首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
This study presents a comparative evaluation of the prognostic meteorological Fifth Generation NCAR Pennsylvania State University Mesoscale Model (MM5) using data from the Northeast Oxidant and Particle Study (NE-OPS) research program collected over Philadelphia, PA during a summer episode in 1999. A set of model simulations utilizing a nested grid of 36 km, 12 km and 4 km horizontal resolutions with 21 layers in the vertical direction was performed for a period of 101 h from July 15, 1999; 12 UTC to July 19, 1999; 17 UTC. The model predictions obtained with 4 km horizontal grid resolution were compared with the NE-OPS observations. Comparisons of model temperature with aircraft data revealed that the model exhibited slight underestimation as noted by previous investigators. Comparisons of model temperature with aircraft and tethered balloon data indicate that the mean absolute error varied up to 1.5 °C. The comparisons of model relative humidity with aircraft and tethered balloon indicate that the mean relative error varied from –11% to –22% for the tethered balloon and from –5% to –30% for the aircraft data. The mean relative error for water vapor mixing ratio with respect to the lidar data exhibited a negative bias consistent with the humidity bias corresponding to aircraft and tethered balloon data. The tendency of MM5 to produce estimates of very low wind speeds, especially in the early-mid afternoon hours, as noted by earlier investigators, is seen in this study also. It is indeed true that the initial fields as well as the fields utilized in the data assimilation also contribute to some of the differences between the model and observations. Studies such as these which compare the grid averaged mean state variables with observations have inherent difficulties. Despite the above limitations, the results of the present study broadly conform to the general traits of MM5 as noted by earlier investigators.  相似文献   

2.
Numerical simulations of the evolution of the planetary boundary layer (PBL) and nocturnal low-level jets (LLJ) have been carried out using MM5 (version 3.3) with four-dimensional data assimilation (FDDA) for a high pollution episode in the northeastern United States during July 15–20, 1999. In this paper, we assess the impact of different parameterizations on the PBL evolution with two schemes: the Blackadar PBL, a hybrid local (stable regime) and non-local (convective regime) mixing scheme; and the Gayno–Seaman PBL, a turbulent kinetic energy (TKE)-based eddy diffusion scheme. No FDDA was applied within the PBL to evaluate the ability of the two schemes to reproduce the PBL structure and its temporal variation. The restriction of the application of FDDA to the atmosphere above the PBL or the lowest 8 model levels, whichever is higher, has significantly improved the predicted strength and timing of the LLJ during the night. A systematic analysis of the PBL evolution has been performed for the primary meteorological fields (temperature, specific humidity, horizontal winds) and for the derived parameters such as the PBL height, virtual potential temperature, relative humidity, and cloud cover fraction. There are substantial differences between the PBL structures and evolutions simulated by these two different schemes. The model results were compared with independent observations (that were not used in FDDA) measured by aircraft, RASS and wind profiler, lidar, and tethered balloon platforms during the summer of 1999 as part of the NorthEast Oxidant and Particle Study (NE-OPS). The observations tend to support the non-local mixing mechanism better than the layer-to-layer eddy diffusion in the convective PBL.  相似文献   

3.
The determination of the sensible heat flux over urban terrain is challenging due to irregular surface geometry and surface types. To address this, in 2006–07, a major field campaign (LUCE) took place at the école Polytechnique Fédérale de Lausanne campus, a moderately occupied urban site. A distributed network of 92 wireless weather stations was combined with routine atmospheric profiling, offering high temporal and spatial resolution meteorological measurements. The objective of this study is to estimate the sensible heat flux over the built environment under convective conditions. Calculations were based on Monin–Obukhov similarity for temperature in the surface layer. The results illustrate a good agreement between the sensible heat flux inferred from the thermal roughness length approach and independent calibrated measurements from a scintillometer located inside the urban canopy. It also shows that using only one well-selected station can provide a good estimate of the sensible heat flux over the campus for convective conditions. Overall, this study illustrates how an extensive network of meteorological measurements can be a useful tool to estimate the sensible heat flux in complex urban environments.  相似文献   

