首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
刘霞  黄静  邹孝 《四川环境》2023,(4):127-133
挥发性有机物(VOCs)是形成细颗粒物(PM2.5)、臭氧(O3)等二次污染物的重要前体物,随着工业化和城市化的快速发展,以臭氧为特征的区域性复合型大气污染日益突出,为研究成都市污染源VOCs排放情况,根据成都市最新污染源普查数据,我们针对成都市工业源、农业源、移动源和生活源,采用监测数据法和系数法核算了成都市VOCs排放量,行业分布、地区分布,并结合各地区大气臭氧污染情况进行了相关性分析。经过统计分析,工业源和移动源为成都市主要VOCs排放源,工业源VOCs排放量位居前3位的行业分别为家具制造业、石油、煤炭及其他燃料加工业及印刷和记录媒介复制业,VOCs原辅材料使用量及VOCs排放量最多的是胶黏剂,移动源VOCs排放主要为机动车排放。成都市各地区VOCs排放量及臭氧年均值空间分布整体表现为西北高东南低,22个区(市)县VOCs排放量与大气臭氧日均值超标率正相关,15个区(市)县呈现出明显相关性,指数曲线较线性拟合程度较好,存在非线性关系。7个区(市)县VOCs排放与大气臭氧日均值超标率拟合程度较差,呈现出较弱的相关性。  相似文献   

2.
通过对成都市车辆信息(包括车流量、车辆构成及车辆行驶工况等)进行调研和测试,根据IVE模型得出了机动车NO_x的排放清单。结果表明,2012年成都市机动车NO_x排放总量为76 859.4t。其中,轻型载客车、出租车、重型客车、公交车、摩托车、轻型载货车、重型载货车的年排放量分别为10 796.8t、397.4t、985.9t、6 801.4t、3030.9t、13 081.8t和41 765.2t。在此基础上,利用GIS对成都市机动车排放NO_x总量按不同道路类型进行空间分配,得出机动车排放产生的NO_x总量的空间分布与排放源强分布高度一致。  相似文献   

3.
基于对成都市老旧小区、高层电梯住宅等不同居民住宅类型的油烟进行监测,得到不同时段PM2. 5和VOCs的排放浓度特征,并采用排放因子法计算得到成都市PM2. 5和VOCs的单户年平均排放量。成都市本次PM2. 5浓度在0. 028~0. 745mg/m3,高层住宅单户平均年排放量为0. 047 kg/a,老旧小区单户平均年排放量为0. 222 kg/a; VOCs平均浓度在0. 856~3. 695 mg/m3之间,高层住宅单户平均年排放量为0. 355 kg/a,老旧小区单户平均年排放量为0. 491 kg/a。  相似文献   

4.
基于全面的实地调研,获取了广安市2016年各典型污染源的活动水平数据,以城市大气污染物排放清单编制技术手册为指导,采用排放因子法,建立了广安市2016年大气污染源排放清单,并分析了主要污染源排放特征。结果表明,2016年广安市SO_2、NO_X、CO、PM_(10)、PM_(2.5)、VOCs、NH_3总排放量分别为31 706 t、28 084 t、115 874 t、56 415 t、19 710 t、24 774 t以及39 484 t。SO_2排放主要来自工业源;NO_X排放主要来自工业源和移动源;CO排放主要来自工业源、民用燃烧源及移动源;PM_(10)和PM_(2.5)排放来自工业源、扬尘源和露天秸秆焚烧;VOCs主要来自工业源、移动源以及溶剂使用源;NH_3主要来自农业排放。  相似文献   

5.
采用实地调研、资料收集等方式获得了2017年资阳市典型污染源的活动水平数据,参照城市大气污染物排放清单编制技术手册建立了基于排放因子法和物料衡算法的资阳市大气污染源排放清单,分析了主要污染物的行业排放特征和空间分布特征。结果表明,2017年资阳市SO2、NOX、CO、PM10、PM2.5、VOCs、NH3总排放量分别为3.58kt、13.91kt、94.91kt、25.51kt、8.67kt、23.84kt和46.44kt。SO2排放主要来自工业源;NOX排放主要来自移动源;CO排放主要来自工业过程及移动源;PM10和PM2.5、排放来自扬尘源和露天秸秆焚烧;VOCs主要来自溶剂使用源;NH3主要来自农业活动。资阳市主要污染物排放分布在工业点源较为集中的雁江区和安岳县,乐至县污染物排放量相对较小。  相似文献   

