首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 93 毫秒
1.
吡啶类离子液体对青海弧菌Q67的混合毒性评估   总被引:1,自引:0,他引:1  
合污染物产生的累积与毒性相互作用具有潜在的环境与健康风险。以6种吡啶类离子液体(IL):丁基溴化吡啶([Bpy]Br)、己基溴化吡啶([Hpy]Br)、辛基溴化吡啶([Opy]Br)、丁基氯化吡啶([Bpy]Cl)、己基氯化吡啶([Opy]Cl)和辛基氯化吡啶([Opy]Cl)为混合物组分,应用直接均分射线法(EquRay)和均匀设计射线法(UD-Ray)分别设计4组二元IL混合物和2组三元混合物,每组混合物包括5条具有不同浓度配比的混合物射线。应用微板毒性分析法测定6种IL及其30条混合物射线对青海弧菌Q67的发光抑制毒性,以浓度加和(CA)为加和参考模型分析混合物毒性相互作用。结果表明,Logit函数能有效地拟合6种吡啶IL及其30条混合物射线的浓度-效应数据。若以半数效应浓度的负对数(pEC50)为毒性指标,6个吡啶IL对Q67的毒性与烷基链上碳原子数目正相关,且每增加2个碳原子,其毒性约增加1。IL的阴离子(Br-或Cl-)对毒性没有影响。除己基氯化吡啶([Hpy]Cl)和辛基氯化吡啶([Opy]Cl)的二元混合物呈现明显拮抗作用外,其他二元及三元混合物都为加和作用。  相似文献   

2.
低剂量刺激高剂量抑制的Hormesis效应常常呈现J-型剂量-效应关系,如何评价Hormesis污染物及其混合物的毒性目前尚未解决.选择微板毒性分析法(Microplate Toxicity Analysis,MTA)获得的具有J-型剂量-效应关系的丙酮、乙腈及S-型剂量效应关系的二甲亚砜为混合物组分,以直接均分射线法构建丙酮-二甲亚砜(J-S型)、乙腈-二甲亚砜(J-S型)和丙酮-乙腈(J-J型)3个二元混合物体系,利用不同效应浓度水平下以浓度加和为参考模型的多个等效线图分析污染物的毒性变化规律.结果表明,所有二元混合物仍然具有J-型浓度-效应关系特征,除丙酮-乙腈二元混合体系在1个效应浓度水平下可能呈现协同特征外,其余二元混合物在不同效应浓度水平均表现为拮抗特征.  相似文献   

3.
离子液体(ILs)是一种用于替代传统易挥发有机溶剂的新型"绿色"溶剂.由于不挥发、不会对大气产生污染而得到广泛应用.但是某些ILs易溶于水,其自身毒性能够对生态环境造成潜在影响,这已引起诸多学者对ILs毒性的研究兴趣.然而ILs与其它污染物的毒性相互作用目前研究很少.论文选取咪唑类离子液体C16H31ClN(2DMI)与有机磷杀虫剂乐果(DIM)作为目标化合物,以青海弧菌Q67为检测生物,采用微板毒性分析法测定了目标化合物及其混合物的毒性.为全面考察不同浓度范围DMI与DIM的毒性相互作用,将中心复合设计与固定浓度比射线法有机结合起来构建5个不同浓度比的混合物射线,通过浓度加和与独立作用模型对混合物射线进行比较评估.结果表明在DMI浓度较大且DIM浓度较低时,DMI与DIM之间存在明显拮抗作用,而在其它浓度范围内两者之间为加和作用.  相似文献   

