磷,青岛以及黄渤海占比分别为56%和59%.气团来源对青岛以及黄渤海气溶胶中不同形态氮磷的浓度和组成特征有一定程度的影响,南方气团来源气溶胶中溶解无机氮(DIN)、溶解有机氮(DON)、总氮(TN)、溶解无机磷(DIP)和溶解有机磷(DOP)的浓度均高于北方和海上气团来源.青岛近岸气溶胶中溶解有机氮浓度昼夜差别不大,而溶解无机氮和总氮浓度则白天相对较高.白天和夜间气溶胶总氮中溶解态氮占主要部分,所占比例达到79%,且无昼夜变化;无机氮是溶解总氮的主要贡献者,且晚上无机氮所占比例(61%)较白天(70%)略有降低.青岛近岸气溶胶中的溶解无机磷和有机磷昼夜浓度差别不大,而总磷浓度则白天明显高于晚上.昼夜气溶胶样品中不溶态磷是总磷的主要组成部分,占比分别为83%、62%,夜间气溶胶中溶解态磷的贡献远高于白天;不论昼夜,无机磷均是溶解总磷的主要部分,所占比例在71%~77%.  相似文献   

12.
向家坝水库营养盐时空分布特征及滞留效应   总被引:1,自引:1,他引:0  
向家坝建库后改变了河流原有的水动力、营养盐分布及输移条件.为研究向家坝水库营养盐分布特征及滞留效应,通过2015~2016年分季度水库水质监测结果,分析向家坝水库水体总氮(TN)、总磷(TP)和溶解性硅(SiO_3~(2-)-Si)营养盐时空分布特征、滞留量、滞留效率.研究发现,向家坝水库TN、TP和SiO_3~(2-)-Si营养盐质量浓度均值分别为0. 905、0. 034和7. 98mg·L~(-1).其中,TN质量浓度在城镇人口密集区偏大,分布主要受点源影响;磷营养盐以颗粒态磷为主,TP质量浓度在水库中自上而下沿程降低,SiO_3~(2-)-Si质量浓度分布在时空上差异较小.向家坝对TN、TP和SiO_3~(2-)-Si营养盐滞留量为2. 30×10~4、0. 146×10~4和-2. 4×10~4t·a~(-1).在不同季度,TN和SiO_3~(2-)-Si滞留量有正有负,而TP则始终表现为正滞留. TN、TP和SiO_3~(2-)-Si月平均滞留效率分别为17. 5%、32. 8%和-2. 14%.整体上实际滞留效率表现为丰水期高于枯水期,并且TP的滞留作用更为显著. TN滞留量主要受反硝化作用,以及外源负荷输入影响; SiO_3~(2-)-Si输送通量主要受径流量影响;水库运行周期以及磷的颗粒形态则是TP滞留的主要因素.向家坝水库对营养盐的滞留效应与TN和SiO_3~(2-)-Si质量浓度变化无明显相关性,而水库对TP的滞留效应使TP质量浓度在水库纵向上沿程减小,在各监测样点垂向水深上TP质量浓度则有增大的趋势.  相似文献   

13.
蠡湖水体氮、磷时空变化及差异性分析   总被引:3,自引:0,他引:3       下载免费PDF全文
蠡湖是一个典型处于从浊水藻型向清水草型转换过渡时期的浅水湖泊.根据2012~2013年周年的现场调查资料和历史监测资料,分析了水体氮、磷的空间分布、变化规律及主要影响因素,并探讨了水体氮、磷形态的时空差异及其相应的控制对策.结果表明,蠡湖仍然没有从根本上解决水体的富营养化问题,水体中氮、磷浓度仍处于一种不稳定的状态,各采样点总氮(TN)浓度在0.74~4.93mg/L之间,平均值为1.35mg/L;总磷(TP)浓度在0.03~0.31mg/L之间,平均值为0.073mg/L.空间上,TN和TP浓度自东向西依次递减,呈现东蠡湖高于西蠡湖,沿岸区高于湖心区的趋势;季节上,TN、TP浓度呈现夏季、秋季较高,而冬季、春季低的特点;水体中氮主要以溶解态为主,DTN占TN的比例在35%~99%之间,平均为77.98%;而磷主要是以颗粒态的形态占优势,颗粒态磷占TP的比例在11%~90%之间,平均值为59%.多元统计表明,TN与DTN和总悬浮物(TSS)之间呈正相关关系,但与TSS的相关性系数较小,而TP与DTP和TSS都呈显著正相关.因此,要降低水体中氮磷浓度,可以从减少通过干湿沉降进入湖泊水体的氮磷或者降低沉积物再悬浮、抑制底泥氮磷释放两个方面入手.  相似文献   

