首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Incidental exposure to high explosive compounds can cause subtle health effects to which a population could be more susceptible than injury by detonation. Proper source characterization is a key requirement in the conduct of risk assessments. For nonvolatile solid explosives, dissolution is one of the primary mechanisms that controls fate and transport, resulting in exposure to these compounds remote from their source. To date, information describing dissolution rates of high explosives has been sparse. The objective of this study was to determine the dissolution rates of three high explosive compounds, 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), in dilute aqueous solutions as a function of temperature, surface area, and energy input. To determine each variable's impact on dissolution rate, experiments were performed where one variable was changed while the other two were held constant. TNT demonstrated the fastest dissolution rate followed by HMX and then RDX. Dissolution rate correlation equations were developed for each explosive compound incorporating the three aforementioned variables, independently, and collectively in one correlation equation.  相似文献   

2.
Solid phase high explosive (HE) residues from munitions detonation may be a persistent source of soil and groundwater contamination at military training ranges. Saturated soil column tests were conducted to observe the dissolution behavior of individual components (RDX, HMX, and TNT) from two HE formulations (Comp B and C4). HE particles dissolved readily, with higher velocities yielding higher dissolution rates, higher mass transfer coefficients, and lower effluent concentrations. Effluent concentrations were below solubility limits for all components at superficial velocities of 10-50 cm day(-1). Under continuous flow at 50 cm day(-1), RDX dissolution rates from Comp B and C4 were 34.6 and 97.6 microg h(-1) cm(-2) (based on initial RDX surface area), respectively, significantly lower than previously reported dissolution rates. Cycling between flow and no-flow conditions had a small effect on the dissolution rates and effluent concentrations; however, TNT dissolution from Comp B was enhanced under intermittent-flow conditions. A model that includes advection, dispersion, and film transfer resistance was developed to estimate the steady-state effluent concentrations.  相似文献   

3.
During live fire training exercises, large amounts of explosives are consumed. Low order detonations of high explosive payloads result in the patchy dispersal of particles of high explosive formulations over large areas of firing range soils. Dissolution of explosives from explosive formulation particles into soil pore water is a controlling factor for transport, fate, and effects of explosive compounds. We developed an empirical method to evaluate soils based on functionally defined effective dissolution rates. An automated Accelerated Solvent Extractor was used to determine the effective elution rates under controlled conditions of RDX and TNT from soil columns containing particles of Comp B. Contrived soils containing selected soil geosorbants and reactive surfaces were used to quantitatively determine the importance of these materials. Natural soils from training ranges of various soil types were also evaluated. The effects of geosorbants on effective elution rates were compound- and sorbent-specific. TNT elution was less than that of RDX and was greatly slowed by humic acid. Iron and iron-bearing clays reduced the effective elution rates of both RDX and TNT. This empirical method is a useful tool for directly generating data on the potential for explosives to leach from firing range soils, to identify general bulk soil characteristics that can be used to predict the potential, and to identify means to engineer soil treatments to mitigate potential transport.  相似文献   

4.
Characteristics of Composition B particles from blow-in-place detonations   总被引:1,自引:0,他引:1  
We sampled residues from high-order and low-order blow-in-place detonations of mortars and projectiles filled with Composition B (Comp B), a TNT and RDX mixture. Our goals were to (1) characterize the types of explosive particles, (2) estimate the explosive 'footprint' for different munitions, and (3) estimate the mass of Comp B remaining after each detonation. The aerial deposition of Comp B particles helps estimate how large of an area is contaminated by a low-order detonation and how best to sample residue resulting from different rounds. We found that the high-order detonations deposited microgram to milligram quantities whereas the low-order detonations deposited gram quantities of Comp B. For the high-order detonations the concentration of Comp B in the residue decreased as a function of distance from the blast. The low-order tests scattered centimeter-sized chunks and millimeter-sized or smaller particles of Comp B. The chunks were randomly scattered whereas the number of millimeter-sized particles decreased with distance from the detonation. For both high- and low-order detonations we found that the smaller munitions deposited less Comp B than the larger munitions and deposited it closer to the detonation point.  相似文献   

