首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polycyclic aromatic hydrocarbon (PAH) and metal-polluted sites caused by abandoned coking plants are receiving wide attention. To address the associated environmental concerns, innovative remediation technologies are urgently needed. This study was initiated to investigate the feasibility of a cleanup strategy that employed an initial phase, using methyl-β-cyclodextrin (MCD) solution to enhance ex situ soil washing for extracting PAHs and metals simultaneously, followed by the addition of PAH-degrading bacteria (Paracoccus sp. strain HPD-2) and supplemental nutrients to treat the residual soil-bound PAHs. Elevated temperature (50 °C) in combination with ultrasonication (35 kHz, 30 min) at 100 g MCD L?1 was effective in extracting PAHs and metals to assist soil washing; 93 % of total PAHs, 72 % of Cd, 78 % of Ni, 93 % of Zn, 84 % of Cr, and 68 % of Pb were removed from soil after three successive washing cycles. Treating the residual soil-bound PAHs for 20 weeks led to maximum biodegradation rates of 34, 45, 36, and 32 % of the remaining total PAHs, 3-ring PAHs, 4-ring PAHs, and 5(+6)-ring PAHs after washing procedure, respectively. Based on BIOLOG Ecoplate assay, the combined treatment at least partially restored microbiological functions in the contaminated soil. The ex situ cleanup strategy through MCD-enhanced soil washing followed by microbial augmentation can be effective in remediating PAH and metal-contaminated soil.  相似文献   

2.
The removal of polycyclic aromatic hydrocarbons (PAHs) from soil using water as flushing agent is relatively ineffective due to their low aqueous solubility. However, addition of cyclodextrin (CD) in washing solutions has been shown to increase the removal efficiency several times. Herein are investigated the effectiveness of cyclodextrin to remove PAH occurring in industrially aged-contaminated soil. Beta-cyclodextrin (BCD), hydroxypropyl-beta-cyclodextrin (HPCD) and methyl-beta-cyclodextrin (MCD) solutions were used for soil flushing in column test to evaluate some influent parameters that can significantly increase the removal efficiency. The process parameters chosen were CD concentration, ratio of washing solution volume to soil weight, and temperature of washing solution. These parameters were found to have a significant and almost linear effect on PAH removal from the contaminated soil, except the temperature where no significant enhancement in PAH extraction was observed for temperature range from 5 to 35 degrees C. The PAHs extraction enhancement factor compared to water was about 200.  相似文献   

3.
This study describes the potential application of lipopeptide biosurfactants in removal of petroleum hydrocarbons and heavy metals from the soil samples collected from industrial dumping site. High concentrations of heavy metals (like iron, lead, nickel, cadmium, copper, cobalt and zinc) and petroleum hydrocarbons were present in the contaminated soil samples. Lipopeptide biosurfactant, consisting of surfactin and fengycin was obtained from Bacillus subtilis A21. Soil washing with biosurfactant solution removed significant amount of petroleum hydrocarbon (64.5 %) and metals namely cadmium (44.2 %), cobalt (35.4 %), lead (40.3 %), nickel (32.2 %), copper (26.2 %) and zinc (32.07 %). Parameters like surfactant concentration, temperature, agitation condition and pH of the washing solution influenced the pollutant removing ability of biosurfactant mixture. Biosurfactant exhibited substantial hydrocarbon solubility above its critical micelle concentration. During washing, 50 % of biosurfactant was sorbed to the soil particles decreasing effective concentration during washing process. Biosurfactant washed soil exhibited 100 % mustard seed germination contradictory to water washed soil where no germination was observed. The results indicate that the soil washing with mixture of lipopeptide biosurfactants at concentrations above its critical micelle concentration can be an efficient and environment friendly approach for removing pollutants (petroleum hydrocarbon and heavy metals) from contaminated soil.  相似文献   