14.
天津典型水环境表层沉积物中营养盐含量及动态特征   总被引:4,自引:2,他引:2  
对天津4个典型水环境(于桥水库、海河干流、海河大沽口和渤海湾天津近岸海域)表层沉积物(0~25 cm)中有机物(OM)、总氮(TN)、总磷(TP)、有效磷(BAP)等的含量进行了测定,采用与土壤背景值及历年监测数据进行比较的方法,研究天津典型水环境表层沉积物中营养盐富集水平和动态特征.结果表明,天津4种典型水环境表层沉积物均已受人为污染,但仍属于多数底栖生物可承受的污染水平,海河干流营养盐含量明显比海河大沽口、于桥水库和天津近岸海域高,呈现由海河干流、海河大沽口和天津近岸海域递减的趋势,OM、TN、TP和BAP的富集系数(EF)分别达到了1.6~6.5、 0.9~2.7、 0.9~2.6和4.4~9.2;不同水环境沉积物中BAP含量的高低与TP含量并不一致,于桥水库表层沉积物中BAP占TP的比值最大,达到16.3%,表明内源释放严重,富营养化问题突出;于桥水库沉积物中OM和BAP含量与1988年相比均有大幅度的增加,TP基本持平,TN略有上升;海河干流底泥清淤后,表层沉积物中OM、TN和TP含量下降了42.3%、 17.2%和14.8%,对底泥营养盐的去除起到一定作用.  相似文献   

15.
本文以昌黎黄金海岸自然保护区海域沉积物为研究对象,分析保护区海域各位点沉积物中氮的赋存形态分布状况与中值粒径、有机质的相关性。结果表明:保护区海域沉积物的总氮(TN,total nitrogen)含量在180.13×10-6~966.00×10-6之间,平均值为638.15×10-6;其中非转化态氮(NTN,non-transformed nitrogen)含量在75.82×10-6~856.28×10-6之间,真正参与地球化学循环的可转化态氮(TTN,transferable total nitrogen)含量在104.31×10-6~165.12×10-6之间。各浸取态氮所占TN比例大小为弱酸可浸取态氮(WAEF-N,weak acid exchangeable form,61.69%)>强氧化剂可浸取态氮(SOEF-N,strong oxidant exchangeable form,20.38%)>离子交换态氮(IEF-N,ion exchangeable form,15.40%)>强碱可浸取态氮(SAEF-N,strong alkali exchangeable form,2.53%)。沉积物氮的分布特征主要与陆源营养盐的输入、洋流流向及海洋水动力条件等因素有关;沉积物中有机质含量、粒径分布对各浸取态氮含量的分布影响不大。对比已有统计数据,该保护区海域范围内沉积物基本没有污染状况的发生。  相似文献   

16.
持续水动力作用下湖泊底泥胶体态氮、磷的释放   总被引:29,自引:10,他引:19  
为揭示水动力扰动及其后续沉淀效应对湖泊内源氮、磷营养盐释放的作用,通过室内试验模拟了水体在受到持续扰动后又长时间静置沉淀的整个过程. 结果表明,水动力扰动初期可引起底泥颗粒态和胶体态氮、磷向水体大量释放. 在连续扰动0.5 d时,水体总氮(TN)和总磷(TP)浓度分别达最高值2.106 mg/L和0.272 mg/L; 连续扰动1 d时,水体中胶体氮(CN)和胶体磷(CP)含量分别达最高值0.452 mg/L和0.052 mg/L; 之后虽继续扰动,因颗粒物和胶体物质的凝聚沉淀作用超过了其悬浮量,TN、TP、CN、CP的含量却转而降低.在停止扰动后的静置过程中,大颗粒悬浮物迅速沉淀,而胶体物质沉降缓慢,静置时间超过1 d后,CN和CP含量才开始因絮凝沉淀而降低.真溶解态氮(UDN) 和真溶解态磷(UDP)含量在扰动阶段升高较少而在静置1 d之后有持续大幅度升高,说明胶体的吸附作用在扰动阶段限制了水体溶解态氮磷含量的升高,且延长了其悬浮后在水柱中的停留时间,在扰动后的静置阶段,胶体又会将吸附的氮磷解吸释放到水体中,从而延缓了营养盐去除和水质的改善.  相似文献   

17.
2014年2月和7月,采集了长江口及其邻近东海陆架海域106和104个站点的样品,测定了其中的营养盐(NO3-N、SiO3-Si、PO4-P、NH4-N、NO2-N)浓度,发现长江口海域营养盐的时空分布具有明显的季节变化特征。在夏季,长江径流量加大,海水层化,含有高NO3-N、SiO3-Si、PO4-P浓度海水的扩散范围明显大于冬季;而在外海,夏季上述营养盐的表层浓度却低于冬季。由于在长江淡水端元NH4-N和NO2-N浓度的季节变化较大,这两种营养盐与盐度在长江口的相关关系呈现出"季节性反转",在夏季其浓度与盐度呈现出正相关关系,而冬季则相反,呈现出负相关关系。长江冲淡水是以"斑块化"的形式向外海传递的,通过在不同斑块中采集样品并比较其中营养盐的浓度,验证了夏季长江口海域对大部分营养盐是一个显著的"汇"。此外,营养盐的不保守行为既发生在盐淡水混合海域,也发生在长江口门以内的淡水端元海域。  相似文献   