5.
The dissolution of the 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) from microscale particles (<250 μm) of the explosive formulation Composition B was examined and compared to dissolution from macroscopic particles (>0.5 mm). The dissolution of explosives from detonation soot was also examined. The measured mass transfer coefficients for the microscale particles were one to two orders of magnitude greater than the macroscopic particles. When normalized to particle surface area, mass transfer coefficients of microscale and macroscale particles were similar, indicating that the bulk dissolution processes were similar throughout the examined size range. However, an inverse relationship was observed between the particle diameter and the RDX:TNT mass transfer rate coefficient ratio for dry-attritted particles, which suggests that RDX may be more readily dissolved (relative to TNT) in microscale particles compared to macroscale particles. Aqueous weathering of larger Composition B residues generated particles that possessed mass transfer coefficients that were on the order of 5- to 20-fold higher than dry-attritted particles of all sizes, even when normalized to particle surface area. These aqueous weathered particles also possessed a fourfold lower absolute zeta-potential than dry-attritted particles, which is indicative that they were less hydrophobic (and hence, more wettable) than dry-attritted particles. The increased wettability of these particles provides a plausible explanation for the observed enhanced dissolution. The wetting history and the processes by which particles are produced (e.g., dry physical attrition vs. aqueous weathering) of Composition B residues should be considered when calculating mass transfer rates for fate and transport modeling.  相似文献   

6.
Zhang C  Hughes JB 《Chemosphere》2003,50(5):665-671
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), a military high explosive, is becoming an increasingly important pollutant in the US. The cleanup of RDX-contaminated soil and groundwater has been a serious challenge due to its recalcitrance in the environment. This study was conducted to determine the biodegradation kinetics of RDX by crude cell extract of Clostridium acetobutylicum (ATCC 824), and to examine whether this bacterium will carry out reductive transformation pathways similar to the transformation of 2,4,6-trinitrotoluene (TNT), 2,4- and 2,6-dinitrotoluenes (DNTs) we have reported previously. Batch studies on the anaerobic transformation of RDX were conducted in serum bottles with U-ring-14C-RDX. RDX and its transformation products were quantified by HPLC and qualified by LC/ MS interfaced to two soft ionization techniques--an atmospheric pressure ionization and an electron spray ionization (API-ES). Results demonstrated that C. acetobutylicum is capable of transforming RDX with H2 as the electron donor. The transformation followed a zero-order kinetics and the rates increased with increasing H2. RDX was transformed into several polar intermediates that could not be separated by reverse-phase HPLC and its molecular ions were unstable under the condition of commonly used electron impact detector. Using a polar and water immiscible solvent (ethyl acetate) and the softer MS ionization techniques, mass spectroscopy detected the presence of several RDX derivatives including mononitroso-, monohydroxylamino-, mononitrosomonohydroxylamino-, monoamino-, diamino-, and triamino-compounds. The presence of hydroxylamino compounds is analogous to the transformation of TNT and DNTs we elucidated previously.  相似文献   

7.
Phytoremediation is of great interest to remediate soil contaminated with hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and 2,4,6-trinitrotoluene (TNT). The ability of 4 agronomic plants (maize, soybean, wheat and rice) to take up these explosives and their fate in plants were investigated. Plants were grown for 42 days on soil contaminated with [(14)C]RDX or [(14)C]TNT. Then, each part was analyzed for its radioactivity content and the percentage of bound and soluble residues was determined following extractions. Extracts were analyzed by radio-HPLC. More than 80% of uptaken RDX was translocated to aerial tissues, up to 64.5 mgg(-1) of RDX. By contrast, TNT was little translocated to leaves since less than 25% of uptaken TNT was accumulated in aerial parts. Concentrations of TNT residues were 20 times lower than for RDX uptake. TNT was highly metabolized to bound residues (more than 50% of radioactivity) whereas RDX was mainly found in its parent form in aerial parts.  相似文献   

8.
The morphology of three different detonation soot samples along with other common soot materials such as carbon black, diesel soot and chimney soot was studied by elemental and proximate analysis, X-ray diffraction and electron microscopy. The goal of this study was to better define the morphology of the detonation soot in order to better assess the interactions of this type of soot with explosive residues. The detonation soot samples were obtained by the detonation of artillery 155mm projectiles filled with either pure TNT (2,4,6-trinitrotoluene) or composition B, a military explosive based on a mixture of TNT and RDX (trimethylentrinitramine). The carbon content of the soot samples varied considerably depending on the feedstock composition. Detonation soot contains less carbon and more nitrogen than the other carbonaceous samples studied, due to the molecular structure of the energetic materials detonated such as TNT and RDX. The ash concentration was higher for detonation soot samples due to the high metal content coming from the projectiles shell and to the soil contamination which occurred during the detonation. By X-ray diffraction, diamond and graphite were found to be the major crystalline carbon forms in the detonation soot. Two electron microscopy techniques were used in this study to visualise the primary particles and to try to explain the formation mechanism of detonation soot samples.  相似文献   

