首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为克隆鉴定甘蔗泛素结合酶基因(Sugarcane ubiquitin-conjugating enzyme,ScUBc E2)并探索其在激素信号通路和甘蔗与黑穗病互作过程中的作用,选择黑穗病菌胁迫下甘蔗抑制消减杂交文库(Suppression subtractive hybridization,SSH)中注释为泛素结合酶的差异表达EST序列为探针,结合电子克隆技术和RT-PCR技术,以甘蔗cDNA为模板进行泛素结合酶基因克隆.对克隆获得的序列进行生物信息学分析,并利用qRT-PCR技术分析该基因在甘蔗根、蔗髓、叶、芽中的组织特异性表达以及在黑穗病菌、茉莉酸甲酯(Methyl jasmonate,Me JA)、脱落酸(Abscisic acid,ABA)和水杨酸(Salicylic acid,SA)胁迫下的表达情况.最终克隆得到一条长度为699 bp的甘蔗泛素结合酶基因(ScUBc E2;Gen Bank accession number:KJ577594.1),该基因包含长度为447 bp的完整开放读码框,编码148个氨基酸.生物信息学分析结果显示,ScUBc E2编码的蛋白分子量(Mr)为16.507×10~3;无信号肽,为碱性不稳定的亲水蛋白;包含4个α螺旋、4个β折叠和一些无规则卷曲;第15位氨基酸为泛素化位点,74-89位氨基酸为活性位点;在进化过程中与高粱泛素结合酶基因的亲缘关系最近.qRT-PCR分析结果表明,ScUBc E2基因组成型表达,但在芽中的表达量最高;其表达在甘蔗感黑穗病基因型ROC22中受到黑穗病菌胁迫的抑制,在黑穗病抗病基因型YC05-179中则先被抑制,后被诱导;ScUBc E2基因受MeJA及SA诱导表达,对ABA胁迫的响应不明显.本研究表明,甘蔗ScUBc E2基因在抗病基因型和感病基因型甘蔗中存在不同表达模式,可能参与甘蔗与黑穗病菌的互作过程,有望为抗病育种分子标记提供潜在基因资源;同时,该基因受MeJA和SA外源激素胁迫后的表达模式,可为泛素-蛋白酶体途径及激素调控的信号转导在甘蔗与黑穗病菌互作过程中的作用提供一定的理论依据.  相似文献   

2.
12-氧-植物二烯酸还原酶(12-Oxo-phytodienoic acid reductase,OPR)是十八碳烯酸途径的关键酶之一,控制着茉莉酸合成的最后一个步骤.目前,甘蔗(Saccharum spp.)OPR基因的研究尚未见报道.从课题组构建的甘蔗转录组unigene注释库中筛选到一个OPR基因,利用RT-PCR技术从ROC22接种黑穗病菌48 h的蔗芽中扩增获得全长cDNA序列,命名为ScOPR1(GenBank Accession Number:MG755745),并对该基因的序列特征、亚细胞定位、组织特异性表达及其在不同植物激素胁迫和不同基因型甘蔗与黑穗病菌互作过程中的表达情况进行分析.生物信息学分析发现,ScOPR1基因全长1 287 bp,包含1个1 116 bp的开放阅读框,编码371个氨基酸,理论等电点为6.01,含有底物结合活性、FMN结合活性和催化活性的氨基酸保守位点以及OYE家族的保守结构域,且与高粱(Sorghum bicolor)OPR蛋白(XP_002447901.2)的氨基酸序列一致性高达96.23%,推测其为酸性稳定亲水性非分泌OPRⅠ蛋白.本氏烟(Nicotiana benthamiana)瞬时表达显示,ScOPR1::GFP融合蛋白定位于细胞质和细胞膜.qRT-PCR分析结果显示,ScOPR1基因在甘蔗不同组织中均有表达,其在根中的表达量最高,其次为叶和蔗皮,而在蔗芽和蔗肉中的表达量最低.茉莉酸甲酯和水杨酸处理后,随着胁迫时间的延长(3-24 h),ScOPR1基因显著上调表达;该基因在脱落酸处理0.5 h时被诱导表达,为对照的1.54倍.此外,ScOPR1基因在抗黑穗病品种崖城05-179受黑穗病菌侵染初期(24 h)显著上调表达,但在感黑穗病品种ROC22中下调表达;48-72 h时ScOPR1基因的表达量在两个甘蔗基因型中较对照有所增加,但在抗病品种中高于感病品种.本研究表明,ScOPR1基因积极响应茉莉酸甲酯、水杨酸和脱落酸信号分子以及黑穗病菌的胁迫,结果可为进一步分析ScOPR1基因的功能和甘蔗抗病基因工程提供参考.  相似文献   