4.
Mihee Lim  Myoung-Jin Kim 《Chemosphere》2013,90(4):1526-1532
This study aims at evaluating the reuse feasibility of effluent produced by the soil washing of mine tailings with oxalic acid. Alkaline chemicals such as NaOH, Ca(OH)2, and Na2CO3 are used for the precipitation of arsenic and heavy metals in the effluent containing oxalic acid. All of the target contaminants are removed with very high efficiency (up to 100%) at high pH. The precipitation using NaOH at pH 9 is determined to be the most cost-effective method for the removal of arsenic as well as heavy metals in the effluent. The effluent decontaminated by NaOH is consecutively reused for the soil washing of raw mine tailings, resulting in considerable efficiency. Furthermore, even more arsenic and heavy metals are extracted from raw mine tailings by acidifying the decontaminated effluent under the alkaline condition, compared with direct reuse of the decontaminated effluent. Here, the oxalic acid, which is a weak complex-forming ligand as well as a weak acid, has noticeable effects on both soil washing and effluent treatment by precipitation. It extracts efficiently the contaminants from the mine tailings without adverse change of soil and also makes possible the precipitation of the contaminants in the effluent unlike strong chelating reagent. Reuse of the washing effluent containing oxalic acid would make the existing soil washing process more environment-friendly and cost-effective.  相似文献   

5.
When a contaminated site contains pollutants including both nonvolatile metals and Hg, one single remediation technology may not satisfactorily remove all contaminants. Therefore, in this study, chemical extraction and thermal treatment were combined as a remediation train to remove heavy metals, including Hg, from contaminated soil. A 0.2 M solution of ethylenediamine tetraacetic acid (EDTA) was shown to be the most effective reagent for extraction of considerable amounts of Cu, Pb, and Zn (>50%). Hg removal was ineffective using 0.2 M EDTA, but thermogravimetric analysis suggested that heating to 550°C with a heating rate of 5°C/min for a duration of 1 hr appeared to be an effective approach for Hg removal. With the employment of thermal treatment, up to 99% of Hg could be removed. However, executing thermal treatment prior to chemical extraction reduced the effectiveness of the subsequent EDTA extraction because nonvolatile heavy metals were immobilized in soil aggregates after the 550°C treatment. The remediation train of chemical extraction followed by thermal treatment appears to remediate soils that have been contaminated by many nonvolatile heavy metals and Hg.
ImplicationsA remediation train conjoining two or more techniques has been initialized to remove multiple metals. Better understandings of the impacts of treatment sequences, namely, which technique should be employed first on the soil properties and the decontamination efficiency, are in high demand. This study provides a strategy to remove multiple heavy metals including Hg from a contaminated soil. The interactions between thermal treatment and chemical extraction on repartitioning of heavy metals was revealed. The obtained results could offer an integrating strategy to remediate the soil contaminated with both heavy metals and volatile contaminants.  相似文献   

6.
Recycling EDTA solutions used to remediate metal-polluted soils   总被引:7,自引:0,他引:7  
The objective of this research was to investigate the recycling of ethylenediamine-tetraacetic acid (EDTA) used for the removal of trace metals from contaminated soils. We successfully used Na2S combined with Ca(OH)2 to precipitate the trace metals allowing us to recycle the EDTA. The results of batch and column leaching experiments show that both Ca-EDTA and Na-EDTA are powerful chelating agents with a similar soil remediation potential. The major advantage of Ca-EDTA is the preservation of soil organic matter. We found that Na2S was capable of separating the metals Cd, Cu and Pb from EDTA; however, the precipitation of Zn required the addition of Ca(OH)2. After reusing the reclaimed EDTA seven times, over a 14-day period, EDTA reagent losses ranged from 19.5% to 23.5%. Successive washing cycles enhanced the removal of trace metals from contaminated soils. The metal sulfide precipitates contain high concentrations of metals and could potentially be recycled.  相似文献   

7.

Heavy metal-contaminated sediments posed a serious threat to both human beings and environment. A biosurfactant, rhamnolipid, was employed as the washing agent to remove heavy metals in river sediment. Batch experiments were conducted to test the removal capability. The effects of rhamnolipid concentration, washing time, solution pH, and liquid/solid ratio were investigated. The speciation of heavy metals before and after washing in sediment was also analyzed. Heavy metal washing was favored at high concentration, long washing time, and high pH. In addition, the efficiency of washing was closely related to the original speciation of heavy metals in sediment. Rhamnolipid mainly targeted metals in exchangeable, carbonate-bound or Fe-Mn oxide-bound fractions. Overall, rhamnolipid biosurfactant as a washing agent could effectively remove heavy metals from sediment.

