首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 687 毫秒
1.
艾比湖流域不同植物群落土壤呼吸研究   总被引:8,自引:1,他引:7  
利用开路式土壤碳通量测量系统LI-8100测定艾比湖流域4种植物群落土壤呼吸速率日变化,分析土壤温度、湿度和气温以及空气相对湿度对土壤呼吸速率的影响.结果表明:胡杨、梭梭、芦苇和盐节木4种植物群落的土壤呼吸速率日变化基本呈单峰曲线.胡杨、梭梭和盐节木群落的土壤呼吸速率与地上10 和150 cm处气温均表现为极显著相关.除芦苇群落外,各植物群落土壤呼吸速率与不同深度土壤温度呈极显著负相关.除沙地梭梭群落外,胡杨、盐渍地梭梭、芦苇和盐节木群落的土壤呼吸速率与地上10和150 cm处的空气相对湿度均呈极显著负相关.不同植物群落土壤呼吸速率与土壤湿度呈极显著负相关.多元逐步回归拟合的回归模型均达极显著水平,由土壤温度和湿度共同拟合出的回归模型能够解释土壤呼吸速率变化87%以上的原因.不同植物群落土壤呼吸差异原因的分析显示,细菌、真菌、放线菌以及根系干质量不是造成植物群落土壤呼吸差异的主要原因.   相似文献   

2.
模拟增温对冬小麦-大豆轮作农田土壤呼吸的影响   总被引:6,自引:4,他引:2  
刘艳  陈书涛  胡正华  任景全  沈小帅 《环境科学》2012,33(12):4205-4211
为研究模拟增温对冬小麦-大豆轮作农田土壤呼吸的影响,设置了随机试验,观测增温和对照处理的农田土壤呼吸速率.采用LI-8100开路式土壤碳通量测量系统对农田土壤呼吸速率进行观测,并采用气压过程分离技术(BaPS)测定土壤CO2产生速率.在观测土壤呼吸速率的同时,观测了两处理的土壤温度、湿度.结果表明,不同增温处理下土壤呼吸速率的季节变异趋势基本一致,其季节变异与土壤温度的变异具有一致性.冬小麦田增温和对照处理的平均土壤呼吸速率分别为(3.54±0.60)μmol·(m2·s)-1和(2.49±0.53)μmol·(m2·s)-1,大豆田增温和对照处理平均土壤呼吸速率分别为(4.80±0.46)μmol·(m2·s)-1和(4.14±0.29)μmol·(m2·s)-1.模拟增温显著促进了冬小麦田和大豆田的土壤呼吸作用,在冬小麦生长后期(抽穗-成熟期)增温和对照处理的土壤呼吸速率差异最为明显(P〈0.05);在大豆开花-结荚期以及鼓粒-成熟期增温与对照的土壤呼吸速率分别存在极显著性(P〈0.01)和显著性(P〈0.05)差异.进一步的研究表明,模拟增温和对照处理土壤呼吸均与土壤温度存在极显著(P〈0.01)的指数回归关系,但增温处理的土壤呼吸的温度敏感性明显高于对照,小麦生长季增温和对照处理的土壤呼吸温度系数Q10值分别为1.83和1.26,大豆生长季两处理的土壤呼吸温度系数Q10值分别为2.85和1.70.本研究表明,增温显著促进了农田土壤呼吸作用。  相似文献   

3.
华西雨屏区不同密度巨桉人工林土壤呼吸特征   总被引:9,自引:0,他引:9  
从2008-03至2009-02,采用闭合动态法(LI-6400-09)对华西雨屏区不同密度中龄巨桉人工林土壤呼吸进行了研究。结果表明:①该林分土壤呼吸具有明显的季节动态,各密度林分土壤呼吸速率最高值均出现在7月份,最低出现在1月,且密度为883株·hm-2(1.5 m×8 m)的巨桉林土壤呼吸速率最大,2 222株·hm-2(1.5 m×3 m)的最小;②2008年4、7、10月土壤呼吸速率24 h平均值均表现为883株·hm-2> 1 333株·hm-2> 2 222株·hm-2,且7月>4月>10月;③土壤微生物生物量碳氮、土壤有机质含量和10 cm根系生物量都表现出相同的趋势,即林分密度越小,土壤微生物生物量碳氮越高,草本植物越多,根系生物量越大,有机质含量越多;④温度是巨桉林土壤呼吸变异的主导因子,土壤呼吸速率与土壤温度和湿度的双因素模型优于单因素模型,两者共同解释了土壤呼吸速率月动态的78.3%~91.5%;⑤各密度林分土壤呼吸Q10值随巨桉林分密度增大而降低,大小顺序为3.65(883株·hm-2)>2.60(1 333株·hm-2)>2.55(2 222株·hm-2)。  相似文献   