3.
乙醇脱氢酶基因(Alcohol dehydrogenase,ADH)在植物抵御涝害、冷害、干旱等逆境中起着重要作用.基于前期已构建的甘蔗受黑穗病菌胁迫后基因差异表达的抑制消减杂交(Suppression subtractive hybridization,SSH)文库,利用电子克隆和RT-PCR技术,从甘蔗品种ROC22中获得一条ADH基因的c DNA全长序列,命名为Sugarcane Alcohol Dehydrogenase(Sc ADH;Gen Bank登录号为KJ577593).生物信息学分析显示,Sc ADH基因全长为1 644 bp,含有1 140bp的开放阅读框,编码一个379个氨基酸的蛋白质.Sc ADH蛋白为稳定、亲水的酸性非分泌蛋白,定位于叶绿体基质上.蛋白二级结构元件多为无规则卷曲,具有典型的ADH蛋白结构域以及NAD和锌的结合位点.实时荧光定量PCR(Real-time quantitative PCR)表达分析表明,该基因在甘蔗各组织中组成型表达,其中根中表达量最高,而叶中的表达量最低.在SA和Me JA胁迫下,Sc ADH基因的表达趋势为"先扬后抑",均在胁迫6 h达到最大值,分别为对照的7.34倍和11.81倍.在ABA胁迫下,该基因均上调表达,在胁迫12 h达到最大值,为对照的5.53倍.在黑穗病菌胁迫下,该基因在感病品种ROC22中的表达受到抑制,而在抗病品种YC05-179中的表达模式为"先抑后扬".综上推测Sc ADH基因在甘蔗应答非生物胁迫和生物胁迫中发挥重要作用.  相似文献   

4.
香蕉MaMPK1基因的克隆与表达模式   总被引:1,自引:0,他引:1  
为研究香蕉MAPK1的序列特征及其在不同激素处理、逆境胁迫下的表达趋势,以‘天宝蕉’为材料,采用RTPCR技术克隆MaMPK1并对其进行生物信息学分析和不同处理下的表达模式分析.结果显示该基因编码区长为1182bp,可编码393个氨基酸.其编码蛋白具有STKc_TEY_MAPK结构域,属于MAPK基因家族TEY亚型A亚家族,是不稳定的脂溶性亲水酸性蛋白,无信号肽和跨膜结构,有多个磷酸化位点.亚细胞定位预测结果显示MaMPK1主要定位于细胞核.蛋白互作预测结果显示该蛋白与HSFA4A存在互作,暗示其可能在香蕉抗热反应过程中发挥作用.启动子顺式作用元件预测结果显示MaMPK1启动子包含多种激素和逆境胁迫相关作用元件.定量分析结果显示MaMPK1的表达受SA、45℃、低温和盐胁迫抑制,受茉莉酸甲酯(MeJA)和枯萎病菌侵染诱导上调,在脱落酸(ABA)处理后期极显著上调表达.本研究表明MaMPK1广泛参与香蕉逆境胁迫应答.(图9表1参35)  相似文献   

