首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 621 毫秒
1.
In this study a column leaching method for investigation of hydrophobic organic contaminants (HOCs) leaching from soil was developed. The method set-up is based on a recycled flow of sterile water through a soil column with a sedimentation chamber mounted on top of the column, in connection with on-line filtration. The combination of a sedimentation chamber and an on-line filtration enables the measurement of leaching concentrations from contaminated materials consisting of very fine particle fractions. In addition, by using on-line solid phase extraction, minute amounts of leaching HOCs may be captured and quantified with high accuracy and reproducibility. The method was applied successfully on a contaminated aged soil sample and the leaching behavior of seven PAHs, with three to six aromatic rings, was monitored for more than 1600 h under saturated conditions. The tested PAHs were fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benzo(a)pyrene and benzo(ghi)perylene. The method proved to be reliable and capable of providing data on leachable amounts of the PAHs under field-like conditions and over a longer period of time. The results indicated low availability of the studied contaminants since only a minor fraction (0.3%) of the initial amount of PAHs in the soil was removed during the experiment (liquid/solid-ratio of 700 l/kg). Thus PAHs in aged contaminated soil are not to be expected to be released to any great extent only by leaching with water.  相似文献   

2.
Sequential supercritical fluid extraction (SFE) was performed in order to estimate desorption of PAHs from river floodplain soils which contain coal and coal-derived particles. Original soils, soils' light fractions (ρ < 2 g cm−3), and <63 μm fractions were studied for PAHs' desorption kinetics. Desorption data were successfully described using a two-site model. Desorption rate constants were one order of magnitude lower than those of “slow” and “very slow” desorption rates from other studies. This suggests very slow and extremely slow desorption. Estimated time scales releasing 99% of total extractable contaminants ranged from decades for 2-4-ring PAHs and hundreds of years for 5-6-ring PAHs. We demonstrate that, despite high soil PAH concentrations which are due to coal and coal-derived particles, the general environmental risk is reduced by the very slow and extremely slow desorption rates.  相似文献   

3.
Background, aim, and scope  Degradation of the 16 US EPA priority PAHs in soil subjected to bioremediation is often achieved. However, the PAH loss is not always followed by a reduction in soil toxicity. For instance, bioanalytical testing of such soil using the chemical-activated luciferase gene expression (CALUX) assay, measuring the combined effect of all Ah receptor (AhR) activating compounds, occasionally indicates that the loss of PAHs does not correlate with the loss of Ah receptor-active compounds in the soil. In addition, standard PAH analysis does not address the issue of total toxicant bioavailability in bioremediated soil. Materials and methods  To address these questions, we have used the CALUX AhR agonist bioassay and the Comet genotoxicity bioassay with RTL-W1 cells to evaluate the toxic potential of different extracts from a PAH-contaminated soil undergoing large-scale bioremediation. The extracts were also chemically analyzed for PAH16 and PCDD/PCDF. Soil sampled on five occasions between day 0 and day 274 of biological treatment was shaken with n-butanol with vortex mixing at room temperature to determine the bioavailable fraction of contaminants. To establish total concentrations, parts of the same samples were extracted using an accelerated solvent extractor (ASE) with toluene at 100°C. The extracts were tested as inducers of AhR-dependent luciferase activity in the CALUX assay and for DNA breakage potential in the Comet bioassay. Results  The chemical analysis of the toluene extracts indicated slow degradation rates and the CALUX assay indicated high levels of AhR agonists in the same extracts. Compared to day 0, the bioavailable fractions showed no decrease in AhR agonist activity during the treatment but rather an up-going trend, which was supported by increasing levels of PAHs and an increased effect in the Comet bioassay after 274 days. The bio-TEQs calculated using the CALUX assay were higher than the TEQs calculated from chemical analysis in both extracts, indicating that there are additional toxic PAHs in both extracts that are not included in the chemically derived TEQ. Discussion  The response in the CALUX and the Comet bioassays as well as the chemical analysis indicate that the soil might be more toxic to organisms living in soil after 274 days of treatment than in the untreated soil, due to the release of previously sorbed PAHs and possibly also metabolic formation of novel toxicants. Conclusions  Our results put focus on the issue of slow degradation rates and bioavailability of PAHs during large-scale bioremediation treatments. The release of sorbed PAHs at the investigated PAH-contaminated site seemed to be faster than the degradation rate, which demonstrates the importance of considering the bioavailable fraction of contaminants during a bioremediation process. Recommendations and perspectives  It has to be ensured that soft remediation methods like biodegradation or the natural remediation approach do not result in the mobilization of toxic compounds including more mobile degradation products. For PAH-contaminated sites this cannot be assured merely by monitoring the 16 target PAHs. The combined use of a battery of biotests for different types of PAH effects such as the CALUX and the Comet assay together with bioavailability extraction methods may be a useful screening tool of bioremediation processes of PAH-contaminated soil and contribute to a more accurate risk assessment. If the bioremediation causes a release of bound PAHs that are left undegraded in an easily extracted fraction, the soil may be more toxic to organisms living in the soil as a result of the treatment. A prolonged treatment time may be one way to reduce the risk of remaining mobile PAHs. In critical cases, the remediation concept might have to be changed to ex situ remediation methods.  相似文献   

