首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conservation resources are limited, necessitating prioritization of species and locations for action. Most prioritization approaches are based solely on biologically relevant characteristics of taxa or areas and ignore geopolitical realities. Doing so risks a poor return on conservation investment due to nonbiological factors, such as economic or political instability. We considered felids, a taxon which attracts intense conservation attention, to demonstrate a new approach that incorporates both intrinsic species traits and geopolitical characteristics of countries. We developed conservation priority scores for wild felids based on their International Union for Conservation of Nature status, body mass, habitat, range within protected area, evolutionary distinctiveness, and conservation umbrella potential. We used published data on governance, economics and welfare, human population pressures, and conservation policy to assign conservation‐likelihood scores to 142 felid‐hosting countries. We identified 71 countries as high priorities (above median) for felid conservation. These countries collectively encompassed all 36 felid species and supported an average of 96% of each species’ range. Of these countries, 60.6% had below‐average conservation‐likelihood scores, which indicated these countries are relatively risky conservation investments. Governance was the most common factor limiting conservation likelihood. It was the major contributor to below‐median likelihood scores for 62.5% of the 32 felid species occurring in lower‐likelihood countries. Governance was followed by economics for which scores were below median for 25% of these species. An average of 58% of species’ ranges occurred in 43 higher‐priority lower‐likelihood countries. Human population pressure was second to governance as a limiting factor when accounting for percentage of species’ ranges in each country. As conservation likelihood decreases, it will be increasingly important to identify relevant geopolitical limitations and tailor conservation strategies accordingly. Our analysis provides an objective framework for biodiversity conservation action planning. Our results highlight not only which species most urgently require conservation action and which countries should be prioritized for such action, but also the diverse constraints which must be overcome to maximize long‐term success.  相似文献   

2.
The conservation of wildlife requires management based on quantitative evidence, and especially for large carnivores, unraveling cause‐specific mortalities and understanding their impact on population dynamics is crucial. Acquiring this knowledge is challenging because it is difficult to obtain robust long‐term data sets on endangered populations and, usually, data are collected through diverse sampling strategies. Integrated population models (IPMs) offer a way to integrate data generated through different processes. However, IPMs are female‐based models that cannot account for mate availability, and this feature limits their applicability to monogamous species only. We extended classical IPMs to a two‐sex framework that allows investigation of population dynamics and quantification of cause‐specific mortality rates in nonmonogamous species. We illustrated our approach by simultaneously modeling different types of data from a reintroduced, unhunted brown bear (Ursus arctos) population living in an area with a dense human population. In a population mainly driven by adult survival, we estimated that on average 11% of cubs and 61% of adults died from human‐related causes. Although the population is currently not at risk, adult survival and thus population dynamics are driven by anthropogenic mortality. Given the recent increase of human‐bear conflicts in the area, removal of individuals for management purposes and through poaching may increase, reversing the positive population growth rate. Our approach can be generalized to other species affected by cause‐specific mortality and will be useful to inform conservation decisions for other nonmonogamous species, such as most large carnivores, for which data are scarce and diverse and thus data integration is highly desirable.  相似文献   

3.
Abstract: The current shortfall in effectiveness within conservation biology is illustrated by increasing interest in “evidence‐based conservation,” whose proponents have identified the need to benchmark conservation initiatives against actions that lead to proven positive effects. The effectiveness of conservation policies, approaches, and evaluation is under increasing scrutiny, and in these areas models of excellence used in business could prove valuable. Typically, conservation programs require years of effort and involve rigorous long‐term implementation processes. Successful balance of long‐term efforts alongside the achievement of short‐term goals is often compromised by management or budgetary constraints, a situation also common in commercial businesses. “Business excellence” is an approach many companies have used over the past 20 years to ensure continued success. Various business excellence evaluations have been promoted that include concepts that could be adapted and applied in conservation programs. We describe a conservation excellence model that shows how scientific processes and results can be aligned with financial and organizational measures of success. We applied the model to two well‐documented species conservation programs. In the first, the Po’ouli program, several aspects of improvement were identified, such as more authority for decision making in the field and better integration of habitat management and population recovery processes. The second example, the black‐footed ferret program, could have benefited from leadership effort to reduce bureaucracy and to encourage use of best‐practice species recovery approaches. The conservation excellence model enables greater clarity in goal setting, more‐effective identification of job roles within programs, better links between technical approaches and measures of biological success, and more‐effective use of resources. The model could improve evaluation of a conservation program's effectiveness and may be used to compare different programs, for example during reviews of project performance by sponsoring organizations.  相似文献   