4.
崔海  张亚红 《环境科学》2016,37(4):1507-1515
围封禁牧措施可以改善退化草地生态环境,是我国退化草地植被恢复的主要措施.为探讨干旱区荒漠草原不同围封禁牧年限的土壤呼吸作用特征及影响因子,在生长季连续观测围封禁牧11 a、7 a、放牧不封育(CK)荒漠草原土壤呼吸速率及环境因子,结果表明:1在日、季尺度上,封育11 a、7 a和CK荒漠草原土壤呼吸速率均具有明显的单峰曲线变化规律,在日尺度上,最大、最小值分别出现在12:00~16:00和00:00~06:00;在季节变化尺度上,最大值出现在降水较多温度适宜的8月,土壤呼吸均值表现为11 a[0.143 g·(m2·h)-1]7 a[0.138 g·(m2·h)-1]CK[0.106 g·(m2·h)-1].2封育与未封育荒漠草原的土壤呼吸速率与空气、土壤温度均呈极显著的指数关系(P0.001),相关性大小为:地表温度(R2:0.408~0.413)空气温度(R2:0.355~0.376)5~20 cm土壤温度(R2:0.263~0.394);温度敏感性系数Q10随着土层的加深逐渐变大,不同封育年限Q10表现为11 a(2.728)7 a(2.436)CK(2.086).3封育11 a、7 a和CK荒漠草原土壤呼吸速率与空气湿度、土壤含水量一元二次模型达到显著水平(P0.05),与空气二氧化碳呈极显著线性负相关(P0.01),与风速呈显著线性正相关(P0.05),与光照强度呈极显著线性正相关(P0.01).4干旱区荒漠草原土壤呼吸作用随着围封禁牧年限的增加而增加,温度敏感性系数亦随之增加,0~20 cm土壤温度和水分是其土壤呼吸的主要影响因子.  相似文献   

5.
不同前茬冬小麦土壤呼吸特征及影响因子分析   总被引:2,自引:2,他引:0  
以不同蔬菜前茬处理的冬小麦田为对象,研究土壤呼吸变化特征、各影响因子对土壤呼吸的响应的通径分析以及计算全生长季农田碳汇强度.结果表明:①温度对土壤呼吸速率的响应随深度增加具有滞后性;土壤呼吸与土壤水分呈显著二次相关.②有效磷、速效钾、土壤脲酶、土壤温度、土壤水分对土壤呼吸变化的贡献较大,为主要影响因子.5种主要因子中土...  相似文献   

6.
为探讨不同施氮水平对紫花苜蓿草地土壤呼吸速率和土壤生化性质的影响及其关系,本研究于2017年4月至2018年3月采用田间试验和室内分析相结合的方法,设置了无氮(N0,0)、低氮(N1,60 kg·hm~(-2))、中氮(N2,120 kg·hm~(-2))和高氮(N3,180 kg·hm~(-2))这4个施氮水平,监测了不同施氮水平下紫花苜蓿草地土壤呼吸速率及土壤水热的季节变化,并于紫花苜蓿生长季内不同茬次刈割后测定了土壤生化性质.结果表明:(1)不同施氮水平下紫花苜蓿草地土壤呼吸速率均表现出明显的季节性变化特征,在7月下旬达到峰值,12月中旬降至最低;随施氮量的增加紫花苜蓿生长季内土壤呼吸速率逐渐增强,N1、N2和N3施氮水平下的土壤呼吸速率均值分别为0.97、1.04和1.07 g·(m~2·h)~(-1),与N0[0.88 g·(m~2·h)~(-1)]相比,土壤呼吸速率分别增加了10.2%、18.2%和21.6%;施氮对紫花苜蓿非生长季内土壤呼吸速率无显著影响(P0.05).(2)不同施氮水平下紫花苜蓿生长季、非生长季和全年的土壤呼吸速率与土壤温度拟合指数模型均达极显著水平(P0.01),且指数模型的决定系数R~2值表现为生长季(0.46~0.62)非生长季(0.66~0.76)全年(0.80~0.86).(3)施氮在一定程度上降低了紫花苜蓿草地土壤的pH值和速效磷(AP),而提高了速效钾(AK)、土壤有机质(SOM)、土壤脲酶(URE)和土壤蔗糖酶活性(INV).土壤全氮(TN)和碱解氮(AN)含量在不同施氮水平下表现出不同的变化趋势,当施氮量在0~120 kg·hm~(-2)时,TN和AN随施氮量的增加而增加,继续增施氮肥超过N2(120 kg·hm~(-2))水平时则略有下降.(4)通过紫花苜蓿生长季内土壤呼吸与其土壤生化性质之间的相关矩阵分析可知,土壤呼吸速率(R_S)与土壤pH值呈极显著负相关(P0.01),与TN和URE呈极显著正相关(P0.01),与SOM呈显著的正相关(P0.05),与INV呈显著负相关(P0.05).综合考虑土壤生化特性对不同施氮条件下紫花苜蓿草地土壤呼吸速率的影响,可为草地生态系统土壤呼吸强度研究提供理论依据.  相似文献   