5.
细胞色素P450基因在电子传递链、次生代谢物质合成和对外源化学药物毒性降解中发挥着重要作用,为了深入了解该基因在甘蔗中的功能,通过RT-PCR扩增获得甘蔗细胞色素P450还原酶基因的cDNA全长序列,命名为ScCPR450(Gen Bank Accession Number:KR864841).该基因全长999 bp,含有744 bp的完整开放阅读框,编码247个氨基酸.亚细胞定位结果显示,ScCPR450蛋白分布于细胞质中,与生物信息学预测结果相符.q RT-PCR表达分析表明,该基因在甘蔗中组成型表达,但有组织特异性,芽中表达量最高,其次是叶,而皮中表达量最低.在脱落酸(ABA)、水杨酸(SA)、茉莉酸甲酯(Me JA)、聚乙二醇(PEG)和氯化铜(CuCl_2)胁迫诱导过程中,该基因的表达量呈现不同变化模式,其中SA胁迫6 h下,ScCPR450基因的表达量最高,约为对照的12.21倍;在PEG胁迫下,ScCPR450基因的表达量上调且表达量稳定,推测ScCPR450基因在甘蔗响应生物和非生物胁迫中发挥一定的作用.本研究可为该基因家族其它成员的克隆以及深入解析该基因的功能特性奠定基础,进而为基于基因工程技术对甘蔗品种进行定向改良提供基因资源.  相似文献   

6.
甘蔗光合系统Ⅰ亚基O基因的克隆与表达分析   总被引:1,自引:0,他引:1  
光合系统Ⅰ亚基O(PhotosystemⅠsubunit O,Psa O)是光合系统Ⅰ中的蛋白亚基,在两个光合系统之间平衡激发能方面起着重要的作用.为研究Psa O基因的结构和功能,对甘蔗(Saccharum offi cinarum L.)叶片全长c DNA文库进行测序,获得光合系统Ⅰ亚基O基因的全长c DNA序列,命名为Sc Psa O(Gen Bank Accession Number:KF714498).生物信息学分析表明,该基因全长708 bp,开放阅读框435 bp,编码144个氨基酸;该基因所编码的蛋白定位于叶绿体基质,无信号肽,为疏水性非分泌碱性蛋白,二级结构多为无规则卷曲,含有PJN00046家族的保守结构域,参与能量新陈代谢及脂肪酸新陈代谢.同时,该基因在不同物种间具有较强的保守性,其中与同属C4植物的同源性较C3植物高.荧光定量PCR分析结果表明,甘蔗Sc Psa O基因在叶片中的相对表达量最高,具有一定的组织特异性;在氯化钠(Na Cl)、聚乙二醇(PEG)、氯化铜(Cu Cl2)、脱落酸(ABA)、水杨酸(SA)和茉莉酸甲酯(Me JA)等外源胁迫下,其表达量均呈下调趋势,且以PEG胁迫下的下调表现最为明显.这些结果表明这几种外源胁迫可能抑制甘蔗Sc Psa O基因的转录水平表达,为其进一步功能验证以及在甘蔗基因工程中的应用积累了基础资料.  相似文献   

7.
蛋白质泛素化修饰广泛参与植物的生长发育及逆境胁迫响应,其中RING-finger型E3泛素连接酶基因salt and drought induced ring finger1(SDIR1)在植物抗逆中具有重要的作用.为了解茶树SDIR1(CsSDIR1)在抗逆应答中的作用机制,采用RT-PCR技术从茶树中克隆CsSDIR1的全长cDNA序列及启动子序列,对其生物信息学特征进行分析,并采用qRT-PCR技术检测该基因的组织表达特异性及在不同逆境胁迫下的表达模式.结果显示,CsSDIR1基因的开放阅读框(ORF)长831 bp,编码276个氨基酸,蛋白质分子量(Mr)为30.085×103,理论等电点为6.54;氨基酸序列分析表明,CsSDIR1属于疏水性蛋白、定位在胞内膜上,与其他植物中的SDIR1相似性较高,在其N-端和C-端分别含有2个保守的跨膜结构域和C3H2C3 RING finger功能域;CsSDIR1与猕猴桃关系最近. CsSDIR1上游启动子含多个与干旱胁迫和盐胁迫响应相关的元件.表达分析显示,CsSDIR1在茎中的表达量显著高于根、叶和花;ABA、干旱和高盐诱导其表达,低温抑制CsSDIR1的表达.根据上述结果推测CsSDIR1基因可能参与了茶树的抗逆响应.  相似文献   