4.
Climate change will require novel conservation strategies. One such tactic is a coarse‐filter approach that focuses on conserving nature's stage (CNS) rather than the actors (individual species). However, there is a temporal mismatch between the long‐term goals of conservation and the short‐term nature of most ecological studies, which leaves many assumptions untested. Paleoecology provides a valuable perspective on coarse‐filter strategies by marshaling the natural experiments of the past to contextualize extinction risk due to the emerging impacts of climate change and anthropogenic threats. We reviewed examples from the paleoecological record that highlight the strengths, opportunities, and caveats of a CNS approach. We focused on the near‐time geological past of the Quaternary, during which species were subjected to widespread changes in climate and concomitant changes in the physical environment in general. Species experienced a range of individualistic responses to these changes, including community turnover and novel associations, extinction and speciation, range shifts, changes in local richness and evenness, and both equilibrium and disequilibrium responses. Due to the dynamic nature of species responses to Quaternary climate change, a coarse‐filter strategy may be appropriate for many taxa because it can accommodate dynamic processes. However, conservationists should also consider that the persistence of landforms varies across space and time, which could have potential long‐term consequences for geodiversity and thus biodiversity.  相似文献   

5.
Growing threats to biodiversity and global alteration of habitats and species distributions make it increasingly necessary to consider evolutionary patterns in conservation decision making. Yet, there is no clear‐cut guidance on how genetic features can be incorporated into conservation‐planning processes, despite multiple molecular markers and several genetic metrics for each marker type to choose from. Genetic patterns differ between species, but the potential tradeoffs among genetic objectives for multiple species in conservation planning are currently understudied. We compared spatial conservation prioritizations derived from 2 metrics of genetic diversity (nucleotide and haplotype diversity) and 2 metrics of genetic isolation (private haplotypes and local genetic differentiation) in mitochondrial DNA of 5 marine species. We compared outcomes of conservation plans based only on habitat representation with plans based on genetic data and habitat representation. Fewer priority areas were selected for conservation plans based solely on habitat representation than on plans that included habitat and genetic data. All 4 genetic metrics selected approximately similar conservation‐priority areas, which is likely a result of prioritizing genetic patterns across a genetically diverse array of species. Largely, our results suggest that multispecies genetic conservation objectives are vital to creating protected‐area networks that appropriately preserve community‐level evolutionary patterns.  相似文献   

6.
A Mesofilter Conservation Strategy to Complement Fine and Coarse Filters   总被引:5,自引:1,他引:5  
Abstract:  Setting aside entire ecosystems in reserves is an efficient way to maintain biodiversity because large numbers of species are protected, but ecosystem conservation constitutes a coarse filter that does not address some species. A complementary, fine-filter approach is also required to provide tailored management for some species (e.g., those subject to direct exploitation). Mesofilter conservation is another complementary approach that focuses on conserving critical elements of ecosystems that are important to many species, especially those likely to be overlooked by fine-filter approaches, such as invertebrates, fungi, and nonvascular plants. Critical elements include structures such as logs, snags, pools, springs, streams, reefs, and hedgerows, and processes such as fires and floods. Mesofilter conservation is particularly appropriate for seminatural ecosystems that are managed for both biodiversity and commodity production (e.g., forests managed for timber, grasslands managed for livestock forage, and aquatic ecosystems managed for fisheries) and is relevant to managing some agricultural and urban environments for biodiversity.  相似文献   