7.
森林土壤活性有机碳和土壤呼吸及其组分区异是森林土壤碳循环过程研究的关键问题.青藏高原亚高山原始森林植被是我国重要的生态屏障,对全球陆地生态系统的碳收支平衡具有举足轻重的作用.本研究选取西藏色季拉山两种最典型的天然林分(急尖长苞冷杉和林芝云杉)为研究对象,测定了这两种林分的土壤活性有机碳含量和同期的土壤呼吸速率及其组分速率,分析了土壤呼吸及其组分与土壤活性有机碳组分之间的关系,结果表明,西藏色季拉山两种天然林分土壤总有机碳(TOC)、土壤颗粒有机碳(POC)、易氧化有机碳(LOC)和微生物量碳(MBC)含量均具有显著的表聚性.急尖长苞冷杉林土壤活性有机碳含量较高,其TOC、POC、LOC、MBC含量分别为57.05 g·kg-1、17.9 g·kg-1、12.2 g·kg-1和365.6 mg·kg-1.两种林分的土壤总呼吸速率(Rt)和微生物呼吸速率(Rh)差异不显著(p0.05),但它们与枯枝落叶呼吸速率(Rl)和根系呼吸速率(Rr)差异极显著(p0.01),同时,Rl和Rr之间差异极显著(p0.01).从不同林分来看,林芝云杉林的土壤总呼吸速率(Rt)和微生物呼吸速率(Rh)高,而急尖长苞冷杉林的枯枝落叶呼吸速率(Rl)和根系呼吸速率(Rr)高.两种林分土壤呼吸各组分对土壤总呼吸速率(Rt)的贡献率大小依次为:RhRlRr.两种林分均表现为微生物呼吸对总呼吸的贡献比例最高,林芝云杉为92.42%,冷杉为70.81%.两种林分的土壤活性碳组分与土壤呼吸关系最密切的是MBC,其次是LOC,最不密切的是POC.  相似文献   

8.
为了揭示干旱半干旱区高寒湿地不同水分梯度对土壤呼吸规律的影响,以及土壤温度与含水量对土壤呼吸影响的差异性,以新疆巴音布鲁克天鹅湖高寒湿地为研究对象,在2014年植物生长季利用LI-8100土壤碳通量自动测量系统对不同水分条件(常年积水区、季节性积水区、常年干燥区)下的土壤呼吸速率进行测定,分析土壤呼吸日变化、季节性变化特征及其与土壤温度、土壤体积含水量的关系. 结果表明:①不同水分条件下巴音布鲁克天鹅湖高寒湿地土壤呼吸速率日变化均呈明显的单峰曲线,常年积水区、季节性积水区、常年干燥区土壤呼吸速率最大值分别为1.97、7.39、8.83 μmol/(m2·s),均出现在13:00—15:00;土壤CO2日累积排放量季节性变化明显,差异性达到极显著水平(P<0.01),三者的最大值分别为0.12、0.45、0.40 mol/m2,地表积水显著抑制了土壤呼吸,提高了土壤碳稳定性. ②不同水分条件下土壤呼吸速率与土壤温度、土壤体积含水量之间均呈极显著正相关(P<0.01),常年积水区、季节性积水区和常年干燥区的Q10(土壤呼吸温度敏感性)差异性极显著(P<0.01),其大小表现为常年干燥区(1.54)<常年积水区(2.22)<季节性积水区(3.36),各水分区域6月典型日的Q10最大,表现为常年干燥区(2.56)<季节性积水区(4.30)<常年积水区(4.75),说明水分条件显著影响Q10. ③巴音布鲁克天鹅湖高寒湿地土壤呼吸受地下5 cm处土壤温度(T)与0~5 cm土壤体积含水量(W)的综合影响,季节性积水区土壤呼吸速率与二者之间满足最佳拟合模型Rs=-1.113+0.041W-0.366T+0.008WT,常年干燥区则满足最佳拟合模型Rs=1.470+0.023W-0.027T+0.002WT.   相似文献   