9.
Smith JN  Liu J  Espino MA  Cobb GP 《Chemosphere》2007,67(11):2267-2273
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) transforms anaerobically into N-nitroso compounds: hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX), hexahydro-1,3-dinitroso-5-nitro-1,3,5-triazine (DNX), and hexahydro-1,3,5-trinitroso-1,3,5-triazine (TNX). Exposure to these N-nitroso metabolites may occur in areas contaminated with explosives, as anaerobic degradation occurs via some bacteria and is one remediation strategy used for RDX. Few papers report acute oral toxicity and none have evaluated age dependent toxicity of RDX or its N-nitroso metabolites. Median lethal dose (LD50) was determined in deer mice (Peromyscus maniculatus) of three age classifications 21 d, 50 d, and 200 d for RDX, MNX, and TNX using the US EPA up-and-down procedure (UDP). Hexahydro-1,3,5-trinitro-1,3,5-triazine and N-nitroso metabolites caused similar overt signs of toxicity. Median lethal dose for 21 d deer mice were 136, 181, and 338 mg/kg for RDX, MNX, and TNX, respectively. Median lethal dose for 50 d deer mice were 319, 575, and 338 mg/kg for RDX, MNX, and TNX, respectively. Median lethal dose for 200 d deer mice were 158, 542, and 999 mg/kg for RDX, MNX, and TNX, respectively. These data suggest that RDX is the most potent compound tested, and age dependent toxicity may exist for all compounds and could play a role in RDX and RDX N-nitroso metabolite ecological risk evaluation of terrestrial wildlife at RDX contaminated sites.  相似文献   

10.
Given the potent carcinogenic effects of most N-nitroso compounds, the reductive transformation of the common explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) to a group of N-nitroso derivatives, hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX), hexahydro-1,3-dinitroso-5-nitro-1,3,5-triazine (DNX), and hexahydro-1,3,5-trinitroso-1,3,5-triazine (TNX) in the environment have caused concerns among the general public. Questions are arising about whether the same transformations also occur in mammals, and if true, to what extent. This study investigated the N-nitroso derivatives production in the deer mouse GI tract following RDX administration. Findings verified that such transformations do occur in the mammalian GI tract at notable levels: the average MNX concentrations in deer mice stomach were 85 microg/kg and 1318 microg/kg for exposure to 10mg/kg and 100mg/kg diet, respectively. DNX in stomach were 217 microg/kg for the 10mg/kg dose group and 498 microg/kg for the 100mg/kg dose group. Changes in other toxic endpoints including body weight gain, food consumption, organ weight, and behavior were also reported.  相似文献   

11.
Phosphor imager autoradiography is a technique for rapid, sensitive analysis of the localization of xenobiotics in plant tissues. Use of this technique is relatively new to research in the field of plant science, and the potential for enhancing visualization and understanding of plant uptake and transport of xenobiotics remains largely untapped. Phosphor imager autoradiography is used to investigate the uptake and translocation of the explosives 1,3,5-trinitro-1,3,5-triazine (RDX) and 2,4,6-trinitrotoluene within Populus deltoides × nigra DN34 (poplar) and Panicum vigratum Alamo (switchgrass). In both plant types, TNT and/or TNT-metabolites remain predominantly in root tissues while RDX and/or RDX-metabolites are readily translocated to leaf tissues. Phosphor imager autoradiography is further investigated for use in semi-quantitative analysis of uptake of TNT by switchgrass.  相似文献   