4.
离子液体与有机磷农药间的毒性相互作用   总被引:3,自引:0,他引:3  
"绿色"溶剂离子液体(ILs)与其他污染物之间的毒性相互作用已有报道,但相关数据仍较为缺乏。以7种具有不同阴阳离子组成的ILs:溴化丁基吡啶(IL1)、氯化丁基-2,3-二甲基咪唑(IL2)、丁基-3-甲基咪唑翁磷酸盐(IL3)、丁基-3-甲基咪唑正辛基硫酸(IL4)、丁基-2,3-二甲基咪唑二乙二醇单甲醚硫酸盐(IL5)、辛基-3-甲基咪唑二乙基醚单甲磺硫酸(IL6)和氯化己基-3-甲基咪唑(IL7),与5种有机磷农药(OPs):敌敌畏(DIC)、乐果(DIM)、草甘膦(GLY)、久效磷(MON)和磷胺(PHO),作为混合物组分,以等效应浓度比射线法设计7种ILs分别与5种OPs等EC_(50)配比的35组二元混合物,应用微板毒性分析法(MTA)测定这些混合物对青海弧菌Q67的毒性,以浓度加和(CA)和独立作用(IA)为参考模型分析毒性相互作用。结果表明,不同的IL-OP混合物呈现的作用类型不同:如IL1-DIM、IL2-DIM、IL3-DIM、IL6-DIM、IL2-MON和IL7-DIM的混合物呈明显的拮抗作用;IL3-DIC和IL2-GLY的混合物呈明显的协同作用;IL5-DIM和IL4-MON的混合物在较高浓度区呈拮抗作用;而IL3-GLY和IL6-DIC的混合物在较高浓度区呈协同作用;其余的混合物则为加和作用。  相似文献   

5.
以3种氨基糖苷类(AG)抗生素:硫酸安普霉素(APR)、双氢链霉素(DIH)和硫酸链霉素(STS)为研究对象,以生态系统中2类重要的水生生物分解者如青海弧菌(Vibrio qinghaiensis sp.-Q67,Q67)和生产者蛋白核小球藻(Chlorella pyrenoidosa,CP)为受试生物,运用均匀设计射线法设计抗生素三元混合物体系,共5条具有不同浓度配比的射线,应用已建立的分别基于Q67和CP的时间毒性微板分析法系统测试抗生素及其三元混合物射线对Q67和CP在不同暴露时间的毒性。对于Q67和CP,暴露时间分别为0.25、2、4、8、12 h和12、24、48、72、96 h。应用浓度加和(CA)模型分析混合物在不同暴露时间的毒性相互作用。结果表明:APR、DIH和STS及其5条混合物射线对2种指示生物的毒性均具有明显的时间依赖性,且Q67对AG抗生素及其混合物射线的响应比CP的灵敏;以半数效应浓度的负对数p EC50值为毒性大小指标,3种抗生素对2种指示生物的毒性大小顺序随暴露时间的变化而变化,3种AG抗生素对Q67和CP分别在12 h和96 h的毒性大小顺序均为STSDIHAPR;5条具有不同浓度配比的混合物射线对Q67在不同暴露时间的毒性均呈加和作用,但对CP的毒性既有加和作用也有拮抗作用,且拮抗作用随暴露时间和组分浓度配比的变化而变化,表明AG抗生素毒性的联合毒性作用与暴露生物、暴露时间以及混合物组分的浓度配比等有关。  相似文献   

6.
等效线与等效面在化学混合物毒性相互作用评价方面具有综合、直观、有效等特点。但目前等效面尚无有效的绘制方法,主要原因是三元混合物组分浓度配比缺乏有效、直观的试验设计方法。根据三组分混合物等效面的三角形特征,提出了一种新的均分等效面设计(EESD)方法用于三元组分浓度配比试验设计。最终,得到了组分的9个毒性单位(EC50)比,分别是1:1:7、4:1:4、2:2:5、1:4:4、7:1:1、5:2:2、4:4:1、2:5:2、1:7:1。按照惯例还增加一个毒性单位比1:1:1的等毒性浓度比混合物射线。组分两两混合按照直接均分射线法进行毒性单位比1:5、2:4、3:3、4:2、5:1设计15个二元混合物射线。单个组分在浓度轴上的3个ECx点构成了等效面的3个顶点。这28个等效点采用基于三角形的3次插值得到混合物x%效应的观测等效面。基于EESD构建了[BMIM]BF4、灭多威、敌敌畏的混合物对乙酰胆碱酯酶抑制效应为80%、50%、20%的等效面。等效面分析表明,除了1:1:7混合物射线在80%与50%效应时为拮抗作用外,三元混合物体系总体上为加和作用。同时给出了三元混合物EESD方法设计的一般规则。EESD方法可有效用于三元组分的浓度配比优化设计与三维等效面的绘制。  相似文献   