9.
模拟酸雨对北亚热带天然次生林土壤呼吸的影响   总被引:4,自引:0,他引:4       下载免费PDF全文
于2009年3月~2010年1月在南京市郊龙王山北亚热带天然次生林进行模拟酸雨试验,以便携式土壤CO2通量观测仪对不同酸雨强度处理下的林地土壤呼吸速率进行原位测定,研究酸雨对森林土壤呼吸的影响.结果表明,在本试验阶段,4个酸雨强度处理CK(pH值6.4,去离子水)、T1(pH值4.5)、T2(pH值3.5)、T3(pH值2.5)的平均土壤呼吸速率分别为(3.20±0.21)、(3.34±0.30)、(3.51±0.06)、(2.99± 0.23)μmol/(m2·s),酸雨各处理的土壤呼吸季节变化规律显著.由于森林植被生长期季节变化明显,将其分为非生长季1(2~4月)、生长季(5~10月)、非生长季2(11月~次年1月)3个阶段.配对t检验分析各阶段土壤呼吸速率的结果表明,在非生长季1,模拟酸雨未抑制土壤呼吸作用,T1和T2酸雨处理反而促进了土壤呼吸作用;在生长季,高强度模拟酸雨T3显著抑制了土壤呼吸作用;在非生长季2,也出现了模拟酸雨促进土壤呼吸作用的现象;对于整个观测阶段而言,低强度模拟酸雨处理未显著改变北亚热带天然次生林的土壤呼吸,仅高强度模拟酸雨T3显著抑制了土壤呼吸作用.不同酸雨强度处理下的土壤呼吸速率与土壤温度的指数回归关系均达显著水平(P<0.01),CK、T1、T2、T3处理的Q10值分别为3.04,2.73,2.83,2.51,模拟酸雨处理降低了北亚热带天然次生林土壤呼吸的温度敏感性.  相似文献   

10.
库布齐沙漠油蒿灌丛土壤呼吸速率时空变异特征研究   总被引:4,自引:0,他引:4  
孟祥利  陈世苹  魏龙  林光辉 《环境科学》2009,30(4):1152-1158
利用Li-840红外气体分析仪和Li-6400-09土壤呼吸气室组装而成的动态密闭土壤呼吸测定系统,于2006年生长季对内蒙古库布齐沙漠油蒿(Artemisia ordosica)生态系统2种不同类型土壤的土壤呼吸速率进行了野外测定,分析了日动态、季节动态及其对环境因子的响应,并阐述了油蒿灌丛空间异质性的特征.结果表明,油蒿灌丛的土壤呼吸速率日动态呈单峰曲线,在12:00左右有最大值.在适宜的水分和温度条件下,生长季里土壤呼吸速率在7~8月份出现最大值.土壤呼吸速率的季节动态与土壤含水量有显著的相关关系,表明水分是限制生长季干旱区灌丛土壤呼吸的最重要因子,分别可以解释油蒿冠幅下土壤和裸地的土壤呼吸速率2006年主要生长季节(5~9月)变化的75%和77%.油蒿灌丛土壤呼吸速率在空间尺度上存在着显著的异质性.油蒿冠幅覆盖下的土壤呼吸速率季节平均值为(155.58±15.20) mg·(m2·h)-1,要显著地大于灌丛间裸地的数值(110.50±6.77) mg·(m2·h)-1.2种不同类型土壤的土壤呼吸速率是由于根生物量的差异引起的,根生物量可以解释2006年生长季库布齐油蒿灌丛土壤呼吸速率空间异质性的43%.结果表明,在植被覆盖度异质性较大的灌丛生态系统中,要准确定量生态系统碳的释放时,必须充分考虑小尺度上土壤呼吸的空间异质性.  相似文献   