4.
The fate of hydrophobic organic compounds (HOCs) in soils and waters in a northern boreal catchment was explored through the development of a chemical fate model in a well-characterised catchment system dominated by two land types: forest and mire. Input was based solely on atmospheric deposition, dominated by accumulation in the winter snowpack. Release from soils was governed by the HOC concentration in soil, the soil organic carbon fraction and soil-water DOC content. The modelled export of selected HOCs in surface waters ranged between 11 and 250 ng day−1 during the snow covered period, compared to 200 and 9600 ng/d during snow-melt; highlighting the importance of the snow pack as a source of these chemicals. The predicted levels of HOCs in surface water were in reasonable agreement to a limited set of measured values, although the model tended to over predict concentrations of HOCs for the forested sub-catchment, by over an order of magnitude in the case of hexachlorobenzene and PCB 180. This possibly reflects both the heterogeneity of the forest soils and the complicated and changing hydrology experienced between the different seasons.  相似文献   

5.
The residual levels of polycyclic aromatic hydrocarbons (PAHs) in the atmosphere and in dissolved phase from Lake Chaohu were measured by (GC–MS). The composition and seasonal variation were investigated. The diffusive air–water exchange flux was estimated by a two-film model, and the uncertainty in the flux calculations and the sensitivity of the parameters were evaluated. The following results were obtained: (1) the average residual levels of all PAHs (PAH16) in the atmosphere from Lake Chaohu were 60.85 ± 46.17 ng m−3 in the gaseous phase and 14.32 ± 23.82 ng m−3 in the particulate phase. The dissolved PAH16 level was 173.46 ± 132.89 ng L−1. (2) The seasonal variation of average PAH16 contents ranged from 43.09 ± 33.20 ng m−3 (summer) to 137.47 ± 41.69 ng m−3 (winter) in gaseous phase, from 6.62 ± 2.72 ng m−3 (summer) to 56.13 ± 22.99 ng m−3 (winter) in particulate phase, and 142.68 ± 74.68 ng L−1 (winter) to 360.00 ± 176.60 ng L−1 (summer) in water samples. Obvious seasonal trends of PAH16 concentrations were found in the atmosphere and water. The values of PAH16 for both the atmosphere and the water were significantly correlated with temperature. (3) The monthly diffusive air–water exchange flux of total PAH16 ranged from −1.77 × 104 ng m−2 d−1 to 1.11 × 105 ng m−2 d−1, with an average value of 3.45 × 104 ng m−2 d−1. (4) The results of a Monte Carlo simulation showed that the monthly average PAH fluxes ranged from −3.4 × 103 ng m−2 d−1 to 1.6 × 104 ng m−2 d−1 throughout the year, and the uncertainties for individual PAHs were compared. (5) According to the sensitivity analysis, the concentrations of dissolved and gaseous phase PAHs were the two most important factors affecting the results of the flux calculations.  相似文献   