6.
利用挥发性有机物在线监测仪(GC-FID/MS)在成都市市区开展为期一个月的挥发性有机物监测,分析了VOCs浓度水平、组分构成、日变化规律,并分别利用PMF模型和排放清单法对VOCs的来源进行解析研究。结果表明,监测期间,VOCs小时平均浓度为7610~(-9),最高浓度为26210~(-9),最低浓度为14.810~(-9);监测物种类别中烷烃类占VOCs总体积浓度为38%,炔烃为17%,芳香烃为15%,烯烃为13%,卤代烃为9%,含氧(氮)类化合物为8%,浓度前十的物种分别为乙烷、乙炔、乙烯、丙烷、甲苯、己醛、二氯甲烷、苯、正丁烷和异戊烷,占总浓度的70%以上。烷烃、炔烃、烯烃、芳香烃在8点~10点间均出现浓度峰值,芳香烃、卤代烃以及含氧(氮)化合物浓度最高值出现在凌晨2点~5点;最低浓度则均出现在下午17点左右。基于PMF的方法,VOCs的来源解析结果为工业源贡献32%,机动车贡献26%,生物质燃烧贡献22%,溶剂源贡献7%,油气挥发贡献6%,本底混合源贡献7%;基于排放清单法,2015年成都市VOCs年排放量为36.9万t,工艺过程源、溶剂使用源、移动源分别贡献32%、32%、30%。  相似文献   

7.
长沙市空气自动站周边区域大气污染物排放源清单   总被引:1,自引:0,他引:1       下载免费PDF全文
以长沙市空气自动站周边3 km为研究对象,基于统计年鉴和实地调查,获得了该地区2015年储存运输源、废弃物处理源、工艺过程源、化石燃料固定燃烧源、农业源、生物质燃烧源、扬尘源、移动源8个源类的活动水平数据。以大气污染物排放源清单编制技术指南为依据,建立了2015年长沙市空气自动站周边3 km区域NH_3、NO_x、PM_(10)、PM_(2.5)、SO_2、VOCs等6项污染物的源排放清单。结果表明,2015年长沙空气自动站周边3 km内,8类大气污染源排放的NH_3、NO_x、PM_(2.5)、PM_(10)、SO_2、VOCs总量分别为53.65t、4 899.35t、1 846.09t、6 257.75t、989.49t、4 383.31t。NH_3、NO_x、PM_(2.5)、PM_(10)、SO_2、VOCs排放量最大的源分别是农业源、移动源、扬尘源、扬尘源、化石燃料固定燃烧源和移动源,贡献率分别为98.45%、84.24%、60.82%、85.90%、97.33%、49.88%。优化道路交通、减少燃煤、减少建筑工地扬尘排放可促进长沙市空气自动站周边空气质量改善。  相似文献   

8.
基于现场采样监测法,对沥青铺路现场和沥青搅拌站开展挥发性有机物(VOCs)组分及浓度的监测,利用排放因子法对四川省17个城市的沥青铺路排放源VOCs排放量进行了计算。结果表明,摊铺过程的VOCs浓度水平为1~3mg/m3,摊铺后浓度水平在0. 1~1mg/m3范围,在施工作业位旁瞬时样品浓度高达10mg/m3以上。沥青搅拌站和铺路现场的主要共同物种为萘、甲苯、间对二甲苯、异丁烷;四川省17城市对应的沥青铺路排放源VOCs的排放量为0. 63万t,主要的活性贡献物种为萘、间/对-二甲苯、顺-2-丁烯、1,2,4-三甲基苯、甲苯等。  相似文献   

9.
基于2014年南充市大气污染源排放清单调查,通过实地调研、现场测试与统计年鉴等获得活动水平数据,采用排放系数法估算建立排放清单。结果表明道路机动车保有量为877 197辆,摩托车、载客汽车、载货汽车占比分别为61.8%、29.9%、8.3%。道路移动源CO 39 631.2t,NO_X26 448t、VOCs 20 544t、HC 3 648t、PM101 777t、PM_(2.5)1 600t、SO2391.7t,主要污染物为CO、NO_X和VOCs。柴油重型载货汽车、柴油轻型载货汽车、柴油大型载客汽车是NO_X、SO2、PM10和PM_(2.5)主要排放源,普通摩托车、其他燃料小型载客汽车是CO、VOCs主要排放源。普通摩托车和汽油中型载货汽车是HC主要排放源。非道路移动源污染物总量NO_X2 322t,CO 1 173t,HC 657.2t、PM 467.7t、PM_(2.5)252.9t、VOCs 179.8t。农业机械对CO、PM_(2.5)、PM、THC排放贡献率高,分别为49.5%、50.2%、48.3%、30.0%;工程机械对NO_X、PM_(2.5)、PM、THC的贡献率高,分别为51.4%、40.3%、38.9%、39.3%;船舶对VOCS排放贡献为90.3%。顺庆、高坪、嘉陵的CO、NO_X、THC、PM排放贡献率较高,蓬安VOCS排放贡献率较高。  相似文献   