11.
祁连山高山草甸土壤CO2通量的时空变化及其影响分析   总被引:1,自引:0,他引:1  
常宗强  冯起  司建华  苏永红  席海洋  郭瑞 《环境科学》2007,28(10):2389-2395
采用Li-6400便携式光合作用测量系统连接Li-6400-09土壤呼吸室,在2004年生长季节对祁连山高山草甸土壤CO2通量沿海拔梯度进行了野外定位试验,统计分析了水热因子及根系生物量对高山草甸土壤CO2通量特征的可能影响.结果表明,土壤CO2通量存在明显的空间变化规律, 沿海拔梯度土壤CO2通量随着海拔梯度的增加而逐渐减小,其变异系数逐渐增加;就日变化而言,土壤CO2通量晚间维持在较低水平,02:00~06:00最低,在07:00~08:30开始升高,11:00~16:00达到峰值,16:00~18:30开始下降,整个过程呈单峰曲线.土壤CO2通量的日平均值介于(0.56±0.32) ~ (2.53±0.76) μmol·(m2·s)-1.从季节变化来看,土壤CO2通量均以夏秋季较高,春冬季排放量较低,7~8月份达到最大值[4.736 μmol·(m2·s)-1],6月与9月份次之,5月与10月份基本一致,整个生长过程总的变化趋势呈单峰曲线形式.高山草甸土壤CO2通量在植物生长季与10 cm土壤温度、土壤含水量、根系生物量都存在不同程度的正相关关系,表明高山草甸土壤CO2通量的空间变异主要受温度、水分和植物根系的综合影响.  相似文献   

12.
为探讨土壤呼吸对植被类型及不同季节环境因素的响应机制,以黄土高原渭北台塬马莲滩林场为研究区,于2015年5月—2016年4月,采用静态箱-气象色谱法逐月测定不同土地利用方式下的土壤呼吸速率(Rs),分析其干、湿季差异及与土壤温度(T)、土壤含水量(W)之间的关系.结果表明:①不同土地利用方式下土壤呼吸速率的季节性变化趋势相一致,最大值出现在6—8月,最小值出现在12月—翌年2月,土壤呼吸速率年均值表现为天然草地>灌木林地>乔木林地>乔灌混交林地>耕地>果园.②不同土地利用方式下土壤呼吸速率与土壤温度均呈正相关,与土壤含水量的关系在湿季(5—10月)呈正相关,在干季(11月—翌年4月)呈负相关,土壤呼吸速率的单因素模型中以指数函数(Rs=aebx)的拟合效果更优.③与单因素模型相比,土壤温度、土壤含水量的双因素模型(Rs=aTbWc和Rs=aebTWc)能更好地解释除耕地外的其他5种土地利用方式下土壤呼吸速率的变化特征,对土壤呼吸速率的解释率在60.0%~82.3%之间,其中Rs=aTbWc对耕地、灌木林地、果园土壤呼吸速率与土壤温度、土壤含水量间关系的拟合效果较好,天然草地、乔木林地、乔灌混交林地则采用Rs=aebTWc的拟合效果较好.研究显示,研究区不同土地利用方式下土壤呼吸速率存在明显的季节性差异,耕地退耕还林后土壤有机碳及活性有机碳含量增加,温度敏感性(Q10)降低,土壤呼吸速率增大,评价退耕还林效益时应综合考虑区域地理气候特点,进一步量化碳的输入/输出过程.   相似文献   