6.
Formation of bound residues of pollutants in soils and sediments is an important process to control the fate of pollutants in the environment. The most of bound residue is not solvent extractable. In this paper, we measured both extractable and non-extractable polycyclic aromatic hydrocarbons (PAHs) in different organic matter fractions of samples from the Pearl River Delta, China. Non-extractable PAHs concentration was 234.45-1424.57 μg/kg and accounted for 33.78-57.44% of total PAHs. 2-3 Ring PAHs were the dominant species and differed in concentration substantially between the samples. The atomic ratio of PAHs over organic-C in the fractions ordered as solvent soluble organic matter > humin > humic acids, matching the content of aliphatic moieties in the fractions of organic matter. The ratio of extractable and non-extractable PAHs may relate to the aging process of PAHs in soil and sediment.  相似文献   

7.
A field lysimeter study was carried out to investigate whether the amendment of 2% powder and granular activated carbon (PAC and GAC) to a soil with moderate PAH contamination had an impact on the PAH bioaccumulation of earthworms and plants, since AC is known to be a strong sorbent for organic pollutants. Furthermore, secondary effects of AC on plants and earthworms were studied through growth and nutrient uptake, and survival and weight gain. Additionally, the effect of AC amendments on soil characteristics like pH, water holding capacity, and the water retention curve of the soil were investigated. Results show that the amendment of 2% PAC had a negative effect on plant growth while the GAC increased the growth rate of plants. PAC was toxic to earthworms, demonstrated by a significant weight loss, while the results for GAC were less clear due to ambiguous results of a field and a parallel laboratory study. Both kinds of AC significantly reduced biota to soil accumulation factors (BSAFs) of PAHs in earthworms and plants. The GAC reduced the BSAFs of earthworms by an average of 47 ± 44% and the PAC amendment reduced them by 72 ± 19%. For the investigated plants the BSAFs were reduced by 46 ± 36% and 53 ± 22% by the GAC and PAC, respectively.  相似文献   

8.
Passive air sampling (PAS) was employed to study the occurrence of gaseous and particle-bound PAHs in the North Chinese Plain. The averaged concentrations of gaseous and particle-bound PAHs were 485 ± 209 ng/m3 and 267 ± 161 ng/m3, respectively. The PAHs concentrations at urban sites were generally higher than those at rural ones with ratios <1.5 in spring, summer and fall, but differences between them were not significant for the wintertime and annually averaged concentrations. This urban-rural distribution pattern was related to the PAHs emission sources. PAHs spatial variation can be partially (49%) explained by emission with a simple linear regression method. Both the gaseous and particle-bound PAHs were highest in winter and lowest in summer, with winter/summer ratios of 1.8 and 8, respectively. Emission strength was the most important factor for the seasonality.  相似文献   

9.
Carbonaceous soil amendments are applied to contaminated soils and sediments to strongly sorb hydrophobic organic contaminants (HOCs) and reduce their freely dissolved concentrations. This limits biouptake and toxicity, but also biodegradation. To investigate whether HOCs sorbed to such amendments can be degraded at all, the desorption and biodegradation of low concentrations of 14C-labelled phenanthrene (?5 μg L?1) freshly sorbed to suspensions of the pure soil amendments activated carbon (AC), biochar (charcoal) and compost were compared. Firstly, the maximum abiotic desorption of phenanthrene from soil amendment suspensions in water, minimal salts medium (MSM) or tryptic soy broth (TSB) into a dominating silicone sink were measured. Highest fractions remained sorbed to AC (84 ± 2.3%, 87 ± 4.1%, and 53 ± 1.2% for water, MSM and TSB, respectively), followed by charcoal (35 ± 2.2%, 32 ± 1.7%, and 12 ± 0.3%, respectively) and compost (1.3 ± 0.21%, similar for all media). Secondly, the mineralization of phenanthrene sorbed to AC, charcoal and compost by Sphingomonas sp. 10-1 (DSM 12247) was determined. In contrast to the amounts desorbed, phenanthrene mineralization was similar for all the soil amendments at about 56 ± 11% of the initially applied radioactivity. Furthermore, HPLC analyses showed only minor amounts (<5%) of residual phenanthrene remaining in the suspensions, indicating almost complete biodegradation. Fitting the data to a coupled desorption and biodegradation model revealed that desorption did not limit biodegradation for any of the amendments, and that degradation could proceed due to the high numbers of bacteria and/or the production of biosurfactants or biofilms. Therefore, reduced desorption of phenanthrene from AC or charcoal did not inhibit its biodegradation, which implies that under the experimental conditions these amendments can reduce freely dissolved concentration without hindering biodegradation. In contrast, phenanthrene sorbed to compost was fully desorbed and biodegraded.  相似文献   