4.
A generic In Situ Mixing Height Growth (IMG) model, capable of predicting the real-time growth of the mixed layer and its diurnal evolution from routinely observed simple surface meteorological is developed. The algorithm for the determination of temporally growing daytime mixing height includes both convective and mechanical turbulence contributions. It accounts for neutral as well as height varying potential temperature gradients above the mixed layer. For thermally stable and mechanically dominated unstable night time Atmospheric Boundary Layer (ABL) the module uses similarity formulae based on the wind velocity [1]), the Monin—Obukhov length [2], and the Coriolis parameter. In the convective case simple slab model is integrated, based on initial lapse rate and the surface heat flux. The lapse rate is evaluated on the basis of vertical atmospheric stability, surface type and surface temperature. This differentiates the IMG model from other existing mixing height models that need initial measured lapse rate for calculation. IMG model is site specific as it calculates the radiative incoming heat flux depending on the solar declination estimates based on-site latitude and longitude. The IMG model is applied to calculate mixing height for India by using surface data (viz. wind speed, surface temperature, surface type) from 152 surface meteorological stations. Results have been evaluated with radiosonde mixing height data procured from 18 upper air stations. Sensitivity analysis of the model with respect to various parameters is performed. The model is formulated after reviewing presently available radiosonde mixing height data in India and can satisfactorily provide an alternative means of estimating mixing height for air pollution dispersion models.  相似文献   

5.
Realistic meteorological fields are a prerequisite for the determination of pollutant concentrations and depositions by means of a chemistry transport model. Different configurations of the 5th generation NCAR/Penn State University mesoscale meteorological model MM5 were tested to determine the optimum set up for long term hindcasts that cover several months up to years. Four dimensional data assimilation (FDDA) significantly enhances the spatio temporal representation of temperature, humidity and wind. Best agreement with radiosonde observations could be achieved when temperature, humidity and wind were grid nudged every 6 h. The quality of the resulting meteorological fields showed no significant systematic temporal or spatial variation over Europe in a model run of the year 2000. It was found that the hydrological cycle was not correctly reproduced by the model when no nudging was applied. The relevant model run showed too high relative humidity and too high rainfall when compared to observations. This led to considerably lower aerosol concentrations close to ground and a shift in the deposition patterns of particle bound pollutants like the carcinogenic benzo(a)pyrene (B(a)P). Guest Editor: Dr. S. T. Rao.  相似文献   

6.
城市化对北京夏季极端高温影响的数值研究   总被引:5,自引:0,他引:5  
郑祚芳  高华  王在文  刘伟东 《生态环境》2012,(10):1689-1694
利用一个耦合了城市冠层模式(UCM)的区域数值模拟系统(WRF/NCAR),引入由LandsatTM提取的京津冀区域30m分辨率下垫面GIS数据集代替美国USGS地表分类数据,对2009年6月24—25日出现在北京地区的一次超过40℃极端高温天气过程进行了高分辨率数值模拟,用以考察WRF/UCM系统对北京“城市热岛”及城市高温天气的模拟效果,并分析了城市化对北京地区城市高温和地表能量平衡的影响及其日变化特征。结果表明:采用精细化下垫面分类数据集后能更好地模拟出主要高温区的分布特征,并能较好再现夜间的“城市热岛”效应。城市化发展对近地层气温的影响主要表现在会促使城区及其下风向近郊区气温的升高,增幅可达0.5~2℃,这与城市热岛及其下游效应有关。城市下垫面的高粗糙度对近地层风速表现出明显的阻挡效应,表现在模拟的10m风场减弱明显。考虑了城市下垫面属性的敏感性试验更好地再现了城区温度的日变化,其模拟的日间最高温度与实际观测值更为接近,也较好地模拟出了城区具有较高最低温度的特征。通过城区与郊区能量平衡过程差异的分析表明,城市化可以显著改变能量平衡中各项所占的比重。地表对近地层大气热量输送过程的变化表明随着城市下垫面的日愈扩大,会显著增强白天地表对大气的向上感热输送,增大城区日间出现高温的可能。夜间,模式反映出地表能量收入来自土壤热通量的向上输送,同样由于城区的潜热通量小,收入的能量仍主要以感热形式加热大气,夜间城区具有较高的最低温度并表现出较强的热岛特征,主要与夜间感热加热的持续相关。  相似文献   

7.
In this study a double model algorithm is developed for the simulation of the vertical profiles of monthly values of absolute humidity. The thrust of the algorithm is that is depends on the use of ground measurements for humidity and is based upon the use of two model relations for altitudes above and below 1 Km respectively. Monthly absolute humidity profiles as estimated using the specially constructed double model algorithm compare well with those calculated with the use of radiosonde data for the time period 1980–1990 (Helliniko station, Southern Greece). In particular the model estimation is very satisfactory at altitudes above the Planetary Boundary Layer and rather satisfying at altitudes below 1 Km. This implies that the model algorithm may be useful in supporting climatological studies in areas where lack of relevant information on the vertical distribution of water vapour is recognised.  相似文献   