12.
We report the ability of nickel-based catalysts to degrade explosives compounds in aqueous solution. Several nickel catalysts completely degraded the explosives, although rates varied. Nearly all of the organic explosive compounds tested, including 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), were rapidly degraded to below detection limits by a powdered nickel on an alumina-silicate support (Aldrich nickel catalyst). Perchlorate degradation was minimal (<25%). Degradation of TNT by Aldrich nickel catalyst resulted in apparent first-order kinetics. Significant gaseous 14C was released and collected in an alkaline solution (most likely carbon dioxide) from [14C]RDX and [14C]HMX, indicating heterocyclic ring cleavage. Significant gaseous 14C was not produced from [14C]TNT, but spectrophotometric evidence indicated loss of aromaticity. Degradation occurred in low ionic strength solutions, groundwater, and from pH 3 to pH 9. Degradation of TNT, RDX, and HMX was maintained in flow-through columns of Aldrich nickel catalyst mixed with sand down to a hydraulic retention time of 4h. These data indicate that nickel-based catalysts may be an effective means for remediation of energetics-contaminated groundwater.  相似文献   

13.
Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a potential human carcinogen, and its contamination of subsurface environments is a significant threat to public health. This study investigated abiotic and biological degradation of RDX in contaminated aquifer material. Anoxic batch systems were started with and without pre-aeration of aquifer material to distinguish initial biological RDX reduction from abiotic RDX reduction. Aerating the sediment eliminated chemical reductants in the native aquifer sediment, primarily Fe(II) sorbed to mineral surfaces. RDX (50 μM) was completely reduced and transformed to ring cleavage products when excess concentrations (2 mM) of acetate or lactate were provided as the electron donor for aerated sediment. RDX was reduced concurrently with Fe(III) when acetate was provided, while RDX, Fe(III), and sulfate were reduced simultaneously with lactate amendment. Betaproteobacteria were the dominant microorganisms associated with RDX and Fe(III)/sulfate reduction. In particular, Rhodoferax spp. increased from 21% to 35% and from 28% to 60% after biostimulation by acetate and lactate, respectively. Rarefaction analyses demonstrated that microbial diversity decreased in electron-donor-amended systems with active RDX degradation. Although significant amounts of Fe(III) and/or sulfate were reduced after biostimulation, solid-phase reactive minerals such as magnetite or ferrous sulfides were not observed, suggesting that RDX reduction in the aquifer sediment is due to Fe(II) adsorbed to solid surfaces as a result of Fe(III)-reducing microbial activity. These results suggest that both biotic and abiotic processes play an important role in RDX reduction under in situ conditions.  相似文献   

14.
Phytoremediation of 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in groundwater using constructed wetlands is a potentially economical remediation alternative. To evaluate Explosives removal and fate was evaluated using hydroponic batch incubations of plant and substrate treatments with explosives-contaminated groundwater amended with [U-14C]-TNT or [U-14C]-RDX. Plants and substrates were collected from a small-scale wetland constructed for explosives removal, and groundwater originated from a local aquifer at the Milan Army Ammunition Plant. The study surveyed three aquatic, four wetland plant species and two substrates in independent incubations of 7 days with TNT and 13 days with RDX. Parent compounds and transformation products were followed using 14C and chemical (HPLC) analyses. Mass balance of water, plants, substrates and air was determined. It was demonstrated that TNT disappeared completely from groundwater incubated with plants, although growth of most plants except parrot-feather was low in groundwater amended to contain 1.6 to 3.4 mg TNT L-1. Highest specific removal rates were found in submersed plants in water star-grass and in all emergent plants except wool-grass. TNT declined less with substrates, and least in controls without plants. Radiolabel was present in all plants after incubation. Mineralization to 14CO2 was very low, and evolution into 14C-volatile organics negligible. RDX disappeared less rapidly than TNT from groundwater. Growth of submersed plants was normal, but that of emergent plants reduced in groundwater amended to contain 1.5 mg RDX L-1. Highest specific RDX removal rates were found in submersed plants in elodea, and in emergent plants in reed canary grass. RDX failed to disappear with substrates. Mineralization to 14CO2 was low, but relatively higher than in the TNT experiment. Evolution into 14C-volatile organics was negligible. Important considerations for using certain aquatic and wetland plants in constructed wetlands aimed at removing explosives from water are: (1) plant persistence at the explosives level to which it is exposed, (2) specific plant-mass based explosives removal rates, (3) plant productivity, and (4) fate of parent compounds and transformation products in water, plants, and sediments.  相似文献   