8.
甘蔗蔗糖合成酶基因的克隆   总被引:1,自引:0,他引:1  
促使蔗糖进入各种代谢途径的关键酶之一是蔗糖合成酶,它也是蔗糖代谢关键酶中极其重要的一种酶.以甘蔗基因组DNA为模板,用PCR技术分段扩增并克隆了甘蔗蔗糖合成酶(Sucrose synthase)基因片段,并进行序列测序,表明该基因全长约为7.5 kb,与Lingle S.E等报道的甘蔗蔗糖合成酶(SuSy2)基因序列相似性达到99.5%,推导的氨基酸序列同源性达到100%.该序列包含约1.9 kb的上游启动子调控区域, 16个外显子, 15个内含子, 3'不翻译区等,开放读码框(ORF)编码802个氨基酸,氨基酸序列中存在糖代谢关键酶家族保守的14-3-3蛋白磷酸化位点Ser/Thr,为进一步在转录水平上阐明蔗糖合成酶的表达调控机制奠定了基础.  相似文献   

9.
以简并引物PCR获得的Cat酶基因片段探针,结合生物信息学方法,探明了耐辐射奇球菌(D.radiodu-rans)基因组中存在两个编码过氧化氢酶(Catalase,Cat)的基因:katA和B.katA和katB基因长2277bp和1611bp,各编码758和536个氨基酸,用pKK223-3表达载体连接katB基因,转入Cat酶缺陷型大肠杆菌(E. coliUM2)进行表达.katB基因表达产物具有Cat酶活性,电泳迁移位置与D.radiodurans CatB酶位置相符,并可重建E.coliUM2对低浓度H2O2损伤的耐受力。  相似文献   

10.
以桃基因组DNA为模板,用套式PCR技术扩增并克隆了桃ACC合酶基因片段,将其克隆(定名为pACSG01)并进行序列测定,表明该自然全长1320bp,并富含HindⅢ和EcoRⅠ位点,与其它ACC合酶基因结构序列有一定的相似性,内含有两个内含子,编码的氨基酸序列与已克隆桃ACC合酶cDNA推导的氨基酸序列的同源性分别为57.4%和56.8%,pACSG01与我们已克隆的两个桃ACC合酶cDNA基因表达有所不同,RNA点杂交和RT-PCR结合Southern杂交分析表明,该基因在成熟和乙烯处理的果实均不表达,伤处理、LiCl和生长素处理也不能诱导核基因的表达,在衰老花瓣中也不表达,图3参18。  相似文献   

11.
甘蔗蔗糖磷酸合成酶SPSⅡ cDNA片段克隆与表达分析   总被引:2,自引:0,他引:2  
蔗糖磷酸合成酶(Sucrose phosphate synthase,SPS)是蔗糖合成途径的关键限速酶,在蔗糖积累和碳分配中具有重要作用.在茎组织中SPSⅡ表达量占SPS转录总量的40%,表明SPSⅡ cDNA的克隆与表达对蔗茎中蔗糖的积累有着重要的影响.通过RT-PCR技术克隆分离SPSⅡ基因cDNA片段.序列分析表明该cDNA片段包含1个3 183 bp的开放读码框,可编码1 060个氨基酸.GenBank登录号为EU269038.通过实时荧光定量PCR检测SPSⅡ基因在甘蔗糖分积累的不同时期、不同组织部位的相对表达量.结果表明,在糖分积累初期蔗茎中的SPSⅡ相对表达量最大,在糖分积累中期蔗叶中的SPSⅡ相对表达量达到最高峰;同组织部位中,糖分积累初期SPSⅡ相对表达量高于糖分积累中期、后期.图6参11  相似文献   