8.
Shelterbelts are used for a variety of purposes in agricultural environments, primarily because of their ability to improve the downwind microclimate. Excessive evaporative losses from small, agricultural water supply reservoirs in semi-arid Western Australia motivated a combined numerical modelling and field investigation into the potential for using shelterbelts to reduce evaporation from these open waterbodies. A numerical model of the disturbed momentum and turbulence fields in the region modified by the wind-shelter was employed and accounted for the presence of a waterbody downwind. The model was coupled with conservation equations for heat and moisture and sensible and latent heat fluxes were estimated from the simulated momentum, temperature and humidity fields. The numerical simulations were tested against four days of field data from two experiments conducted in the agricultural districts of southwest Western Australia that measured boundary-layer evolution over a variety of small waterbodies protected by artifical and natural wind-shelters. The model provided good predictions of windspeed during neutral conditions, but inadequate specification of the upwind boundary during non-neutral stabilities resulted in the model failing to capture any sensitivity to atmospheric stability as seen in the field data. Despite this limitation, the temperature and humidity fields were adequately captured by the model, and evaporative mass flux predictions also agreed well with estimates taken from water-balance measurements. It is concluded that well-designed wind-shelters can reduce evaporation from open waterbodies by 20–30% as a result of reductions in the velocity scales responsible for removing moisture from the water surface. The model can be used to estimate the values of various shelterbelt design parameters (e.g., porosity, height) that could be applied in the field to provide optimum evaporation reductions.  相似文献   

9.
A comparative study of turbulence in a wind-tunnel model canopy is performed, using Large eddy simulation (LES) and experimental data from PIV and hot-wire anemometry measurements. The model canopy is composed of thin cylindrical stalks. In the LES, these are represented using a plant-scale approach, while the scale-dependent Lagrangian dynamic model is used as subgrid-scale model. LES predictions of turbulence statistics and energy spectra are found to be in good agreement with the experimental data. Turbulent kinetic energy (TKE) budgets from the LES simulation are analyzed to provide more information absent in the measurements. Results confirm that sloshing motions at the low levels of the canopy are mainly driven by pressure fluctuations. A difference between the energy flux obtained from the energy spectrum and the SGS dissipation rate is observed, consistent with a spectral bypass mechanism in which the real spectral flux due to cascade is smaller than that implied by the energy-spectrum level, due to direct drain by the canopy.  相似文献   

10.
We implemented the Weather Research and Forecast (WRF) model and WRF Large-Eddy Simulation (WRF–LES), focusing on calculations for the planetary boundary layer (PBL), and compared the results against a data set of a well-documented campaign, in the Houston–Galveston area, Texas, in summer 2006. A methodology using WRF in a mesoscale and LES was implemented to assess the performance of the model in simulating the evolution and structure of the PBL over Houston during the Vertical Mixing Experiment. Also, the WRF model in a real case mode was examined to explore potential differences between the results of each simulation approach. We analyzed both WRF results for key meteorological parameters like wind speed, wind direction and potential temperature, and compared the model results against the observations. The reasonably good agreement of LES results forced with observed surface fluxes provides confidence that LES describes turbulence quantities such as turbulent kinetic energy correctly and warrants further turbulence structure analysis. The LES results indicate a weak but noticeable nighttime turbulent kinetic energy which was produced by wind shear in Houston’s planetary boundary layer and which may likely be related to intermittent turbulence. This is supported by observations made at the University of Houston Moody Tower air quality station when intermittent peaks of carbon monoxide occurred in the evening, although the variability in wind conditions was very little.  相似文献   