7.
Abstract: Even under the most optimistic scenarios, during the next century human‐caused climate change will threaten many wild populations and species. The most useful conservation response is to enlarge and link protected areas to support range shifts by plants and animals. To prioritize land for reserves and linkages, some scientists attempt to chain together four highly uncertain models (emission scenarios, global air–ocean circulation, regional circulation, and biotic response). This approach has high risk of error propagation and compounding and produces outputs at a coarser scale than conservation decisions. Instead, we advocate identifying land facets—recurring landscape units with uniform topographic and soil attributes—and designing reserves and linkages for diversity and interspersion of these units. This coarse‐filter approach would conserve the arenas of biological activity, rather than the temporary occupants of those arenas. Integrative, context‐sensitive variables, such as insolation and topographic wetness, are useful for defining land facets. Classification procedures such as k‐means or fuzzy clustering are a good way to define land facets because they can analyze millions of pixels and are insensitive to case order. In regions lacking useful soil maps, river systems or riparian plants can indicate important facets. Conservation planners should set higher representation targets for rare and distinctive facets. High interspersion of land facets can promote ecological processes, evolutionary interaction, and range shift. Relevant studies suggest land‐facet diversity is a good surrogate for today's biodiversity, but fails to conserve some species. To minimize such failures, a reserve design based on land facets should complement, rather than replace, other approaches. Designs based on land facets are not biased toward data‐rich areas and can be applied where no maps of land cover exist.  相似文献   

8.
The Potential for Species Conservation in Tropical Secondary Forests   总被引:3,自引:0,他引:3  
Abstract: In the wake of widespread loss of old‐growth forests throughout the tropics, secondary forests will likely play a growing role in the conservation of forest biodiversity. We considered a complex hierarchy of factors that interact in space and time to determine the conservation potential of tropical secondary forests. Beyond the characteristics of local forest patches, spatial and temporal landscape dynamics influence the establishment, species composition, and persistence of secondary forests. Prospects for conservation of old‐growth species in secondary forests are maximized in regions where the ratio of secondary to old‐growth forest area is relatively low, older secondary forests have persisted, anthropogenic disturbance after abandonment is relatively low, seed‐dispersing fauna are present, and old‐growth forests are close to abandoned sites. The conservation value of a secondary forest is expected to increase over time, as species arriving from remaining old‐growth forest patches accumulate. Many studies are poorly replicated, which limits robust assessments of the number and abundance of old‐growth species present in secondary forests. Older secondary forests are not often studied and few long‐term studies are conducted in secondary forests. Available data indicate that both old‐growth and second‐growth forests are important to the persistence of forest species in tropical, human‐modified landscapes.  相似文献   

9.
Multibillion dollar investments in land restoration make it critical that conservation goals are achieved cost‐effectively. Approaches developed for systematic conservation planning offer opportunities to evaluate landscape‐scale, temporally dynamic biodiversity outcomes from restoration and improve on traditional approaches that focus on the most species‐rich plantings. We investigated whether it is possible to apply a complementarity‐based approach to evaluate the extent to which an existing network of restoration plantings meets representation targets. Using a case study of woodland birds of conservation concern in southeastern Australia, we compared complementarity‐based selections of plantings based on temporally dynamic species occurrences with selections based on static species occurrences and selections based on ranking plantings by species richness. The dynamic complementarity approach, which incorporated species occurrences over 5 years, resulted in higher species occurrences and proportion of targets met compared with the static complementarity approach, in which species occurrences were taken at a single point in time. For equivalent cost, the dynamic complementarity approach also always resulted in higher average minimum percent occurrence of species maintained through time and a higher proportion of the bird community meeting representation targets compared with the species‐richness approach. Plantings selected under the complementarity approaches represented the full range of planting attributes, whereas those selected under the species‐richness approach were larger in size. Our results suggest that future restoration policy should not attempt to achieve all conservation goals within individual plantings, but should instead capitalize on restoration opportunities as they arise to achieve collective value of multiple plantings across the landscape. Networks of restoration plantings with complementary attributes of age, size, vegetation structure, and landscape context lead to considerably better outcomes than conventional restoration objectives of site‐scale species richness and are crucial for allocating restoration investment wisely to reach desired conservation goals.  相似文献   