12.
克隆香蕉含VQ基序蛋白基因MaVQ1,研究其序列特征及其在不同激素处理和逆境胁迫下的表达模式.采用RTPCR技术从‘天宝蕉’中克隆了该基因,对其进行生物信息学分析,并利用实时定量PCR技术(qRT-PCR)研究它在不同组织部位和不同激素、不同逆境胁迫处理下的表达情况.结果显示:MaVQ1编码序列(CDS)长为459 bp,可编码一个分子式为C_(732)H_(1164)N_(210)O_(207)S_3、分子量为16 314.76、等电点为10.19的不稳定亲水性蛋白.MaVQ1含有保守的VQ结构域,不含跨膜结构和信号肽,与小果野蕉VQ亲缘关系最近.亚细胞定位预测结果显示MaVQ1主要定位在细胞核.蛋白互作预测结果显示MaVQ1与其他香蕉VQ蛋白以及WRKY互作系数最高.启动子顺式作用元件预测结果显示MaVQ1启动子包含多种光响应元件、激素响应元件和逆境胁迫相关作用元件.转录因子结合位点分析结果显示其启动子上存在大量的ERF结合位点.qRT-PCR结果显示:MaVQ1在不同组织部位中的表达无显著差异,其表达受茉莉酸、脱落酸和低温显著诱导,受高温和干旱抑制.本研究表明,与其他植物VQ类似,MaVQ1的表达受多种激素和逆境影响,暗示其可能在香蕉抗逆防御反应过程中发挥着重要调节作用.(图6表2参33)  相似文献   

13.
为研究香蕉中MaPFK基因的功能和生物学特性,采用生物信息学分析法对香蕉A基因组的MaPFK基因家族成员进行鉴定、蛋白特性分析、分子进化树分析、FPKM值分析,同时以‘天宝蕉’为材料,通过RT-PCR技术克隆MaPFK3基因,进行生物信息学分析;采用qRT-PCR技术进行低温胁迫下的表达分析.结果表明,MaPFK家族包含12个成员,分子进化树分析可分为3类,FPKM值分析表明MaPFK成员在13、4、0℃不同低温胁迫下有不同程度的上调或下调表达.采用RT-PCR技术克隆了MaPFK3,其基因编码区长1 617 bp,预测编码538个氨基酸,MaPFK3编码蛋白属于PFK超家族,是不稳定的酸性亲水蛋白,无信号肽,亚细胞预测定位于细胞质;MaPFK3启动子顺式作用元件预测分析结果显示,MaPFK3启动子含有光响应、激素响应以及与逆境胁迫相关的作用元件.qRT-PCR分析结果显示,香蕉MaPFK3基因的表达具有组织差异性,且表达量为叶片>假茎>根;低温胁迫引起‘天宝蕉’中MaPFK3基因下调表达,在13、4、0℃不同低温胁迫下,MaPFK3的表达量为13℃<4℃<0℃.本研究表明MaPFK基因家族成员能在香蕉应对低温胁迫的过程中发挥着重要作用.(图11表2参32)  相似文献   

14.
低温寒害严重影响茶树的生长发育状况及成品茶品质,Copper/zinc-superoxide dismutase(CSD)基因在植物抗胁迫响应中起着关键作用.为了解茶树CSD基因(CsCSD)响应低温胁迫的作用机制,以铁观音茶树叶片为供试材料,采用同源克隆结合RACE方法及染色体步移法,获得茶树CSD1基因的cDNA序列(GenBank登录号:KR078346)、gDNA序列及其启动子序列,并对其进行生物信息学分析,同时对低温胁迫处理下CsCSD1基因的表达模式也进行分析.结果显示,茶树CsCSD1基因cDNA全长860 bp,完整的开放阅读框(ORF)长度为459 bp,共编码152个氨基酸;gDNA基因结构分析发现CsCSD1基因由6个外显子和5个内含子构成;CpG岛预测发现启动子区域内存在1个CpG岛,CpG长度为219bp,GC含量为50.3%;CsCSD1启动子上还存在大量的顺式作用元件,包括光响应元件、激素响应元件、胁迫响应元件和其他响应元件;在低温胁迫下CsCSD1基因的表达模式显示,在低温胁迫前期,CsCSD1基因表达上调;随后CsCSD1基因的表达量不断下降.本研究表明,CsCSD1基因能够响应低温胁迫并在胁迫的不同时期发挥不同的作用,推测与低温胁迫密切相关.  相似文献   