11.
Antarctic lakes with simple plankton ecosystems are believed to be sensitive biological indicators of climate change. Models of the physical environment, in particular the ice layer, support understanding of how the ecosystems respond to meteorological variables. This paper describes how data from a previously reported automatic measuring probe and meteorological data from Davis station were used to develop a detailed thermodynamic model of the ice layer on Crooked Lake, one of the largest and deepest freshwater lakes in Antarctica. The general model structure is similar to a previously reported model of sea ice but with modifications specific to the Antarctic freshwater lake case informed by the data. The model inputs are atmospheric variables as well as water temperature, ice albedo and the radiation extinction coefficient for the ice. Heat and radiation fluxes at the ice–air and ice–water boundaries are calculated using equations chosen for their suitability for the Antarctic. In the case of shortwave radiation, equations were fitted to data from the automatic probe. Using the heat fluxes to establish boundary conditions, and incorporating the known thermodynamic properties of ice, the temperature profile within the ice and the resulting growth and melt of the ice can be calculated. The model uses a largely mechanistic approach, with most equations taken from established thermodynamic theories or empirical studies and only one adjustable parameter related to the sensible heat flux from the water, which is not easily calculated from the available data. It was found to accurately reproduce ice temperature and ice thickness data for the year 2003, with r2 = 0.89, n = 2005. Finally, the model was simplified to run with air temperature as the only input variable and was shown to perform well—this suggests that freshwater lake ice is affected more by air temperature than any other variable, and is therefore a useful indicator of climate change in its own right.  相似文献   

12.
In the present article, the potential of embedded large eddy simulation (ELES) approach to reliably predict pollutant dispersion around a model building in atmospheric boundary layer is assessed. The performance of ELES in comparison with large eddy simulation (LES) is evaluated in several ways. These include a number of qualitative and quantitative comparisons of time-averaged and instantaneous results with wind tunnel measurements supplemented by statistical data analyses using scatter plots and standard evaluation metrics. Results obtained by both LES and ELES approaches show very good agreement with the experiment. However, addition of turbulence to mean flow at Reynolds averaged Navier–Stokes (RANS)–LES interface in ELES approach not only increases the turbulence intensity, it also results in larger values of turbulent kinetic energy (TKE) as well as a shorter reattachment length in the wake region. Accordingly, higher levels of TKE predicted by ELES increase the local intensity of concentration leading to shorter plume shapes as compared with LES. In general, ELES shows better agreement with experiment on the surfaces of model building and also in the downstream wake region. In terms of computational costs, the CPU time required to obtain statistical values in ELES is about 49 % lower than that of LES and the number of iterations per time step is also reduced by 55 % as compared with LES.  相似文献   

13.
LES validation of urban flow,part II: eddy statistics and flow structures   总被引:1,自引:0,他引:1  
Time-dependent three-dimensional numerical simulations such as large-eddy simulation (LES) play an important role in fundamental research and practical applications in meteorology and wind engineering. Whether these simulations provide a sufficiently accurate picture of the time-dependent structure of the flow, however, is often not determined in enough detail. We propose an application-specific validation procedure for LES that focuses on the time dependent nature of mechanically induced shear-layer turbulence to derive information about strengths and limitations of the model. The validation procedure is tested for LES of turbulent flow in a complex city, for which reference data from wind-tunnel experiments are available. An initial comparison of mean flow statistics and frequency distributions was presented in part I. Part II focuses on comparing eddy statistics and flow structures. Analyses of integral time scales and auto-spectral energy densities show that the tested LES reproduces the temporal characteristics of energy-dominant and flux-carrying eddies accurately. Quadrant analysis of the vertical turbulent momentum flux reveals strong similarities between instantaneous ejection-sweep patterns in the LES and the laboratory flow, also showing comparable occurrence statistics of rare but strong flux events. A further comparison of wavelet-coefficient frequency distributions and associated high-order statistics reveals a strong agreement of location-dependent intermittency patterns induced by resolved eddies in the energy-production range. The validation concept enables wide-ranging conclusions to be drawn about the skill of turbulence-resolving simulations than the traditional approach of comparing only mean flow and turbulence statistics. Based on the accuracy levels determined, it can be stated that the tested LES is sufficiently accurate for its purpose of generating realistic urban wind fields that can be used to drive simpler dispersion models.  相似文献   

14.
Soil water and temperature regimes in the tropical moist forest on Barro Colorado Island, Panama, were simulated directly from meteorological data using the model SWEAT. Separate field observations from root-exclusion, litter-removal and control treatments in one small and one large forest gap were used for calibration and validation. After irrigating all treatments to field capacity, soil matric potential and temperature were measured over 17 days at four depths ≤50 mm using the filter-paper technique and bead thermistors. Understorey environments were also simulated under the same initial conditions. The results suggest that three distinct scenarios, controlled by gap size, describe how the above- and below-ground processes controlling soil drying are coupled: (1) in the large gap, root water extraction by surrounding trees is negligible so soil drying is dominated by evaporation from the soil surface. Soil temperature is dominated by direct solar heating and cooling due to evaporation. (2) In the small gap, root water extraction dominates soil drying with soil evaporation playing a minor role. Soil temperature is still dominated by direct sunlight with some cooling due to evaporation. (3) In the understorey, root water extraction dominates soil drying. Soil temperature is dominated by heat conduction from deep soil layers with some evaporation and sensible heat transfer. The contrasting soil drying regimes imposed by variation in canopy structure enhance micro-environmental heterogeneity and the scope for differential germination and seedling establishment in coexisting tropical tree species.  相似文献   