  相似文献   

8.

Few studies have carried out soil washing experiments using pot experiments to simulate in situ soil washing operations, particularly for alkaline soils. This study explored the effects of multiple washing operations using pot experiments on the removal efficiencies of potentially toxic metals (PTM) from alkaline farmland soil and the reuse strategy of washed soil for safe agricultural production. The results showed that the removal efficiencies of Cd, Pb, Cu, and Zn after seven washings with a mixed chelator (EDTA, GLDA, and citric acid) were 41.1%, 47.1%, 14.7%, and 26.5%, respectively, which was close to the results of the EDTA treatment. For the alkaline soil studied, the second washing with the mixed chelators most effectively removed PTM owing to the activation of them after the first washing operation. The mixed chelator more effectively increased the proportion of stable fraction of PTM and maintained soil nutrients (e.g., nitrogen content) than EDTA, indicating little disturbance of alkaline soil quality after washing with the mixed chelator. After the amendment of the washed soil, there was no visible difference in the biomass weight of crops from the soils washed with different agents, indicating that the inhibitory effect of both washing agents on plant growth was effectively alleviated. The Cd and Pb contents in Z. mays were below the threshold of Hygienical Standard for Feeds of China (GB 13078–2017) (1 and 30 mg·kg?1). Moreover, after three cropping operations, the available concentrations of PTM in the soil washed with the mixed chelator were lower than those in the soil washed with EDTA, indicating the value and potential of agricultural reuse of alkaline farmland soil washed with the mixed chelator.

Graphical abstract
  相似文献   

9.
Urum K  Pekdemir T  Ross D  Grigson S 《Chemosphere》2005,60(3):334-343
This study investigated the removal of crude oil from soil using air sparging assisted stirred tank reactors. Two surfactants (rhamnolipid and sodium dodecyl sulfate, SDS) were tested and the effects of different parameters (i.e. temperature, surfactant concentrations, washing time, volume/mass ratio) were investigated under varying washing modes namely, stirring only, air sparging only and the combination of stirring and air sparging. The results showed that SDS removed more than 80% crude oil from non-weathered soil samples, whilst rhamnolipid showed similar oil removal at the third and fourth levels of the parameters tested. The oil removal ability of the seawater prepared solutions were better than those of the distilled water solutions at the first and second levels of temperature and concentration of surfactant solutions. This approach of soil washing was noted to be effective in reducing the amount of oil in soil. Therefore we suggested that a field scale test be conducted to assess the efficiency of these surfactants.  相似文献   

10.
Recycling chelant is a precondition for cost-effective EDTA-based soil remediation. Extraction with EDTA removed 67.5% of Pb from the contaminated soil and yielded washing solution with 1535 mg L−1 Pb and 33.4 mM EDTA. Electrochemical treatment of the washing solution using Al anode, current density 96 mA cm−2 and pH 10 removed 90% of Pb from the solution (by electrodeposition on the stainless steel cathode) while the concentration of EDTA in the treated solution remained the same. The obtained data indicate that the Pb in the EDTA complex was replaced by electro-corroded Al after electro-reduction of the EDTA and subsequently removed from the solution. Additional soil extraction with the treated washing solution resulted in total removal of 87% of Pb from the contaminated soil. The recycled EDTA retained the Pb extraction potential through several steps of soil extraction and washing solution treatment, although part of the EDTA was lost by soil absorption.  相似文献   