15.
以海栖热袍菌(Thermotoga maritima)MSB8基因组DNA为模板,克隆得到β-甘露糖苷酶基因(man2).测序分析表明,该基因全序列为2358bp,编码785个氨基酸,分子量约为92×103.根据蛋白质氨基酸的同源性分析,该β-甘露糖苷酶与新阿波罗栖热袍菌(Thermotoga neapolitana)Man2(accession No.AAK52304.1)的同源性最大,达到80%.将此基因连接至表达载体pET-28a( )并转化到大肠杆菌BL21细胞中,经IPTG诱导,β-甘露糖苷酶活力达5.96U/mL.粗酶的温度稳定性分析表明,该酶的热稳定性好,90℃处理10min,活力回收率65%,具有重要的工业应用前景.图3表1参17  相似文献   

16.
MicroRNA403(miR403)为双子叶植物特有的miRNA家族,其在双子叶植物抗病、逆境胁迫和生长发育中具有重要作用.为了解miR403及其候选靶标对外源激素的响应模式以及在龙眼体胚发生过程中的表达模式,利用psRNAtarget对miR403潜在靶标进行预测,采用改良RLM-RACE技术验证其裂解位点,通过qPCR技术检测miR403及其候选靶标对外源激素的应答及在龙眼体胚中的表达模式.结果显示,共获得41个龙眼miR403的潜在靶标,包含4个PPR(Pentatricopeptide repeat protein)和3个PCNT115(Auxin-induced protein PCNT115),却未发现AGO2(Argonaute2).4个PPR中Dlo_014588.1和Dlo_014589.1序列一致,而3个PCNT115基因序列在所预测的miR403结合位点上下游序列基本一致.裂解位点显示,miR403不具备裂解AGO2 mRNA的能力,但介导PPR(Dlo_014588.1)和PCNT115 mRNA的裂解,裂解位点位于miR403 5′端的第2和第3个碱基之间. qPCR显示,miR403响应脱落酸(ABA)信号并显著上调,PPR和PCNT115对不同浓度的ABA呈现不同的表达模式,PPR和PCNT115在5μg/L ABA时显著上调,随后,PPR先显著下调(50μg/L ABA),而后显著上调(5 000μg/L ABA),而PCNT115呈显著下调趋势;miR403不响应赤霉素(GA3)信号,而PPR和PCNT115随着GA3浓度升高而上调;miR403可以响应不同浓度的水杨酸(SA)和2,4-D信号显著下调,而其靶基因显著上调.不同胚性培养物中qPCR显示,miR403仅在龙眼胚性愈伤组织(EC)高度表达且在龙眼体胚发生过程中显著下调,PPR在EC和子叶胚(CE)高度表达,PCNT115在CE和成熟胚(ME)高水平表达,三者之间并未呈现明显的负调控趋势.本研究表明在龙眼体胚中miR403并不靶向调控AGO2,而是调控PPR和PCNT115;另外,miR403可能响应ABA、SA和2,4-D调控PPR和PCNT15参与到龙眼体胚发生过程中.(图5表2参48)  相似文献   

17.
分离克隆栽培香蕉中的几丁质酶基因ChiI2,构建超表达载体和干涉表达载体,可为进一步研究ChiI2基因响应抗逆胁迫的功能提供基础.从栽培香蕉天宝蕉(Musa spp., AAA)中克隆几丁质酶基因ChiI2,利用生物信息软件对该基因进行分析,并用无缝克隆技术分别构建ChiI2的超表达载体和干涉表达载体.从香蕉果皮中克隆到一个几丁质酶基因ChiI2,该基因全长942 bp,蛋白编码313个氨基酸,其编码的蛋白质理论分子量(Mr)为32.96,等电点(pI)为6.77.ChiI2蛋白的α-螺旋结构有6个,β-折叠结构有5个,转角结构有33个.蛋白质疏水性预测分析值为-0.233,属于亲水性蛋白.功能保守域分析表明,该蛋白是糖苷水解酶家族几丁质酶家族的一员.该基因核苷酸序列推导的氨基酸与野生香蕉、玉米、水稻、小麦、莲等植物的同源性都在70%以上.对ChiI2基因进行荧光定量PCR检测,发现4℃处理6 h的表达显著高于对照和38℃处理6 h,表明ChiI2基因可能与低温响应有关,诱导香蕉苗产生抗冷性.利用无缝克隆技术成功构建了pGreenII-ChiI2超表达载体和pGreenII-ChiI2i干涉表达载体,并转化到农杆菌EHA105菌株中.本研究成功地从栽培香蕉天宝蕉中分离克隆到了ChiI2基因,并对其基因特点和蛋白功能进行了预测分析,成功构建了超表达载体和干涉表达载体,可为进一步研究其功能奠定基础,也为采用基因工程方法改良选育香蕉抗寒品种提供了新尝试.(图8表1参24)  相似文献   