15.
Data from a comprehensive field study in the Riviera Valley of Southern Switzerland are used to investigate convective boundary layer structure in a steep valley and to evaluate wind and temperature fields, convective boundary layer height, and surface sensible heat fluxes as predicted by the mesoscale model RAMS. Current parameterizations of surface and boundary layer processes in RAMS, as well as in other mesoscale models, are based on scaling laws strictly valid only for flat topography and uniform land cover. Model evaluation is required to investigate whether this limits the applicability of RAMS in steep, inhomogeneous terrain. One clear-sky day with light synoptic winds is selected from the field study. Observed temperature structure across and along the valley is nearly homogeneous while wind structure is complex with a wind speed maximum on one side of the valley. Upvalley flows are not purely thermally driven and mechanical effects near the valley entrance also affect the wind structure. RAMS captured many of the observed boundary layer characteristics within the steep valley. The wind field, temperature structure, and convective boundary layer height in the valley are qualitatively simulated by RAMS, but the horizontal temperature structure across and along the valley is less homogeneous in the model than in the observations. The model reproduced the observed net radiation, except around sunset and sunrise when RAMS does not take into account the shadows cast by the surrounding topography. The observed sensible heat fluxes fall within the range of simulated values at grid points surrounding the measurement sites. Some of the scatter between observed and simulated turbulent sensible heat fluxes are due to sub-grid scale effects related to local topography.  相似文献   

16.
Intercomparison of Two Models,ETA and RAMS,with TRACT Field Campaign Data   总被引:1,自引:0,他引:1  
In this work a model intercomparison between RAMS and ETA models is carried out, with the aim of evaluating the quality and accuracy of these mesoscale models in reproducing the time evolution of the meteorology in real complex terrain. This is of great importance not only for meteorological forecast but also for air quality assessment. Numerical simulations are performed to reproduce the mean variables' fields and to compare them with measurements collected during the field campaign TRACT. The domain covers the Rhine valley and surrounding mountainous region and we consider a time period of two days. Results from simulations are compared to observations relative to ground stations and radiosoundings. A qualitative analysis is joined to a quantitative estimation of some reference statistical indexes. Both RAMS and ETA models performances are satisfactory when compared to the measured data and also their relative agreement is good. The mean variable fields are reproduced with a satisfactory degree of reliability, even if the simulated profiles are not able to describe the largest fluctuations of the variables. At the surface stations, the best agreement between predictions and observations is obtained for the wind velocity, while the quality of the results is lower for temperature and humidity.  相似文献   

17.
Environmental conditions act above and below ground, and regulate carbon fluxes and evapotranspiration. The productivity of boreal forest ecosystems is strongly governed by low temperature and moisture conditions, but the understanding of various feedbacks between vegetation and environmental conditions is still unclear. In order to quantify the seasonal responses of vegetation to environmental factors, the seasonality of carbon and heat fluxes and the corresponding responses for temperature and moisture in air and soil were simulated by merging a process-based model (CoupModel) with detailed measurements representing various components of a forest ecosystem in Hyytiälä, southern Finland. The uncertainties in parameters, model assumptions, and measurements were identified by generalized likelihood uncertainty estimation (GLUE). Seasonal and diurnal courses of sensible and latent heat fluxes and net ecosystem exchange (NEE) of CO2 were successfully simulated for two contrasting years. Moreover, systematic increases in efficiency of photosynthesis, water uptake, and decomposition occurred from spring to summer, demonstrating the strong coupling between processes. Evapotranspiration and NEE flux both showed a strong response to soil temperature conditions via different direct and indirect ecosystem mechanisms. The rate of photosynthesis was strongly correlated with the corresponding water uptake response and the light use efficiency. With the present data and model assumptions, it was not possible to precisely distinguish the various regulating ecosystem mechanisms. Our approach proved robust for modeling the seasonal course of carbon fluxes and evapotranspiration by combining different independent measurements. It will be highly interesting to continue using long-term series data and to make additional tests of optional stomatal conductance models in order to improve our understanding of the boreal forest ecosystem in response to climate variability and environmental conditions.  相似文献   