10.
根据《IPCC国家温室气体清单指南》和《省级温室气体清单编制指南》方法,建立2018年云南省16个州(市)城市生活垃圾处理温室气体排放清单,包括生活垃圾填埋和焚烧处理过程,并分析了温室气体排放的时间分布、空间分布和影响因素等。结果表明;(1)2018年云南省生活垃圾处理温室气体总排放量为536万t CO_2当量,各州(市)间排放量差异明显,滇中经济发达地区和滇东北人口密度较高地区排放量明显高于滇西北地区。(2)2005—2018年,云南省生活垃圾处理排放的温室气体量增长了191.3%,温室气体排放组成发生明显变化,CH4比重不断下降,CO_2比重不断增加。(3)城镇人口数量、生活垃圾处理量、经济发展水平与温室气体排放量显著相关,其中人口数量更为明显。  相似文献   

11.
基于四川省环境统计数据及相关资料,采用排放因子法计算得到宜宾市2014年VOCs排放量,同时估算了各污染源臭氧生成潜势。宜宾市各污染源2014年度排放VOCs共3.2万t,最主要的排放行业是工业过程源、道路移动源及溶剂使用源,分别占37%,22%和16%。宜宾市的臭氧生成潜势总量为9.5万t,移动源的贡献率最高,达37%,其次工业过程源和溶剂使用源分别贡献21%和17%。  相似文献   

12.
源强核算是环保部门实施污染控制、企业申请排污许可的重要依据,如何准确识别核算公式中的关键参数,提高核算结果的准确性一直备受关注。基于生态环境部推荐使用的《石化行业VOCs污染源排查工 作指南》方法,在对公式参数进行分类的基础上,重点对反映罐体结构和特点、反映外界条件和油品特性、变化范围较大的参数进行敏感性分析,在参数变化范围为20%时,确定VOCs源强核算敏感性参数和该参数对排放 量的影响程度分别为年周转量(7.35%)、油罐壁油垢因子(7.35%)、有风边缘密封损耗因子(4.47%)和零风边 缘密封损耗因子(3.18%)。结合某油库的实际调查和分析结果,对上述参数取值进行合理性分析,确定最佳参数组合,计算求得油库全年VOCs排放量为45.77 t/a,相较参数优化前的242.13 t/a低81.1%。该参数合理性分析方法为油库无组织排放源的调查与核算提供依据,也为企业合规性及排污许可的获取,及后期VOCs排放污染控制对策的制定和实施提供技术支持。  相似文献   

13.
化学合成类制药工业是我国挥发性有机物(VOCs)的重要排放源之一。首次采用泄漏检测与修复(LDAR)技术分析了某化学合成类原料药企业的生产车间、罐区及污水池动静密封点的泄漏情况,共完成462个密封点现场LDAR检测,测出8个泄漏点,总泄漏检出率为1.73%。依据LDAR检测结果 ,采用相关方程法估算设备动静密封点泄漏产生的VOCs排放量约为2.603 t/a。设备密封点类型中,法兰(用于生产工艺过程中压力容器和管道中可拆卸的连接与密封的组件)的VOCs泄漏排放量最大,约占89.4%,其次是泄压设备,占泄漏排放量的5.2%。建议在医药行业普遍推广LDAR技术,并及时修复高泄漏率的设备密封件。  相似文献   

14.
根据收集的青岛市九大类排放源的活动水平数据,本研究采用排放因子法结合调研实测等工作建立了青岛市VOCs源排放清单,结果表明,工业企业VOCs排放占总排放的比例达到43.17%。其中,工艺过程源类中排放占比较高的行业依次为橡胶和塑料制品业、非金属矿物制品业、原油加工及石油制品制造业、化学原料和化学制品制造业、黑色金属冶炼和压延加工业等;溶剂使用源类中排放占比较高的行业为金属制品业、皮革皮毛羽毛制品和制鞋业、印刷业、铁路船舶航空等设备制造业、汽车制造业等。通过对重点行业重点企业进行入场调研采样分析,本研究发现不同行业中VOCs组成特征有差异,多数行业VOCs物种排放以卤代烃、芳香烃、烷烃等为主,纺织印染业、制鞋业等部分行业以含氧有机物排放为主。通过调研和实测对部分行业的VOCs排放因子水平做了本地化深入研究,调研统计青岛市约49%的企业安装了VOCs治理设施;在企业所安装的VOCs治理设施中吸附法占比最大,占比为26%。  相似文献   

15.
泄漏检测与修复(LDAR)技术在石油炼制与石油化学企业得以广泛应用,但在油气开采、处理等 上游企业应用案例较少。采用LDAR技术对国内某天然气处理厂生产装置开展动静设备密封点的泄漏检测和 统计分析工作,共发现泄漏密封点23个,总泄漏率为0.47%;初次修复成功率为26.1%,修复后挥发性有机物(VOCs)排放量为1.8648t/a。通过开展LDAR工作,减少了VOCs的排放,为油气开采、处理等油气生产上 游企业治理VOCs无组织排放提供应用参考。  相似文献   