18.
利用PCR方法从解淀粉芽孢杆菌DC 4总DNA中扩增出豆豉溶栓酶 (DFE)成熟肽编码区片段 .测序结果表明 :DFE成熟肽编码区长 82 5bp,编码 2 75个氨基酸残基 ,分子量为 2 7.7× 10 3 ,推导的N’ -端氨基酸序列与豆豉溶栓酶N’ -端氨基酸测序结果完全一致 ,说明克隆到的基因确实是豆豉溶栓酶基因 .同源性分析表明 ,DFE成熟肽编码区的核苷酸和氨基酸序列与日本纳豆激酶的同源性分别为 80 .0 %和 86 .5 % ,这提示豆豉溶栓酶可能是一种新型的溶栓酶 .将表达质粒pET Nde转化E .coliBL2 1(DE3)中 ,IPTG可诱导表达大量的DFE融合蛋白 ,占菌体可溶性蛋白的 4 0 % ,主要以包涵体的形式存在 .图 3表 1参 19  相似文献   

19.
几乎所有古菌病毒基因组中无RNA聚合酶(RNA polymerase,RNAP)等组成基本转录装置的同源蛋白编码序列,而且启动子活性对病毒感染过程中病毒基因的转录上可能具有重要的影响.为进一步揭示古菌病毒基因启动子的序列结构特点和活性之间的关系,首先基于硫化叶菌质粒pSeSD,将β-半乳糖苷酶编码基因lacS克隆到阿拉伯糖启动子araS下游多克隆位点,构建重组表达载体pSeSD-lacS.将pSeSD-lacS转化冰岛硫化叶菌(Sulfolobus islandicus)E233S菌株后的功能分析结果表明,lacS基因成功表达.在此基础上,利用硫化叶菌病毒STSV2衣壳蛋白编码基因ORF37上游500bp的潜在启动子片段P37替换pSeSD-lacS中的araS启动子,构建出新的重组表达质粒pSeSD-P37-lacS,进一步将pSeSD-P37-lacS转化E233S菌株进行启动子活性分析.β-半乳糖苷酶酶活结果显示,诱导后araS启动子酶活为14 345.7±422.3 mU,P37酶活为13 723.1±370.9 mU,表明P37片段具有启动子功能,而且活性与araS启动子相当.序列分析也显示,P37具有与硫化叶菌基因启动子类似的基础序列元件initiator、TATA-box及BRE等.本研究表明pSeSD-lacS可作为一个硫化叶菌病毒基因启动子筛选载体,而且高活性的基因启动子可能在STSV2病毒生命过程具有重要的作用.(图4表1参27)  相似文献   

20.
植物应答逆境的防御反应在很大程度是在基因转录水平调节的,其中转录因子与目标基因启动子上顺式作用元件的识别和结合起着关键的调节作用.本研究将从双子叶植物中发现的GCC盒(应答乙烯)和JERE盒(应答JA和激发子)与CaMV35S核心启动子融合构建成诱导型启动子,利用GUS报告基因构建其表达载体并进行农杆菌介导的水稻遗传转化.利用T1代株系分析了GCC盒和JERE盒水稻植株对不同逆境胁迫和激素处理的应答.结果表明在转基因植株中它们都具有很低的本底表达.稻瘟病侵染、稻纵卷叶螟取食和机械损伤处理可不同程度提高GUS基因的表达.另外,脱落酸(ABA)、水杨酸(SA)和茉莉酸(JA)也能提高GUS的表达.实验结果暗示JERE和GCC盒介导的信号途径在单子叶和双子叶之间有一定的保守性.图5参15  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号