18.
叶飞  严平  钱坤  陈琛  刘和俊 《生态环境》2012,21(1):49-54
采用开路涡度相关系统对淮河流域农田湍流特征进行了4年连续监测,以该地区主要农作物小麦和水稻为例,对CO2通量数据进行分析处理。研究结果表明:农田CO2通量的日变化随季节变化明显,春、夏变化幅度明显大于秋、冬。2007—2010年淮河流域夏季农田CO2通量日变化规律均呈单峰型,白天为明显的碳汇;其日最大累计吸收量出现在2007年,可达16.1mg.m-2.s-1,最小值出现在2009年,为11.1 mg.m-2.s-1。在水稻拔节期垂直风速(W)、潜热通量(LE)、显热通量(H)、光合有效辐射(PAR)、净辐射(Rn)与CO2通量均呈负相关,通过对各项指标进行主成分分析,得到了新的综合指标F=-0.36ZX1+0.42ZX2+0.42ZX3+0.42ZX4+0.39ZX5+0.42ZX6+0.13ZX7,并经过计算得出中午1点是最大的碳汇,凌晨12点是最大的碳源。  相似文献   

19.
季节性干旱现象在我国中亚热带地区时有发生,为了研究该区域大气-生态系统之间的相互作用关系及其碳水收支状况,2002年起在江西省千烟洲(26.7°N,115.1°E)人工林生态系统建立了通量观测塔。2003年7月该人工林生态系统遭遇了历史上少有的高温少雨天气,本研究应用基于生理生态学过程的EALCO(Ecological Assimilation of Land and Climate Observation)模型及2003和2004年通量观测数据对该生态系统的水热通量进行了模拟,同时分析了干旱胁迫对它们产生的影响。结果显示,模型能够很好的模拟该生态系统的能量通量的日变化,净辐射、显热和潜热通量模拟值与实测值相关系数的平方(R2)及标准差分别为0.99和8.05 W.m-2;0.81和41.02 W.m-2;0.90和31.49 W.m-2,模型可以解释87%的日蒸散量的变化。从模拟结果看,2003年7月下旬(发生较严重干旱胁迫)较2004年同期(干旱程度轻)相比,冠层及土壤水势下降约2倍,植物蒸腾的日变化形式改变,根系吸水滞后冠层蒸腾的时间缩短约半小时,冠层导度下降40%~60%。模拟与观测结果均表明,2003年7月下旬每天正午的波文比大都介于1~2.2,而2004年同期正午的波文比则介于0.2~0.6。EALCO模型通过Ball模型将植物碳水过程耦合在一起,从而可以很好的模拟植物的气孔行为,进而准确的模拟植物水热过程对干旱的响应。土壤水分匮乏对冠层导度的限制是2003年干旱期间冠层潜热通量模拟值下降的根本原因。  相似文献   

20.
Essential prerequisites for a thorough model evaluation are the availability of problem-specific, quality-controlled reference data and the use of model-specific comparison methods. The work presented here is motivated by the striking lack of proportion between the increasing use of large-eddy simulation (LES) as a standard technique in micro-meteorology and wind engineering and the level of scrutiny that is commonly applied to assess the quality of results obtained. We propose and apply an in-depth, multi-level validation concept that is specifically targeted at the time-dependency of mechanically induced shear-layer turbulence. Near-surface isothermal turbulent flow in a densely built-up city serves as the test scenario for the approach. High-resolution LES data are evaluated based on a comprehensive database of boundary-layer wind-tunnel measurements. From an exploratory data analysis of mean flow and turbulence statistics, a high level of agreement between simulation and experiment is apparent. Inspecting frequency distributions of the underlying instantaneous data proves to be necessary for a more rigorous assessment of the overall prediction quality. From velocity histograms local accuracy limitations due to a comparatively coarse building representation as well as particular strengths of the model to capture complex urban flow features with sufficient accuracy are readily determined. However, the analysis shows that further crucial information about the physical validity of the LES needs to be obtained through the comparison of eddy statistics, which is focused on in part II. Compared with methods that rely on single figures of merit, the multi-level validation strategy presented here supports conclusions about the simulation quality and the model’s fitness for its intended range of application through a deeper understanding of the unsteady structure of the flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号