10.
In recent environmental legislation, such as the Water Framework Directive in the European Union (WFD, 2000/60/EC), the importance of metal speciation and biological availability is acknowledged, although analytical challenges remain. In this study, the Voltammetric In situ Profiler (VIP) was used for high temporal resolution in situ metal speciation measurements in estuarine waters. This instrument simultaneously determines Cd, Cu and Pb species within a size range (ca. <4 nm) that is highly relevant for uptake by organisms. The colloidal metal fraction can be quantified through a combination of VIP measurements and analyses of total dissolved metal concentrations.VIP systems were deployed over tidal cycles in a seasonal study of metal speciation in the Fal Estuary, southwest England. Total dissolved concentrations were 4.97-315 nM Cu, 0.13-8.53 nM Cd and 0.35-5.75 nM Pb. High proportions of Pb (77 ± 17%) and Cu (60 ± 25%) were present as colloids, which constituted a less important fraction for Cd (37 ± 30%). The study elucidated variations in the potentially toxic metal fraction related to river flow, complexation by organic ligands and exchanges between dissolved and colloidal phases and the sediment. Based on published toxicity data, the bioavailable Cu concentrations (1.7-190 nM) in this estuary are likely to severely compromise the ecosystem structure and functioning with respect to species diversity and recruitment of juveniles. The study illustrates the importance of in situ speciation studies at high resolution in pursuit of a better understanding of metal (bio)geochemistry in dynamic coastal systems.  相似文献   

11.
Kong W  Li C  Dolhi JM  Li S  He J  Qiao M 《Chemosphere》2012,87(5):542-548
Veterinary antibiotics are widely used for disease treatment, prevention and animal growth promoting. Frequent detection of veterinary antibiotics in environments, caused by land application of untreated or even treated antibiotics-containing animal wastes, has posed the growing concern of their adverse effect on natural ecosystems. Oxytetracycline (OTC) is one of the most widely-used veterinary antibiotics in livestock industry. OTC present as a cation, zwitterions, or net negatively charged ion in soils complicates predicting its sorption characteristics and potential bioavailability and toxicity. This study was to identify soil properties influencing OTC sorption and its subsequent bioavailability in five soils with various physical-chemical properties. A solution used to determine bioavailable analytes in soils and sediments, 1 M MgCl2 (pH 8.5), was chosen to desorb the potentially bioavailable fraction of OTC sorbed onto soils. Our results demonstrated that soils with higher illite content and permanent cation exchange capacity have higher OTC sorption capacity, but increase the availability of sorbed OTC indicated by higher release of sorbed OTC from soils into aqueous phase in 1 M MgCl2 (pH 8.5). Reversely, soil organic matter (SOM), clay, kaolinite, variable cation exchange capacity, DCB-Fe and -Al have lower OTC sorption capacity, but decrease the release of sorbed OTC from soils into 1 M MgCl2. These findings indicate that SOM and clay greatly influence OTC adsorption and potential availability. This study contributes significantly to our understanding of the potential bioavailability of sorbed OTC and the effects of soil properties on OTC sorption behaviors in soils.  相似文献   

12.
Thirteen PAHs, five nitro-PAHs and two hydroxy-PAHs were determined in 55 vapor-phase samples collected in a suburban area of a large city (Madrid, Spain), from January 2008 to February 2009. The data obtained revealed correlations between the concentrations of these compounds and a series of meteorological factors (e.g., temperature, atmospheric pressure) and physical–chemical factors (e.g., nitrogen and sulfur oxides). As a consequence, seasonal trends were observed in the atmospheric pollutants. A “mean sample” for the 14-month period would contain a total PAH concentration of 13 835 ± 1625 pg m−3 and 122 ± 17 pg m−3 of nitro-PAHs. When the data were stratified by season, it emerged that a representative sample of the coldest months would contain 18 900 ± 2140 pg m−3 of PAHs and 150 ± 97 pg m−3 of nitro-PAHs, while in an average sample collected in the warmest months, these values drop to 9293 ± 1178 pg m−3 for the PAHs and to 97 ± 13 pg m−3 for the nitro-PAHs. Total vapor phase concentrations of PAHs were one order of magnitude higher than concentrations detected in atmospheric aerosol samples collected on the same dates. Total nitro-PAH concentrations were comparable to their aerosol concentrations whereas vapor phase OH-PAHs were below their limits of the detection, indicating these were trapped in airborne particles.  相似文献   

13.