10.
As economic and social contexts become more embedded within biodiversity conservation, it becomes obvious that resources are a limiting factor in conservation. This recognition is leading conservation scientists and practitioners to increasingly frame conservation decisions as trade‐offs between conflicting societal objectives. However, this framing is all too often done in an intuitive way, rather than by addressing trade‐offs explicitly. In contrast, the concept of trade‐off is a keystone in evolutionary biology, where it has been investigated extensively. I argue that insights from evolutionary theory can provide methodological and theoretical support to evaluating and quantifying trade‐offs in biodiversity conservation. I reviewed the diverse ways in which trade‐offs have emerged within the context of conservation and how advances from evolutionary theory can help avoid the main pitfalls of an implicit approach. When studying both evolutionary trade‐offs (e.g., reproduction vs. survival) and conservation trade‐offs (e.g., biodiversity conservation vs. agriculture), it is crucial to correctly identify the limiting resource, hold constant the amount of this resource when comparing different scenarios, and choose appropriate metrics to quantify the extent to which the objectives have been achieved. Insights from studies in evolutionary theory also reveal how an inadequate selection of conservation solutions may result from considering suboptimal rather than optional solutions when examining whether a trade‐off exits between 2 objectives. Furthermore, the shape of a trade‐off curve (i.e., whether the relationship between 2 objectives follows a concave, convex, or linear form) is known to affect crucially the definition of optimal solutions in evolutionary biology and very likely affects decisions in biodiversity conservation planning too. This interface between evolutionary biology and biodiversity conservation can therefore provide methodological guidance to support decision makers in the difficult task of choosing among conservation solutions. Percepciones de la Teoría de Historia de Vida para una Tratamiento Explícito de las Compensaciones en la Biología de la Conservación  相似文献   

11.
As the conservation challenges increase, new approaches are needed to help combat losses in biodiversity and slow or reverse the decline of threatened species. Genome-editing technology is changing the face of modern biology, facilitating applications that were unimaginable only a decade ago. The technology has the potential to make significant contributions to the fields of evolutionary biology, ecology, and conservation, yet the fear of unintended consequences from designer ecosystems containing engineered organisms has stifled innovation. To overcome this gap in the understanding of what genome editing is and what its capabilities are, more research is needed to translate genome-editing discoveries into tools for ecological research. Emerging and future genome-editing technologies include new clustered regularly interspaced short palindromic repeats (CRISPR) targeted sequencing and nucleic acid detection approaches as well as species genetic barcoding and somatic genome-editing technologies. These genome-editing tools have the potential to transform the environmental sciences by providing new noninvasive methods for monitoring threatened species or for enhancing critical adaptive traits. A pioneering effort by the conservation community is required to apply these technologies to real-world conservation problems.  相似文献   

12.
Geodiversity has been used as a surrogate for biodiversity when species locations are unknown, and this utility can be extended to situations where species locations are in flux. Recently, scientists have designed conservation networks that aim to explicitly represent the range of geophysical environments, identifying a network of physical stages that could sustain biodiversity while allowing for change in species composition in response to climate change. Because there is no standard approach to designing such networks, we compiled 8 case studies illustrating a variety of ways scientists have approached the challenge. These studies show how geodiversity has been partitioned and used to develop site portfolios and connectivity designs; how geodiversity‐based portfolios compare with those derived from species and communities; and how the selection and combination of variables influences the results. Collectively, they suggest 4 key steps when using geodiversity to augment traditional biodiversity‐based conservation planning: create land units from species‐relevant variables combined in an ecologically meaningful way; represent land units in a logical spatial configuration and integrate with species locations when possible; apply selection criteria to individual sites to ensure they are appropriate for conservation; and develop connectivity among sites to maintain movements and processes. With these considerations, conservationists can design more effective site portfolios to ensure the lasting conservation of biodiversity under a changing climate.  相似文献   