11.
This study evaluated the efficacy of a washing process with cyclodextrin in combination with ethylenediaminetetraacetate (EDTA) for the simultaneous mobilization of heavy metals and PCBs from a field contaminated soil. Ultrasonically aided mixing of the field contaminated soil with a combination of cyclodextrin solution (10%, w/v) and a sparing quantity (2 mmol) of EDTA, simultaneously mobilized appreciable quantities of PCBs and much of the analyte metal (Cd, Cr, Cu, Mn, Ni, Pb, Zn) burdens. Relative to the action of individual reagents, a combination of randomly methylated (RAMEB) or hydroxypropyl beta-cyclodextrin (HPCD) with EDTA did not alter the PCB extraction efficiency nor did the presence of cyclodextrin change the efficiency of mobilization of most heavy metals (Al, Cd, Cr, Fe, Mn, Ni, and Zn) but did increase the recovery of Cu and Pb modestly. Three sonication-washes with the same charge of reagents mobilized appreciable quantities of PCBs (40-76%) and quantitatively extracted the labile fraction of Cd, Cu, Mn, and Pb. RAMEB proved to be more efficient than HPCD for PCB extractions. Three successive extractions with a single charge of cyclodextrin mobilized almost as much PCB (RAMEB, 76%; HPCD, 40%) as did the companion extractions that used fresh reagents each time (RAMEB, 78%; HPCD, 42%). Collectively, these studies demonstrated that PCB compounds and selected heavy metals can be co-extracted efficiently from soil with three successive washes with the same washing suspension containing EDTA and cyclodextrin.  相似文献   

12.
Yardin G  Chiron S 《Chemosphere》2006,62(9):1395-1402
The technical feasibility and performances of coupling flushing abilities of cyclodextrin solutions for 2,4,6-trinitrotoluene (TNT) removal from contaminated soil and the ability of Photo-Fenton treatment for final disposal of soil extract solutions containing high TNT loads have been investigated at laboratory scale. Methylated-beta-cyclodextrin (MCD) has shown better ability than hydroxypropyl-beta-cyclodextrin (HPCD) to complex TNT. The MCD solution increased the aqueous concentration of TNT in soil extract effluents as much as 2.1 times the concentrations obtained during the water flush of the soil. TNT in soil extract solution has been treated by Photo-Fenton. Our results indicate that MCD has a beneficial effect on the degradation rates of TNT. This relative improvement of TNT degradation rate (1.3 time) in presence of high amounts of hydroxyl radical scavengers can be ascribed to the formation of a ternary complex (TNT-cyclodextrin-iron) which can direct hydroxyl radical reaction toward TNT. Complete mineralization of soil extraction solutions was not achieved and TNT degradation pathway has been elucidated in order to ensure that no potential toxic intermediate is left at the end of the treatment time. After successive TNT hydroxylations, oxidative opening of the TNT aromatic ring quickly occurred, leading to the accumulation of short chain carboxylic acids such as oxalic acid and formic acid.  相似文献   

13.

A pot experiment and a leaching experiment were conducted to investigate the effects of earthworms and pig manure on heavy metals (Cd, Pb, and Zn) immobility, in vitro bioaccessibility and leachability under simulated acid rain (SAR). Results showed manure significantly increased soil organic carbon (SOC), dissolved organic carbon (DOC), available phosphorus (AP), total N, total P and pH, and decreased CaCl2-extractable metals and total heavy metals in water and SAR leachate. The addition of earthworms significantly increased AP (from 0.38 to 1.7 mg kg?1), and a downward trend in CaCl2-extractable and total leaching loss of heavy metals were observed. The combined earthworm and manure treatment decreased CaCl2-extractable Zn, Cd, and Pb. For Na4P2O7-extractable metals, Cd and Pb were decreased with increasing manure application rate. Application of earthworm alone did not contribute to the remediation of heavy metal polluted soils. Considering the effects on heavy metal immobilization and cost, the application of 6% manure was an alternative approach for treating contaminated soils. These findings provide valuable information for risk management during immobilization of heavy metals in contaminated soils.