Laboratorial scale experiments were performed to evaluate the efficacy of a washing process using the combination of methyl-β-cyclodextrin (MCD) and tea saponin (TS) for simultaneous desorption of hydrophobic organic contaminants (HOCs) and heavy metals from an electronic waste (e-waste) site. Ultrasonically aided mixing of the field contaminated soil with a combination of MCD and TS solutions simultaneously mobilizes most of polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), and the analyte metal (Pb, Cu, and Ni) burdens. It is found that 15 g/L MCD and 10 g/L TS is an efficient reagent combination reconciling extraction performance and reagent costs. Under these conditions, the removal efficiencies of HOCs and heavy metals are 93.5 and 91.2 %, respectively, after 2 cycles of 60-min ultrasound-assisted washing cycles. By contrast, 86.3 % of HOCs and 88.4 % of metals are removed from the soil in the absence of ultrasound after 3 cycles of 120-min washing. The ultrasound-assisted soil washing could generate high removal efficiency and decrease the operating time significantly. Finally, the feasibility of regenerating and reusing the spent washing solution in extracting pollutants from the soil is also demonstrated. By application of this integrated technology, it is possible to recycle the washing solution for a purpose to reduce the consumption of surfactant solutions. Collectively, it has provided an effective and economic treatment of e-waste-polluted soil.

  相似文献   

14.
15.
Liu S  Xia X  Zhai Y  Wang R  Liu T  Zhang S 《Chemosphere》2011,82(2):223-228
The concentrations of black carbon (BC), total organic carbon (TOC) and polycyclic aromatic hydrocarbons (PAHs) have been determined in soils from urban and rural areas of Beijing. The rural area can be divided into plain and mountainous areas which are close to and relatively far from the urban area, respectively. Concentration of BC (5.83 ± 3.05 mg g−1) and BC/TOC concentration ratio (0.37 ± 0.15) in Beijing’s urban soil are high compared with that in world background soils and rural soils of Beijing, suggesting the urban environment to be an essential source and sink of BC. Concentration of BC in the urban area decreases from the inner city to exterior areas, which correlates with the urbanization history of Beijing and infers accumulation of BC in old urban soils. Black carbon in Beijing soils mainly comes from fossil fuel combustion, especially traffic emission. Median PAH concentration in the urban area (502 ng g−1) is one order of magnitude higher than that in the rural plain (148 ng g−1) and mountainous area (146 ng g−1) where PAHs are supposed to mainly come from atmospheric deposition from the urban area. Concentrations of BC correlate significantly with those of PAHs (p < 0.01, except naphthalene) in the urban area and with those of heavier 4-, 5- and 6- ring PAHs (p < 0.01) in the adjacent rural plain area, while there is no significant correlation with any PAH in the farther rural mountainous area.  相似文献   

16.
Reducing the transfer of contaminants from soils to plants is a promising approach to produce safe agricultural products grown on contaminated soils. In this study, 0-400 mg/kg cetyltrimethylammonium bromide (CTMAB) and dodecylpyridinium bromide (DDPB) were separately utilized to enhance the sorption of PAHs onto soils, thereby reducing the transfer of PAHs from soil to soil solution and subsequently to plants. Concentrations of phenanthrene and pyrene in vegetables grown in contaminated soils treated with the cationic surfactants were lower than those grown in the surfactant-free control. The maximum reductions of phenanthrene and pyrene were 66% and 51% for chrysanthemum (Chrysanthemum coronarium L.), 62% and 71% for cabbage (Brassica campestris L.), and 34% and 53% for lettuce (Lactuca sativa L.), respectively. Considering the impacts of cationic surfactants on plant growth and soil microbial activity, CTMAB was more appropriate to employ, and the most effective dose was 100-200 mg/kg.  相似文献   