13.
Abstract: Because habitat loss due to urbanization is a primary threat to biodiversity, and land‐use decisions in urbanizing areas are mainly made at the local level, land‐use planning by municipal planning departments has a potentially important—but largely unrealized—role in conserving biodiversity. To understand planners’ perspectives on the factors that facilitate and impede biodiversity conservation in local planning, we interviewed directors of 17 municipal planning departments in the greater Seattle (Washington, U.S.A.) area and compared responses of planners from similar‐sized jurisdictions that were “high” and “low performing” with respect to incorporation of biodiversity conservation in local planning. Planners from low‐performing jurisdictions regarded mandates from higher governmental levels as the primary drivers of biodiversity conservation, whereas those from high‐performing jurisdictions regarded community values as the main drivers, although they also indicated that mandates were important. Biodiversity conservation was associated with presence of local conservation flagship elements (e.g., salmonids) and human‐centered benefits of biodiversity conservation (e.g., quality of life). Planners from high‐ and low‐performing jurisdictions favored different planning mechanisms for biodiversity conservation, perhaps reflecting differences in funding and staffing. High performers reported more collaborations with other entities on biodiversity issues. Planners’ comments indicated that the term biodiversity may be problematic in the context of local planning. The action most planners recommended to increase biodiversity conservation in local planning was public education. These results suggest that to advance biodiversity conservation in local land‐use planning, conservation biologists should investigate and educate the public about local conservation flagships and human benefits of local biodiversity, work to raise ecological literacy and explain biodiversity more effectively to the public, and promote collaboration on biodiversity conservation among jurisdictions and inclusion of biodiversity specialists in planning departments.  相似文献   

14.
Ecological systems often operate on time scales significantly longer or shorter than the time scales typical of human decision making, which causes substantial difficulty for conservation and management in socioecological systems. For example, invasive species may move faster than humans can diagnose problems and initiate solutions, and climate systems may exhibit long‐term inertia and short‐term fluctuations that obscure learning about the efficacy of management efforts in many ecological systems. We adopted a management‐decision framework that distinguishes decision makers within public institutions from individual actors within the social system, calls attention to the ways socioecological systems respond to decision makers’ actions, and notes institutional learning that accrues from observing these responses. We used this framework, along with insights from bedeviling conservation problems, to create a typology that identifies problematic time‐scale mismatches occurring between individual decision makers in public institutions and between individual actors in the social or ecological system. We also considered solutions that involve modifying human perception and behavior at the individual level as a means of resolving these problematic mismatches. The potential solutions are derived from the behavioral economics and psychology literature on temporal challenges in decision making, such as the human tendency to discount future outcomes at irrationally high rates. These solutions range from framing environmental decisions to enhance the salience of long‐term consequences, to using structured decision processes that make time scales of actions and consequences more explicit, to structural solutions aimed at altering the consequences of short‐sighted behavior to make it less appealing. Additional application of these tools and long‐term evaluation measures that assess not just behavioral changes but also associated changes in ecological systems are needed.  相似文献   

15.
A fungal perspective on conservation biology   总被引:1,自引:0,他引:1       下载免费PDF全文
Hitherto fungi have rarely been considered in conservation biology, but this is changing as the field moves from addressing single species issues to an integrative ecosystem‐based approach. The current emphasis on biodiversity as a provider of ecosystem services throws the spotlight on the vast diversity of fungi, their crucial roles in terrestrial ecosystems, and the benefits of considering fungi in concert with animals and plants. We reviewed the role of fungi in ecosystems and composed an overview of the current state of conservation of fungi. There are 5 areas in which fungi can be readily integrated into conservation: as providers of habitats and processes important for other organisms; as indicators of desired or undesired trends in ecosystem functioning; as indicators of habitats of conservation value; as providers of powerful links between human societies and the natural world because of their value as food, medicine, and biotechnological tools; and as sources of novel tools and approaches for conservation of megadiverse organism groups. We hope conservation professionals will value the potential of fungi, engage mycologists in their work, and appreciate the crucial role of fungi in nature. Una Perspectiva Micótica de la Biología de la Conservación  相似文献   