  相似文献   

14.
Effects of Cd and Pb on soil microbial community structure and activities   总被引:6,自引:0,他引:6  

Background, aim, and scope  

Soil contamination with heavy metals occurs as a result of both anthropogenic and natural activities. Heavy metals could have long-term hazardous impacts on the health of soil ecosystems and adverse influences on soil biological processes. Soil enzymatic activities are recognized as sensors towards any natural and anthropogenic disturbance occurring in the soil ecosystem. Similarly, microbial biomass carbon (MBC) is also considered as one of the important soil biological activities frequently influenced by heavy metal contamination. The polymerase chain reaction–denaturing gradient gel electrophoresis (DGGE) has recently been used to investigate changes in soil microbial community composition in response to environmental stresses. Soil microbial community structure and activities are difficult to elucidate using single monitoring approach; therefore, for a better insight and complete depiction of the soil microbial situation, different approaches need to be used. This study was conducted in a greenhouse for a period of 12 weeks to evaluate the changes in indigenous microbial community structure and activities in the soil amended with different application rates of Cd, Pb, and Cd/Pb mix. In a field environment, soil is contaminated with single or mixed heavy metals; so that, in this research, we used the selected metals in both single and mixed forms at different application rates and investigated their toxic effects on microbial community structure and activities, using soil enzyme assays, plate counting, and advanced molecular DGGE technique. Soil microbial activities, including acid phosphatase (ACP), urease (URE), and MBC, and microbial community structure were studied.  相似文献   

15.
Pociecha M  Lestan D 《Chemosphere》2012,86(8):843-846
Soil washing with EDTA is known to be an effective means of removing toxic metals from contaminated soil. A practical way of recycling of used soil washing solution remains, however, an unsolved technical problem. We demonstrate here, in a laboratory scale experiment, the feasibility of using acid precipitation to recover up to 50% of EDTA from used soil washing solution obtained after extraction of Pb (5330 mg kg−1), Zn (3400 mg kg−1), Cd (35 mg kg−1) and As (279 mg kg−1) contaminated soil. Up to 100% of EDTA residual in the washing solution and 100%, 97%, 98% and 100% of initial Pb, Zn, Cd and As concentration in the solution, respectively, were removed in an electrolytic cell using a graphite anode. We employed the recovered EDTA and treated washing solution to prepare recycled soil washing solution with the same potential for extracting toxic metals from soil as the original. The efficiency of soil washing depends on the EDTA concentration. Using twice recycled 30 mmol EDTA kg−1 soil, we removed 44%, 20%, 53% and 61% of Pb, Zn, Cd and As, respectively, from contaminated soil.  相似文献   

16.
EDTA强化电动力学修复重金属复合污染土壤   总被引:2,自引:0,他引:2  
在自制的电动力学装置中,研究多种重金属复合污染土壤的电动力学修复,通过在阴极添加络合剂EDTA来提高修复效率。实验结果表明,EDTA的引入提高了修复过程中的电流值,且EDTA与重金属的络合提高了污染物向电极液的迁移效率,从而强化了电动力学修复效果。在设定的浓度(0、0.01、0.02、0.05和0.1 mol/L)中,0.1 mol/L的EDTA具有最佳的修复效率。在此实验条件下,污染土壤中的总铜、总铅和总镉的去除率分别为90.2%、68.1%和95.1%。电动力学修复后,对土壤重金属进行化学形态分析,发现电动力学修复显著改变了土壤重金属存在形态,修复后土壤中的铜、铅、镉主要以较稳定的有机态和残余态形式存在,显著降低了对周边生物和环境的毒害。  相似文献   

17.
Soil washing is a treatment process that can be used to remediate both organic and inorganic pollutants from contaminated soils, sludges, and sediments. A soil washing procedure was evaluated utilizing about 100 g samples of soil that had been field-contaminated with arsenic, chromium, copper, pentachlorophenol (PCP), polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs). The highest level of mobilization/detoxification was achieved in three soil washes with a mixture of 0.1M [S,S]-ethyelnediaminedisuccinate ([S,S]-EDDS) and 2% Brij 98 at pH 9 with 20 min of ultrasonication treatment at room temperature. This combination mobilized 70% of arsenic, 75% of chromium, 80% of copper, 90% of PCP, and 79% of PCDDs and PCDFs, so that the decontaminated soil met the maximum acceptable concentrations of the generic C-level criteria regulated by the Ministère du Développement Durable, de l’Environnement et des Parcs for the Province of Québec, Canada.The organic pollutants were back-extracted from the aqueous suspension with hexane. Heavy metals were virtually completely precipitated from the aqueous washing suspension with Mg0 particles at room temperature. The PCP was detoxified by catalytic hydrodechlorination with a stream of 5% (v/v) H2-supercritical CO2 that transported the organosoluble fraction through a reaction chamber containing 2% Pd/γ-Al2O3.In toto, this soil washing procedure demonstrates that persistent organic pollutants and selected heavy metals can be co-extracted efficiently from a field-contaminated soil with three successive washes with the same soil washing solution containing [S,S]-EDDS and a non-ionic surfactant (Brij 98) in admixture. An industrial-scale ex situ soil washing procedure with a combination of a non-ionic surfactant and a complexing reagent seems to be a plausible remediation technique for this former wooden utility pole storage facility.  相似文献   