17.
Eurasian perch (Perca fluviatilis) was exposed trophically to phenanthrene, pyrene and benzo[a]pyrene. Accumulation kinetics in the muscle tissue of parent PAHs and hydroxylated metabolites were established for 56 days at 3 levels of exposure (0, 100 and 500 μg/kg BW). Benzo[a]pyrene and 3-hydroxy-benzo[a]pyrene were not detected in the muscles. During exposure, there was an increase in phenanthrene, pyrene and their hydroxylated metabolites in the muscle tissue. Low transfer to muscle tissue was observed at equilibrium for phenanthrene (4.4 ± 0.6% and 2.7 ± 0.8%) and pyrene (1.0 ± 0.2% and 0.33 ± 0.09%), depending on the concentrations in the spiked feed.  相似文献   

18.
Triolein embedded cellulose acetate membrane (TECAM) was used for passive sampling of the fraction of naphthalene, phenanthrene, pyrene and benzo[a]pyrene in 18 field-contaminated soils. The sampling process of PAHs by TECAM fitted well with a first-order kinetics model and PAHs reached 95% of equilibrium in TECAM within 20 h. Concentrations of PAHs in TECAM (CTECAM) correlated well with the concentrations in soils (r2 = 0.693-0.962, p < 0.001). Furthermore, concentrations of PAHs determined in the soil solution were very close to the values estimated by CTECAM and the partition coefficient between TECAM and water (KTECAM-w). After lipid normalization nearly 1:1 relationships were observed between PAH concentrations in TECAMs and earthworms exposed to the soils (r2 = 0.591-0.824, n = 18, p < 0.01). These results suggest that TECAM can be a useful tool to predict bioavailability of PAHs in field-contaminated soils.  相似文献   

19.
Rapeseed (Brassica napus L.) has been cultivated for biodiesel production worldwide. Winter rapeseed is commonly grown in the southern part of Korea under a rice-rapeseed double cropping system. In this study, a greenhouse pot experiment was conducted to assess the effects of rapeseed residue applied as a green manure alone or in combinations with mineral N fertilizer on Cd and Pb speciation in the contaminated paddy soil and their availability to rice plant (Oryza sativa L.). The changes in soil chemical and biological properties in response to the addition of rapeseed residue were also evaluated. Specifically, the following four treatments were evaluated: 100% mineral N fertilizer (N100) as a control, 70% mineral N fertilizer + rapeseed residue (N70 + R), 30% mineral N fertilizer + rapeseed residue (N30 + R) and rapeseed residue alone (R). The electrical conductivity and exchangeable cations of the rice paddy soil subjected to the R treatment or in combinations with mineral N fertilizer treatment, N70 + R and N30 + R, were higher than those in soils subjected to the N100 treatment. However, the soil pH value with the R treatment (pH 6.3) was lower than that with N100 treatment (pH 6.9). Use of rapeseed residue as a green manure led to an increase in soil organic matter (SOM) and enhanced the microbial populations in the soil. Sequential extraction also revealed that the addition of rapeseed residue decreased the easily accessible fraction of Cd by 5-14% and Pb by 30-39% through the transformation into less accessible fractions, thereby reducing metal availability to the rice plant. Overall, the incorporation of rapeseed residue into the metal contaminated rice paddy soils may sustain SOM, improve the soil chemical and biological properties, and decrease the heavy metal phytoavailability.  相似文献   

20.
We determined concentrations, sources, and vertical distribution of OPAHs and PAHs in soils of Bratislava. The ∑14 OPAHs concentrations in surface soil horizons ranged 88-2692 ng g−1 and those of ∑34 PAHs 842-244,870 ng g−1. The concentrations of the ∑9 carbonyl-OPAHs (r = 0.92, p = 0.0001) and the ∑5 hydroxyl-OPAHs (r = 0.73, p = 0.01) correlated significantly with ∑34 PAHs concentrations indicating the close association of OPAHs with parent-PAHs. OPAHs were quantitatively dominated by 9-fluorenone, 9,10-anthraquinone, 1-indanone and benzo[a]anthracene-7,12-dione. At several sites, individual carbonyl-OPAHs had higher concentrations than parent PAHs. The concentration ratios of several OPAHs to their parent-PAHs and contribution of the more soluble OPAHs (1-indanone and 9-fluorenone) to ∑14 OPAHs concentrations increased with soil depth suggesting that OPAHs were faster vertically transported in the study soils by leaching than PAHs which was supported by the correlation of subsoil:surface soil ratios of OPAH concentrations at several sites with KOW.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号