16.
Climate change is expected to be a top driver of global biodiversity loss in the 21st century. It poses new challenges to conserving and managing imperiled species, particularly in marine and estuarine ecosystems. The use of climate‐related science in statutorily driven species management, such as under the U.S. Endangered Species Act (ESA), is in its early stages. This article provides an overview of ESA processes, with emphasis on the mandate to the National Marine Fisheries Service (NMFS) to manage listed marine, estuarine, and anadromous species. Although the ESA is specific to the United States, its requirements are broadly relevant to conservation planning. Under the ESA, species, subspecies, and “distinct population segments” may be listed as either endangered or threatened, and taking of most listed species (harassing, harming, pursuing, wounding, killing, or capturing) is prohibited unless specifically authorized via a case‐by‐case permit process. Government agencies, in addition to avoiding take, must ensure that actions they fund, authorize, or conduct are not likely to jeopardize a listed species’ continued existence or adversely affect designated critical habitat. Decisions for which climate change is likely to be a key factor include: determining whether a species should be listed under the ESA, designating critical habitat areas, developing species recovery plans, and predicting whether effects of proposed human activities will be compatible with ESA‐listed species’ survival and recovery. Scientific analyses that underlie these critical conservation decisions include risk assessment, long‐term recovery planning, defining environmental baselines, predicting distribution, and defining appropriate temporal and spatial scales. Although specific guidance is still evolving, it is clear that the unprecedented changes in global ecosystems brought about by climate change necessitate new information and approaches to conservation of imperiled species. El Cambio Climático, los Ecosistemas Marinos y el Acta Estadunidense de Especies en Peligro  相似文献   

17.
Conservation decision tools based on cost‐effectiveness analysis are used to assess threat management strategies for improving species persistence. These approaches rank alternative strategies by their benefit to cost ratio but may fail to identify the optimal sets of strategies to implement under limited budgets because they do not account for redundancies. We devised a multiobjective optimization approach in which the complementarity principle is applied to identify the sets of threat management strategies that protect the most species for any budget. We used our approach to prioritize threat management strategies for 53 species of conservation concern in the Pilbara, Australia. We followed a structured elicitation approach to collect information on the benefits and costs of implementing 17 different conservation strategies during a 3‐day workshop with 49 stakeholders and experts in the biodiversity, conservation, and management of the Pilbara. We compared the performance of our complementarity priority threat management approach with a current cost‐effectiveness ranking approach. A complementary set of 3 strategies: domestic herbivore management, fire management and research, and sanctuaries provided all species with >50% chance of persistence for $4.7 million/year over 20 years. Achieving the same result cost almost twice as much ($9.71 million/year) when strategies were selected by their cost‐effectiveness ranks alone. Our results show that complementarity of management benefits has the potential to double the impact of priority threat management approaches.  相似文献   

18.
To help stem the continuing decline of biodiversity, effective transfer of technology from resource‐rich to biodiversity‐rich countries is required. Biodiversity technology as defined by the Convention on Biological Diversity (CBD) is a complex term, encompassing a wide variety of activities and interest groups. As yet, there is no robust framework by which to monitor the extent to which technology transfer might benefit biodiversity. We devised a definition of biodiversity technology and a framework for the monitoring of technology transfer between CBD signatories. Biodiversity technology within the scope of the CBD encompasses hard and soft technologies that are relevant to the conservation and sustainable use of biodiversity, or make use of genetic resources, and that relate to all aspects of the CBD, with a particular focus on technology transfer from resource‐rich to biodiversity‐rich countries. Our proposed framework introduces technology transfer as a response indicator: technology transfer is increased to stem pressures on biodiversity. We suggest an initial approach of tracking technology flow between countries; charting this flow is likely to be a one‐to‐many relationship (i.e., the flow of a specific technology from one country to multiple countries). Future developments should then focus on integrating biodiversity technology transfer into the current pressure‐state‐response indicator framework favored by the CBD (i.e., measuring the influence of technology transfer on changes in state and pressure variables). Structured national reporting is important to obtaining metrics relevant to technology and knowledge transfer. Interim measures, that can be used to assess biodiversity technology or knowledge status while more in‐depth indicators are being developed, include the number of species inventories, threatened species lists, or national red lists; databases on publications and project funding may provide measures of international cooperation. Such a pragmatic approach, followed by rigorous testing of specific technology transfer metrics submitted by CBD signatories in a standardized manner may in turn improve the focus of future targets on technology transfer for biodiversity conservation.  相似文献   