13.
季节性冻融格局变化对高山森林土壤氮素淋溶损失的影响   总被引:8,自引:4,他引:4  
气候变化情景下冻融格局的改变可能导致寒冷生物区土壤氮的淋溶损失,从而改变土壤养分循环和森林溪流的水体环境.因此,为了解季节性冻融循环及其变化对高山森林土壤氮淋溶损失的影响,于2010年5月到2012年4月期间,采用土柱培养实验,利用海拔形成的温度差异模拟气候变暖过程,将高山森林(海拔3600 m)土壤分别培养在海拔3600 m(A1)、3300 m(A2)和3000 m(A3)的森林地表,研究了生长季节与冻融季节不同关键时期的土壤氮淋溶特征.结果表明:川西高山森林土壤氮素淋溶损失随着海拔增加而增加,其损失量为(1.85±0.39)kg·hm-2·a-1(A3)(1.87±0.34)kg·hm-2·a-1(A2)(2.94±0.73)kg·hm-2·a-1(A1),其中,62%以上的氮损失发生在季节性冻融期间.冻融季节高山森林土壤氮素淋溶流失的主要形式为铵态氮和硝态氮,且铵态氮的淋溶损失量高于硝态氮,而生长季节土壤氮素淋溶损失的主要形式是可溶性有机氮.这意味着冻融循环格局在很大程度上控制着高山森林土壤氮素淋溶损失特征,未来气候变暖可能降低高寒森林土壤氮素肥力,增加森林溪流中的氮含量.  相似文献   

14.
西藏原始林芝云杉林凋落物养分归还规律   总被引:6,自引:4,他引:2  
论文对西藏南伊沟原始林芝云杉林凋落物养分归还规律进行了观测和研究。结果表明:原始林芝云杉林年凋落物量为3.40 t·hm-2,凋落物中除Ca元素之外,其它元素含量均低于活体物中含量。5种元素的年归还总量为82.14 kg·hm-2,其中Ca在凋落物归还总量中占的比例最大,其次是N和K元素。凋落物层厚度达5.0 cm,现存量约为40.65 t·hm-2,凋落物层的年平均分解率为0.08 t·hm-2,5种元素的总储量为937.65 kg·hm-2,其中已分解层储量占57.28%。  相似文献   

15.
六盘山林区几种土地利用方式土壤呼吸时间格局   总被引:38,自引:5,他引:33  
测定分析了六盘山林区典型的天然次生林[灌木林、山杨(Populus davidanda dode)林和辽东栎(Quercesliaotungensis koiz)]林、农田、草地和人工林[13a、18a和25a华北落叶松(Larix principis-rupprechtil mayr)]土壤呼吸时间格局.结果显示:随着温度升高,土壤呼吸速率逐渐升高,温度最高值在13:00~15:00点钟、最低值在凌晨4:00~8:00点钟,土壤呼吸速度最高和最低值也在这个时间范围.5~10月,土壤呼吸速率呈现增加而又降低的趋势,在8~9月达最大值,10月下降,这种变化主要与土壤温度变化基本一致.农田和草地土壤呼吸速率的昼夜或月变化幅度比天然次生林和人工林中大,且农田和草地土壤呼吸速率在昼夜或月变化中的最高值比天然次生林和人工林高、最低值比天然次生林和人工林低.天然次生林土壤年呼吸量平均在3.96~4.51 t/(hm2·a)、农田在1.91 t/(hm2·a)、草地在5.08 t/(hm2·a)、人工林在4.11~5.55t/(hm2·a).结果说明天然次生林变成农田或草地后,将使土壤呼吸速率的昼夜或月变化幅度增大,而农田或草地上造林后又将使这些变化幅度减小.另外,土地利用变化也将使土壤的年呼吸量改变.  相似文献   

16.
不同耕作措施对旱作夏玉米田土壤呼吸及根呼吸的影响   总被引:11,自引:1,他引:10  
禄兴丽  廖允成 《环境科学》2015,36(6):2266-2273
为了探明不同耕作措施对旱作夏玉米田土壤呼吸及根呼吸的影响,采用定位试验,对比研究了深松耕(ST)、免耕(NT)、旋耕(RT)和翻耕(CT)这4种耕作方式下土壤呼吸速率的动态变化特征;并利用根去除法研究了根呼吸对土壤呼吸的贡献.结果表明,夏玉米生长季,4种耕作方式下土壤呼吸速率随生育期均呈单峰型变化趋势,在抽雄期达到最大,各生育期土壤呼吸速率大小顺序依次表现为:抽雄期开花期灌浆期成熟期拔节期苗期.不同耕作措施对平均土壤呼吸速率的影响表现为CTSTRTNT;土壤呼吸速率与土壤温度的相关系数达到显著性水平(P0.05),不同耕作措施下5 cm地温可以解释土壤呼吸速率变异的35%~75%.而土壤呼吸速率与土壤水分的相关系数却未达到显著性水平.夏玉米生长季中,不同耕作措施下根呼吸作用占土壤呼吸作用的比例在45.13%~56.86%之间波动,均值为51.72%.因此,利用根去除法可以用来了解作物生长对土壤碳排放的贡献及比较不同耕作措施对根系呼吸贡献的影响,从而为筛选出减缓农田土壤有机碳分解的耕作措施提供依据.  相似文献   