15.
16.
Snow was used as a collection medium to examine 1,3,5-hexahydro-1,3,5-trinitrotriazine (RDX) and 2,4,6-trinitrotoluene (TNT) residues post-detonation of 60-, 81-, and 120-mm mortar rounds, 105- and 155-mm howitzer rounds, M67 hand grenades, 40-mm rifle grenades, and blocks of C4. Residue-covered snow samples were collected, processed, and analyzed for explosives without cross-contamination from previous detonations and other potential matrix interferences. Detonation trials were performed following standard military live-fire and blow-in-place techniques. When possible, replicate munitions were detonated under similar conditions to provide a more reliable estimation of the mass of unconsumed high explosive residues. Overall the amount of energetic residues deposited from live-fire detonations were considerably less than the energetic residues deposited by blow-in-place detonations.  相似文献   

17.
Ronen Z  Yanovich Y  Goldin R  Adar E 《Chemosphere》2008,73(9):1492-1498
The aim of this study was to explore biodegradation potential of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in a deep contaminated unsaturated zone over Israel's coastal aquifer. While anaerobic biodegradation potential was observed throughout the profile down to the water table at a depth of 45 m, aerobic biodegradation was limited to the surface of the unsaturated zone. Traces of nitroso-RDX intermediates were detected in the soil samples, indicating possible in situ activity. Polymerase chain reaction and denaturing gradient gel electrophoresis analysis revealed that the microbial population in the soil consisted of protobacteria, but no known RDX degraders were detected. However, a 16S rRNA gene sequence most similar to Sphingomonas sp. was detected at all depths. Biodegradation rates were faster in the surface (0 and 1m) versus deeper soil samples (22 and 45 m) and were not affected under anaerobic conditions by the presence of nitrate, indicating a concurrent reduction of both compounds. RDX half-life in the surface soil was mostly dependent on carbon content and to lesser extent on soil moisture. Biomineralization of RDX to CO(2) was confirmed by incubating surface soil with (14)C-labeled RDX. An aerobic RDX-degrading bacterium, identified as Gordonia sp., was isolated from the soil: it degraded RDX aerobically and produced 4-nitro-2,4-diazabutanal. This study, the first to explore RDX biodegradation in the deep vadoze zone, indicates biodegradation potential throughout the profile, which is likely to support natural attenuation.  相似文献   

18.
19.
Contaminated water and soil at active or abandoned munitions plants is a serious problem since these compounds pose risks to human health and can be toxic to aquatic and terrestrial life. Our objective was to determine if zero-valent iron (Fe(0)) could be used to promote remediation of water and soil contaminated with 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). As little as 1% Fe(0) (w/v) removed 70 mg TNT litre(-1) from aqueous solution within 8 h and removed 32 mg RDX litre(-1) within 96 h. Treating slurries (1:5 soil:water) of highly contaminated soil (5200 mg TNT and 6400 mg RDX kg(-1) soil) from the former Nebraska Ordnance Plant (NOP) with 10% Fe(0) (w/w soil) reduced CH(3)CN-extractable TNT and RDX concentrations below USEPA remediation goals (17.2 mg TNT and 5.8 mg RDX kg(-1)). Sequential treatment of a TNT-contaminated solution (70 mg TNT litre(-1) spiked with (14)C-TNT) with Fe(0) (5% w/v) followed by H(2)O(2) (1% v/v) completely destroyed TNT and removed about 94% of the (14)C from solution, 48% of which was mineralized to (14)CO(2) within 8 h. Fe(0)-treated TNT also was more susceptible to biological mineralization. Our observations indicate that Fe(0) alone, Fe(0) followed by H(2)O(2), or Fe(0) in combination with biotic treatment can be used for effective remediation of munitions-contaminated water and soil.  相似文献   

20.
The effect of two major hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) metabolites, hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX) and hexahydro-1,3,5-trinitroso-1,3,5-triazine (TNX), on cricket (Acheta domesticus) survival and reproduction was studied. RDX metabolites did not have adverse effects on cricket survival, growth, and egg production. However, MNX and TNX did affect egg hatching. MNX and TNX were more toxic in spiked-sand than in topical tests. TNX was more toxic to egg than MNX. Developmental stage and exposure time affected hatching. After 30 days exposure to MNX or TNX, the EC20, EC50, and EC95 were 47, 128, and 247 microg/g for TNX, and 65, 140, and 253 microg/g for MNX in topical tests. The ECs for 20, 50, and 95 were 21, 52, and 99 microg/g for MNX, and 12, 48, and 97 microg/g for TNX in sand. No gross abnormalities in cricket nypmhs were observed in all experiments indicating that neither TNX or MNX is teratogenic in this assay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号