19.
Irreplaceable, self‐organizing landforms and the endemic and ecologically specialized biodiversity they support are threatened globally by anthropogenic disturbances. Although the outcome of disrupting landforms is somewhat understood, little information exists that documents population consequences of landform disturbance on endemic biodiversity. Conservation strategies for species dependent upon landforms have been difficult to devise because they require understanding complex feedbacks that create and maintain landforms and the consequences of landform configuration on demography of species. We characterized and quantified links between landform configuration and demography of an ecological specialist, the dunes sagebrush lizard (Sceloporus arenicolus), which occurs only in blowouts (i.e., wind‐blown sandy depressions) of Shinnery oak (Quercus havardii) sand‐dune landforms. We used matrix models to estimate vital rates from a multisite mark‐recapture study of 6 populations occupying landforms with different spatial configurations. Sensitivity and elasticity analyses demonstrated demographic rates among populations varied in sensitivity to different landform configurations. Specifically, significant relationships between blowout shape complexity and vital rate elasticities suggested direct links between S. arenicolus demography and amount of edge in Shinnery oak sand‐dune landforms. These landforms are irreplaceable, based on permanent transition of disturbed areas to alternative grassland ecosystem states. Additionally, complex feedbacks between wind, sand, and Shinnery oak maintain this landform, indicating restoration through land management practices is unlikely. Our findings that S. arenicolus population dynamics depended on landform configuration suggest that failure to consider processes of landform organization and their effects on species’ population dynamics may lead to incorrect inferences about threats to endemic species and ineffective habitat management for threatened or endangered species. As such, successful conservation of these systems and the biodiversity they support must be informed by research linking process‐oriented studies of self‐organized landforms with studies of movement, behavior, and demography of species that dwell in them.  相似文献   

20.
Approaches to prioritize conservation actions are gaining popularity. However, limited empirical evidence exists on which species might benefit most from threat mitigation and on what combination of threats, if mitigated simultaneously, would result in the best outcomes for biodiversity. We devised a way to prioritize threat mitigation at a regional scale with empirical evidence based on predicted changes to population dynamics—information that is lacking in most threat‐management prioritization frameworks that rely on expert elicitation. We used dynamic occupancy models to investigate the effects of multiple threats (tree cover, grazing, and presence of an hyperaggressive competitor, the Noisy Miner (Manorina melanocephala) on bird‐population dynamics in an endangered woodland community in southeastern Australia. The 3 threatening processes had different effects on different species. We used predicted patch‐colonization probabilities to estimate the benefit to each species of removing one or more threats. We then determined the complementary set of threat‐mitigation strategies that maximized colonization of all species while ensuring that redundant actions with little benefit were avoided. The single action that resulted in the highest colonization was increasing tree cover, which increased patch colonization by 5% and 11% on average across all species and for declining species, respectively. Combining Noisy Miner control with increasing tree cover increased species colonization by 10% and 19% on average for all species and for declining species respectively, and was a higher priority than changing grazing regimes. Guidance for prioritizing threat mitigation is critical in the face of cumulative threatening processes. By incorporating population dynamics in prioritization of threat management, our approach helps ensure funding is not wasted on ineffective management programs that target the wrong threats or species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号