7.
五元氨基甲酸酯类农药混合物体系对青海弧菌的毒性特点   总被引:2,自引:0,他引:2  
以5种氨基甲酸酯类农药涕灭威(ALD)、残杀威(BAY)、呋喃丹(CAR)、灭多威(MET)和抗蚜威(PIR)为研究对象,应用均匀设计射线法设计五元混合物体系共6条射线(U1,U2,…,U6),应用基于发光菌青海弧菌Q67的微板毒性分析法(MTA)系统地考察了5种农药及其混合物的毒性,以浓度加和(CA)为参考模型分析混合物毒性相互作用(协同或拮抗作用)。结果表明,Logti和Weibull函数能较好地拟合5种氨基甲酸酯农药及其混合物对发光菌Q67的浓度-效应数据(R20.99,RMSE0.032);以EC50的负对数值pEC50为毒性指标,5种农药的毒性顺序为BAY(pEC50=2.87)CAR(pEC50=2.67)ALD(pEC50=2.00)MET(pEC50=1.99)PIR(pEC50=1.79);依据CA,五元氨基甲酸酯类农药的6条混合物射线中,有2条呈加和作用,4条呈拮抗作用,其中U2和U4在整条浓度-效应曲线上呈现了明显的拮抗作用,而U3和U6的弱拮抗作用分别发生在混合物浓度的中高浓度区和中低浓度区;五元氨基甲酸酯类农药混合物的毒性与组分灭多威(MET)的浓度比呈良好的负相关关系(r=-0.9238),且线性模型对混合物毒性具有良好的预测能力。  相似文献   

8.
重金属与农药共同暴露产生的联合毒性作用可以对实际环境产生潜在的风险。为了研究重金属与农药混合物在不同浓度比毒性相互作用(协同、拮抗与加和)及其定量评估相互作用大小,根据单个物质无观测浓度(NOEC)、5%效应浓度(EC5)、10%效应浓度(EC10)和50%效应浓度(EC50),设计3组混合物体系(即农药-农药、重金属-重金属和农药-重金属)分别按NOEC、EC5、EC10和EC50浓度比的12条混合物射线,测试单个化合物及混合物对以费氏弧菌的发光抑制急性毒性,利用浓度加和(CA)、独立作用(IA)、模型偏差比(MDR)及其观测值置信区间定性和定量评估12条混合物射线的毒性相互作用。结果表明,农药-农药二元混合物体系和农药-重金属六元混合物体系均产生明显的协同作用,其中农药-农药混合物体系中,混合物射线EE-NOEC在50%效应下协同作用大小达到30.6(MDRCA和MDRIA数值);混合物射线EE5、EE10的协同作用大小接近于混合物射线EE-NOEC,混合物射线EE50的效应大于15%时CA和IA计算的MDR值均在置信区间上限的上方,即混合物发生协同作用;农药-重金属混合物体系的4条混合物射线EE-NOEC、EE5、EE10和EE50在所有测试浓度水平的MDR值均在置信区间上限的上方,呈现出明显的协同作用;在50%效应下,混合物射线EE-NOEC、EE5、EE10和EE50的MDRCA和MDRIA值分别为4.05和4.91、6.12和7.98、3.70和4.60、2.62和2.59。重金属-重金属四元混合物体系除了EC50浓度比混合物表现出拮抗作用,其余混合物在所有测试浓度范围的MDR值均在置信区间范围内,均为加和作用。因此,混合物的毒性相互作用大小随着组分浓度比变化而发生变化。  相似文献   