17.
三江平原不同土地利用方式下凋落物对土壤呼吸的贡献   总被引:8,自引:4,他引:4  
运用Li-6400土壤呼吸配套系统研究了三江平原沼泽湿地不同土地利用方式下保留和去除凋落物的土壤呼吸特征,进而分析了不同土地利用方式下凋落物对土壤呼吸的贡献及其与凋落物输入量和环境因子(温度、降水等)之间的相互关系.结果表明,整个生长季4种土地利用方式下凋落物对土壤呼吸的平均贡献量在-0.21~0.64μmol/(m2.s)之间,贡献率表现为小叶章草甸湿地(14%)人工林地(12%)大豆田(8%)退耕还湿地(-5%).其中,退耕还湿后凋落物对土壤呼吸的贡献表现为负值,减少了土壤呼吸的排放,表明凋落物对土壤呼吸的贡献可能最终取决于凋落物分解与屏蔽作用之间的平衡.除大豆田外,不同土地利用方式下凋落物对土壤呼吸的贡献均与10 cm地温达到了极显著相关关系(p0.01).另外,降雨的影响与凋落物输入密切相关,表明凋落物除自身分解外,还可能参与到气候变化的生态效应中.  相似文献   

18.
为了探究祁连山区不同灌丛类型的土壤水分时空变异规律,论文以祁连山排露沟小流域的箭叶锦鸡儿(Caragana jubata)、吉拉柳(Salix gilashanica)、金露梅(Potentilla fruticosa)、鲜黄小檗(Berberis diaphana)、甘青锦鸡儿(Caragana tangutica)5种灌丛为对象,建立固定样地,进行了一个生长季的分层(0~10、10~20、20~30、30~40、40~60 cm)土壤含水量监测。结果表明:1)在各灌丛类型样地之间,土壤含水量差异很大,由大到小依次为:箭叶锦鸡儿>吉拉柳>金露梅>鲜黄小檗>甘青锦鸡儿。2)在小流域内空间尺度上,地形(海拔、坡向)、气象(降水、温度)、植被、土壤等作为主要因素共同影响着土壤含水量的差异,导致土壤含水量的空间分布具有随海拔(降水)升高而增大、随地形遮荫作用增强而增大(阴坡高于阳坡)的变化规律。3)不同灌丛类型样地土壤含水量在生长季内各月的变异程度均为弱变异或中等变异,相同土层含水量变异系数大小顺序基本为:鲜黄小檗>箭叶锦鸡儿>吉拉柳>金露梅>甘青锦鸡儿。  相似文献   

19.
河口湿地具备不同于其他生态系统的典型的生物化学特征. 利用开路式涡度相关系统,对长江口崇西湿地净生态系统CO2交换(NEE)进行了初步研究. 结果表明,生长季CO2交换呈V字型特征,平均CO2交换量为-0.06 mg/(m2>/sup>·s);非生长季无明显特征,平均CO2交换量为0.025 mg/(m2>/sup>·s). 这与其他生态系统CO2交换特征相符合,主要是生长季的植被光合固碳作用所致. 非生长季的净生态系统CO2交换比生长季受土壤温度的影响更大. 大潮期和小潮期的CO2交换表明,无论是生长季还是非生长季,小潮期从生态系统释放到大气的CO2均高于大潮期,潮汐高度与CO2释放量呈负相关,暗示着高水位抑制生态系统呼吸和阻碍CO2的传输,从而减少了CO2的释放. 通过分析大潮期和小潮期的植被净光合速率发现,同一地点的植被固碳过程受潮汐的影响不很明显. 潮汐对净生态系统CO2交换的影响主要是减少了土壤呼吸释放CO2的过程. 总体而言,崇西湿地在年周期内表现为CO2的汇.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号