16.
根据排放系数法估算了南京市沥青铺路过程VOCs排放状况,并提出了针对性控制对策。结果表明:南京市2002—2014年沥青铺路VOCs排放量在3 100~24 730 t之间;沥青铺路VOCs主要在郊区排放,可能是郊区PM_(2.5)与O_3污染较重的原因之一;建议将沥青铺路VOCs排放纳入大气污染监管体系,实施污染的全过程控制。  相似文献   

17.
介绍了成都市空气质量预报系统的模式设置和排放源处理,并评估其对2017年2月成都市的气象要素和PM_(10)、PM_(2.5)、SO_2、NO_2小时浓度的24小时预报效果。结果表明,系统能较好的预报成都市主要气象要素的逐小时变化情况,平均气温、气压和相对湿度的相关系数均在0.72以上,但对累积降水的预报效果仍需优化;系统能合理的反映各污染物的时空分布,PM_(10)和PM_(2.5)的预报效果达优秀水平,但存在不同程度的高估;NO_2的预报值与实况值的时间变化趋势一致性最高,空间分布对应较好,但模式预报对其存在一定程度的低估;对SO_2有显著的高估,但其空间分布模拟效果最佳。优化源的空间分配,及时更新源排放清单,同时针对不同排放源提高小时尺度排放清单分辨率可能是未来提高成都市空气质量预报系统预报准确率的有效途径。  相似文献   

18.
冯程  肖况  贾凤菊  李琳 《四川环境》2023,(1):114-120
成都市2020年4月15~16日和4月28~5月6日分别发生了细颗粒物(PM2.5)污染过程和臭氧(O3)污染过程,利用2020年4月13~5月10日成都市区57种挥发性有机物(VOCs)小时数据,研究两次污染过程中VOCs对PM2.5污染和O3污染的影响。通过计算VOCs的臭氧生成潜势(OFP)、二次有机气溶胶生成潜势(SOAFP),以及使用比值分析法,探讨成都市VOCs优先控制物种及来源。结果表明,污染时段VOCs浓度较清洁时段均有所升高,但烷烃占比有所下降。污染时段的OFP和SOAFP较清洁时段均有所升高,间/对二甲苯和甲苯对SOA生成和O3生成贡献均排名前列,控制这两种组分的排放是成都市控制O3和SOA前体物的有效途径。比值分析结果得出,VOCs气团受本地排放影响较大,PM2.5污染时段和清洁时段的VOCs受机动车尾气排放影响较多,O3污染时段的VOCs除受到机动车尾气排放影响以外,还受溶剂使用的影响。作...  相似文献   

19.
探索土地利用碳排放的空间特征演化对制定区域化减排政策具有重要意义。利用重心模型和空间自相关模型,对我国2009—2016年土地利用碳排放的空间特征演变进行了研究。结果表明:①土地利用碳排放总量由2. 64×10~9t增长到3. 35×10~9t,地均排放量由1038. 42t/km~2增长到1189. 83t/km~2;强度在研究期内整体呈下降趋势,截至研究期末排放强度下降到0. 55t/万元。②排放总量和强度重心迁移方向一致,总量以西移为主且速度趋缓,强度以北移为主且速度趋强;地均排放量重心总体向西南迁移。③排放总量、地均排放量和强度均有较强的空间正相关关系,空间集聚显著。排放总量"热点"区稳定,"冷点"区由新疆和四川两地向川贵一带变动;地均排放量和强度的"热点"区与"冷点"区均相对稳定。因此,减排增效政策着力点应往西部偏移,积极引导西部地区发展低碳经济。  相似文献   

20.
文章针对化学实验室废气排放缺乏有效源强核算手段的现状,提出了一种基于气相色谱-质谱联用仪(GC-MS)和便携式傅立叶红外光谱分析仪(FTIR)联合监测的现场实测方法,并于2019年6月利用该方法对北京市某高校化学实验楼进行了12天的现场实测。研究结果显示,该高校化学实验楼的挥发性有机物(VOCs)排放量为1094.18±180.15kg/a,其中卤代烃、烷烃和含氧有机物占比较高,分别为57.5%、24.8%和21.0%。通过研究实验室试剂与废气的物质流关系,发现溶剂的使用是VOCs排放的重要来源,占全部来源的64.1%。对于高校化学实验室大气污染物排放的管控应该从源头和末端同时管理,通过严格管理实验室试剂的使用和增加末端尾气处理装置,从而降低实验室挥发性有机物的排放。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号