9.
通过营养液水培的方式,研究了在不同浓度溴化1-丁基-3-甲基咪唑([C4mim]Br)对空心菜的毒性效应,测定了[C4mim]Br对空心菜各生长指标、叶绿素含量、丙二醛(MAD)含量以及根系活力的变化情况,同时研究了空心菜对[C4mim]Br的吸收和体内积累特征。结果表明:随着[C4mim]Br处理浓度与培养时间的增加,[C4mim]Br对空心菜各生理生化指标有显著抑制作用,且抑制效应具有剂量依赖型特点,半最大效应浓度(EC_(50))值为1.64 mg·L~(-1)。空心菜体内丙二醛含量显著增加表明[C4mim]Br加剧了细胞膜受损,导致根系对[C4mim]Br的吸收积累能力下降。空心菜的富集系数与转运系数均小于1,表明空心菜可以从环境中吸收并积累[C4mim]Br,但从根到地上部分转运[C4mim]Br能力较弱。  相似文献   

10.
部分离子液体及其混合物对发光菌的毒性作用   总被引:6,自引:0,他引:6  
离子液体(ILs)因其环境安全和良好的非挥发性而得以广泛应用,尽管其理化性质与工程数据一直在不断扩充,但其可用的毒性及生态毒性数据很少.以青海弧菌Q67为指示生物,应用微板发光毒性测试方法,测定了C6H11BF4N(2S1)、C8H15ClN2(S2)、C8H15BF4N2(S3)、C9H14BF4N(S4)、C9H17BF4N2(S5)、C9H17BrN2(S6)、C11H13BF4N2(S7)、C11H13ClN2(S8)、C12H23BrN2(S9)、C14H27BF4N(2S10)、C14H27ClN(2S11)和C16H31ClN(2S12)等12种ILs对发光菌的发光抑制毒性.结果表明,4种ILs(S9、S10、S11、S12)具有高抑制毒性(pEC50>4.5),而另外8种毒性相对较小(pEC50<3.5).为研究混合ILs的联合毒性,根据单个ILs的剂量-效应关系,构建了两组混合物,即由S9、S10、S11和S12构成的高毒性组(简称H组)以及由S2、S3、S4、S5、S6和S8构成的低毒性组(简称L组)混合物.应用非线性模拟技术与剂量加和(DA)及独立作用(IA)模型对混合物毒性数据进行拟合与预测分析,结果表明,以等效应浓度比法设计的混合物,无论是对于H组的4个混合物还是L组的4个混合物,其联合毒性大小均可用DA模型准确预测.对于均匀试验设计浓度比法设计的混合物,H组的6个混合物的毒性可用DA模型有效预测,而L组的6个混合物由于剂量-效应曲线在低浓度区翘起,其混合物毒性用DA或用IA模型预测均有一定误差.  相似文献   

11.
12.
有机磷农药对蛋白核小球藻的毒性相互作用研究   总被引:1,自引:0,他引:1  
水体中农药复合污染产生的毒性效应具有潜在风险。为系统考察有机磷农药(OPs)混合物对淡水生态系统中绿藻的联合毒性效应,以马拉硫磷(MIT)、敌敌畏(DDVP)、敌百虫(TRC)、乐果(DIT)和氧乐果(OMT)等5种OPs作为混合物组分,运用直接均分射线法设计9组二元混合物体系共45条混合物射线。利用96孔微板测定5种OPs及其二元混合物对蛋白核小球藻(C. pyrenoidosa)的生长抑制毒性,通过基于置信区间的组合指数法分析混合物的联合毒性及毒性相互作用。结果表明,以p EC50为毒性指标,5种OPs对C. pyrenoidosa的毒性大小顺序为:TRCMITDDVPOMTDIT,OPs对C. pyrenoidosa的毒性大小受其中心磷原子的电正性影响;因混合组分的不同,部分OPs混合物对C. pyrenoidosa的联合毒性依赖于组分浓度比; OPs混合物对C. pyrenoidosa的毒性相互作用以加和为主,部分发生拮抗作用,发生拮抗作用的混合体系具有低效应区域呈加和作用,高效应区域呈拮抗作用的规律;与MIT混合的体系均有发生拮抗作用,且依赖于MIT浓度,MIT浓度比例越高,拮抗作用越强,OPs混合物的毒性相互作用与组分浓度比相关; OPs混合物的毒性相互作用组分浓度比依赖性与其联合毒性的组分浓度比依赖性规律不相关。  相似文献   

