首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
废物处理   1篇
污染及防治   1篇
  2021年   1篇
  2020年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.

Using association of plants, nanomaterials, and plant growth-promoting bacteria (PGPR) is a novel approach in remediation of heavy metal-contaminated soils. Co-application of nanoscale zerovalent iron (nZVI) and PGPR to promote phytoremediation of Sb-contaminated soil was investigated in this study. Seedlings of Trifolium repens were exposed to different regimes of nZVI (0, 150, 300, 500, and 1000 mg/kg) and the PGPR, separately and in combination, to investigate the effects on plant growth, Sb uptake, and accumulation and physiological response of the plant in contaminated soil. Co-application of nZVI and PGPR had positive effects on plant establishment and growth in contaminated soil. Greater accumulation of Sb in the shoots compared to the roots of T. repens was observed in all treatments. Using nZVI significantly increased accumulation capacity of T. repens for Sb with the greatest accumulation capacity of 3896.4 μg per pot gained in the “PGPR+500 mg/kg nZVI” treatment. Adverse impacts of using 1000 mg/kg nZVI were found on plant growth and phytoremediation performance. Significant beneficial effect of integrated use of nZVI and PGPR on plant photosynthesis was detected. Co-application of nZVI and PGPR could reduce the required amounts of nZVI for successful phytoremediation of metalloid polluted soils. Intelligent uses of plants in accompany with nanomaterials and PGPR have great application prospects in removal of antimony from soil.

  相似文献   
2.
Journal of Material Cycles and Waste Management - The COVID-19 pandemic have brought several environmental problems worldwide, among which management of municipal solid wastes (MSW) is of great...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号