18.
研究水体氮、磷营养盐的空间变异性及时空动态变化,有助于人们深入认识和了解氮、磷营养盐的变化对藻类生长繁殖的影响,对于治理富营养化水体中藻类的暴发性增长具有重要意义.基于地统计学分析方法,以太湖2014年8月~2015年5月夏、秋、冬、春四季为研究时段,分析了草、藻型等不同生态类型湖区颗粒态和溶解态氮、磷营养盐的来源以及赋存形态,营养盐限制类型的时空分布特征,并探寻其时空变化原因.结果表明:(1)时空分布上,水体中氮、磷含量整体表现为冬季高于其他季节,呈现由西北湖区向东南湖区递减的特征;颗粒态氮、磷与叶绿素a含量则表现为夏季高于其他季节,冬季高值区均位于南部湖区,其余季节高值区集中在西北湖区.(2)随季节变化,太湖草、藻型湖区氮磷营养盐形态组成发生了大的变化;藻型湖区由冬季以硝酸盐氮和有机磷为主,转变为其余季节以颗粒态氮磷为主,而草型湖区由冬季以颗粒态氮磷为主,转变为其余季节以氨氮和有机氮磷为主.(3)营养结构上,藻型湖区总氮/总磷比值由秋冬季节大于16,降低为夏春季节的小于16;而草型湖区却由秋冬季节小于16,升高为夏春季节大于16.溶解态氮磷比在藻型湖区的空间变化规律与总氮/总磷比值一致,而在草型湖区溶解态氮磷比由秋季小于16,升高为夏、冬、春季节大于16.颗粒态氮磷比时空变化均不显著(P 0. 05),各季节藻型湖区颗粒态氮磷比值均小于16,草型湖区均大于16.  相似文献   

19.
太湖氮磷营养盐大气湿沉降特征及入湖贡献率   总被引:11,自引:2,他引:11  
2009年8月—2010年7月在太湖流域不同区域10个采样点收集降水样品230多个,测定其中不同形态N,P营养盐的质量浓度,分析太湖大气湿沉降中N,P营养盐沉降特征,计算N,P营养盐湿沉降率及其占太湖河流入湖负荷的贡献率. 结果表明:湿沉降中ρ(TN)年均值为3.16 mg/L,DTN(溶解性总氮)占TN的70%以上,其中以NH4+-N为主;湿沉降中ρ(TN)年均值最高值出现在南部湖区,最低值出现在北部湖区. 湿沉降中ρ(TP)年均值为0.08 mg/L,相对较低. 5个区域湿沉降中不同形态N的质量浓度均表现为冬季高、夏季低,而不同形态N,P的湿沉降量均为夏季最大. 南部、东部湖区TN的湿沉降率相对较大. 各采样点湿沉降中NH4+-N沉降率约占DTN沉降率的30.4%~52.0%,NO3--N沉降率约占DTN的31.6%;各区域间湿沉降中DTP(溶解性总磷)占TP的比例差异较大. 大气湿沉降中TN和TP的年沉降总量分别为10 868 和247 t,为同期河流入湖负荷的18.6%和11.9%,湿沉降对太湖富营养化的贡献及可能带来的水生态系统的影响不容忽视.   相似文献   

20.
太湖水华期营养盐空间分异特征与赋存量估算   总被引:11,自引:5,他引:6  
基于2013年7月的空间高密度采样数据,对太湖水华期水体营养盐进行了空间分异特征分析及赋存量估算,探讨了大型浅水湖泊不同生态类型湖区水华与营养盐的相关关系及样点设置的代表性.结果发现,水华期太湖水体营养盐及叶绿素a浓度(CHL)总体上均呈现由西北向东南降低的趋势;氮主要以溶解态存在,占总氮(TN)的76.28%,磷主要以颗粒态赋存,占总磷(TP)的66.38%.采用主成分分析和聚类分析,可以将采样点分为相互之间具有显著性差异的4个区域:第一区位于西北湖区,代表水华严重的重富营养湖区;第二区主要包括梅梁湾及南太湖的入湖河口一带湖区,代表水华和富营养化程度都相对中等的湖区;第三区包括湖心区和西南湖区,代表中等污染但水华频现湖区;第四区包括贡湖湾、胥口湾和东太湖等其他区域,代表水华影响较弱、水质较好湖区.分区统计分析表明,不同湖区影响浮游藻类生长的因子也不同:从全湖来看,与CHL显著相关的营养盐指标为TP、TN、溶解性总氮(TDN)和硝态氮(NO-3-N),而在第一区则为TP和TDN,第二区为TN和TDN,第三区为TP、磷酸盐(PO3-4-P)和TDN,第四区为PO3-4-P、溶解性总磷(TDP)和亚硝酸盐(NO-2-N).基于空间插值获得调查期间太湖水体TN、TDN、TP和TDP的赋存量分别为12 800、9 800、445和150 t.研究表明,作为一个大型浅水湖泊,因蓝藻水华空间迁移积聚特征和生态类型异化等特征,太湖水华期的营养盐具有高度空间异质性,对于此类大型浅水湖泊的监测与评价,应当考虑点位的合理布设及结果的恰当解读,避免因监测布点和统计方法不当而以偏概全.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号