13.
3种新型污染物对发光菌的毒性作用研究   总被引:1,自引:0,他引:1  
分析了3种常见的代表性新型污染物对发光菌的单一毒性和等毒性比例下的联合毒性,基于毒性单位法(TU)、相加指数法(AI)和混合毒性指数法(MTI)评价混合体系联合毒性作用类型。三氯生、五氯酚、双酚A对发光菌的半数效应浓度(EC_(50))分别为:0.045、0.035、0.74 mg·L~(-1)。不同的评价方法对3种新型污染物的联合效应评价结果具有较好的一致性,多元混合体系呈现为不同程度的拮抗作用,结合分子结构特征和不同取代基的相互作用,初步分析了联合毒性机理,进一步毒性作用机制还需要通过对生物生理生化响应等进行深入研究。新型污染物混合体系对发光菌的联合作用呈现以拮抗作用为主,表明此类污染物环境残留可导致相关化学品功效降低,引发微生物耐药性的产生和传播的风险。  相似文献   

14.
离子液体的生物毒性受到越来越多关注,但目前该方面的研究报道很少.采用溴化1-辛基-3-甲基咪唑离子液体([C8mim]Br)处理金鱼胚胎,研究了金鱼早期胚胎发育期暴露离子液体后对金鱼仔鱼的氧化损伤.通过预实验获得金鱼胚胎(卵裂期)72小时半致死浓度(LC50)为209mg·L-1,根据该结果设计胚胎发育期离子液体的亚慢性暴露浓度为10.45mg·L-1、20.9mg·L-1、41.5mg·L-1、104.5mg·L-1.实验结果表明,与对照组相比,低浓度离子液体处理组(10.45mg·L-1和20.9mg·L-1)超氧化物歧化酶活性显著上升,高浓度处理组(41.55mg·L-1和104.55mg·L-1)极显著下降.谷胱苷肽过氧化物酶活性除10.455mg·L-1处理组为不显著上升外,其余3组均为显著下降.4个处理组丙二醛含量均比对照组显著增高,且呈现明显的剂量-效应关系.该实验结果表明,经过胚胎发育期暴露离子液体后,[C8mim]Br对金鱼仔鱼组织抗氧化系统仍产生较强的氧化损伤并引起脂质过氧化作用.因此,有必要研究离子液体对水生态系统中水生动物种群的影响,并对离子液体的生态安全做出科学评价.  相似文献   

15.
污染物在环境中普遍以混合物的形式存在,其累积毒性与毒性相互作用具有潜在的环境风险。因此,本研究以水环境中普遍存在的氨基糖苷类抗生素(硫酸链霉素、硫酸安普霉素和双氢链霉素)和重金属锌(Zn)为目标污染物,以蛋白核小球藻(Chlorella pyrenoidosa,C. pyrenoidosa)为指示生物,应用直接均分射线法设计3种抗生素与Zn的3个二元混合物体系,应用时间毒性微板分析法系统测定3种抗生素和重金属Zn及其二元混合物射线的时间-浓度-毒性数据,以浓度加和(concentration addition,CA)与独立作用(independent action,IA)为标准加和参考模型,分析混合物毒性相互作用及其随时间变化规律。结果表明,随着暴露时间延长,3种抗生素和重金属Zn对C. pyrenoidosa的毒性逐渐增强; 2种模型对3个二元混合物体系的毒性相互作用评估基本一致,即在低浓度区域始终呈现加和作用,而在高浓度区域随暴露时间延长由协同作用逐渐转变为加和作用;而对于同一混合物体系,CA和IA模型预测毒性之间的差距随着浓度增加而增加,且IA预测曲线始终位于CA预测曲线上方,显示了IA模型在评估具有相异组分混合物的毒性时较CA模型接近实际观测值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号