18.

Using association of plants, nanomaterials, and plant growth-promoting bacteria (PGPR) is a novel approach in remediation of heavy metal-contaminated soils. Co-application of nanoscale zerovalent iron (nZVI) and PGPR to promote phytoremediation of Sb-contaminated soil was investigated in this study. Seedlings of Trifolium repens were exposed to different regimes of nZVI (0, 150, 300, 500, and 1000 mg/kg) and the PGPR, separately and in combination, to investigate the effects on plant growth, Sb uptake, and accumulation and physiological response of the plant in contaminated soil. Co-application of nZVI and PGPR had positive effects on plant establishment and growth in contaminated soil. Greater accumulation of Sb in the shoots compared to the roots of T. repens was observed in all treatments. Using nZVI significantly increased accumulation capacity of T. repens for Sb with the greatest accumulation capacity of 3896.4 μg per pot gained in the “PGPR+500 mg/kg nZVI” treatment. Adverse impacts of using 1000 mg/kg nZVI were found on plant growth and phytoremediation performance. Significant beneficial effect of integrated use of nZVI and PGPR on plant photosynthesis was detected. Co-application of nZVI and PGPR could reduce the required amounts of nZVI for successful phytoremediation of metalloid polluted soils. Intelligent uses of plants in accompany with nanomaterials and PGPR have great application prospects in removal of antimony from soil.

  相似文献   

19.
采用生物淋滤法处理电子垃圾焚烧迹地重金属严重污染的土壤。所用氧化亚铁硫杆菌是从矿坑废水中通过一系列培养、分离和纯化得到。实验结果表明,生物淋滤法可以有效地去除土壤中重金属Cu、Pb和Zn,去除率的大小顺序为Zn>Cu>Pb;采用五步连续提取法分析处理前后土壤中重金属的存在形态,结果表明,通过氧化亚铁硫杆菌处理受重金属污染的土壤,可以促使易移动的重金属结合态的溶解(可交换态、碳酸盐结合态和Fe-Mn氧化物结合态),并使难移动的重金属结合态向易移动的重金属结合态转变。  相似文献   

20.
Electrokinetic (EK) remediation has potential to simultaneously remove heavy metals and organic compounds from soil, but the removal percent of these pollutants is very low in general if no enhancing treatment is applied. This study developed a new enhanced-EK remediation technology to decontaminate a heavy metal–organic compound co-contaminated soil by applying different oxidants and pH control. A red soil was used as a model clayed soil, and was spiked with pyrene and Cu at about 500 mg kg?1 for both to simulate real situation. Bench-scale EK experiments were performed using four oxidants (H2O2, NaClO, KMnO4, and Na2S2O8) and controlling electrolyte pH at 3.5 or 10. After the treatments with 1.0 V cm?1 of voltage gradient for 335 h, soil pH, electrical conductivity, and the concentrations and chemical fractionations of soil pyrene and Cu were analyzed. The results showed that there was significant migration of pyrene and Cu from the soil, and the removal percent of soil pyrene and Cu varied in the range of 30–52% and 8–94%, respectively. Low pH favoured the migration of soil Cu, while KMnO4 was the best one for the degradation of pyrene among the tested oxidants, although it unfortunately prevented the migration of soil Cu by forming Cu oxide. Application of Na2S2O8 and to control the catholyte pH at 3.5 were found to be the best operation conditions for decontaminating the Cu-pyrene co-contaminated soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号