首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Based on community data (2012, 2020) of the Tianlong Mountain evergreen and deciduous broadleaved mixed forest plot in central Guizhou, China, the species composition, importance value index, diversity, and dynamic changes were estimated to explore the renewal and change characteristics of karst secondary forests. The results showed that: (1) the number of individual species in the investigated two hm2 plot encompassing 33 families and 55 genera, totaling 69 species decreased from 10 276 to 7837. Five families, 10 genera, and 18 species were newly added, while seven families, nine genera, and 11 species disappeared. The difference between the importance value indices of the species was obvious; that of Lithocarpus confinis (20.97–23.26) was much higher than that of other species. Except for some species, the overall inter-annual differences were not large, and the status of mesophytic and shaded species has increased. Life forms were dominated by small trees and shrubs or small trees, and the plant number density of different life forms is reduced. (2) The Margalef and Shannon-Wiener indices of shrubs were the largest, and the Pielou indices of shrubs or small trees were the largest. The composition of most life forms has increased; the diversity became richer; and the uniform distribution of individual species has increased, but the change was small. (3) With respect to the spatial distribution pattern, the species were generally clustered, and only a few were randomly distributed. The Cx, I, m*, CA, and G indices of the species were reduced, and those of some species were quite different. A tendency for aggregated distribution was observed over random distribution, but the aggregation degree of Lithocarpus sphaerocephala was still high. The PAI index of most species increased but was not obvious, whereas the K value changed irregularly. Overall, the species composition, importance value index, diversity, and spatial distribution pattern of the main species in this community have changed to some extent but without any significant fluctuations. L. sphaerocephala was still the dominant species in succession, and the species composition of the flora was stable. The restoration of vegetation and the development of the entire community are slow. © 2022 Science Press. All rights reserved.  相似文献   

2.
To investigate the bacterial community structure features of soak solutions used to preserve bamboo slips that were excavated from Han dynasty tomb located in Laoguanshan of Chengdu and to reveal the diversity of bacteria in these soak solutions, PCR-DGGE was employed. Subsequently, the major DGGE bands were excised and sequenced to analyze the phylogeny of bacteria. The richness (S), Shannon-Wiener index (H), and Simpson index (D) of deionized water (0#) without the soaked bamboo slips were higher than those of the other samples. Among the bamboo slip soak solution samples, there were significant differences in these indicators; the bacterial genetic diversity of sample 121# was the highest and that of sample 1# was the lowest. Principal Component Analysis (PCA) showed that there were comparatively large differences among the samples, and the similarity between sample 1# and others was the lowest. Based on the sequence analysis, the major community of bacteria in soak solution were belonged to Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria, including Cupriavidus, Aquabacterium, Comamonas, Albidiferax, Hyphomicrobiaceae, Azospirillum, Nevskia, Streptococcus, Staphylococcus, Sediminibacterium, and Propionibacterium, among which Cupriavidus of the β-Proteobacteria class was detected in all samples. The bacterial community structure of the soak solutions that were collected from different bamboo slips was quite complex and significantly different. The analysis of the main bacterial community revealed the potential bacteria species that may trigger the damage in bamboo slips; the result provided a reference to prevent waterlogged bamboo slips from microbial diseases in the future. © 2018 Science Press. All rights reserved.  相似文献   

3.
Wild rodents were collected using live snap traps in pistachio gardens of Kerman Province, Southeast Iran from 2007 to 2009, then some physiological parameters of them were measured. The samples were identified as follow: Nesokia indica, Meriones persicus, Meriones lybicus and Tatera indica. Blood samples were obtained from the heart, then the blood parameters (glucose, cholesterol, triglyceride, total protein, HDL, red and white blood cell number) in wild species of rodents and laboratory rat were compared. The results showed that there were no significant differences in serum glucose, triglyceride, HDL and total protein levels among different experimental groups. The concentration of cholesterol in T. indica was more than that in N. indica (P < 0.01). The total numbers of red blood cells also showed significant difference between wild garden rodent species and laboratory rat (P < 0.01), while the numbers of white blood cells showed no significant difference.  相似文献   

4.
An annual quarterly survey of six stations in Yantian Port, Shenzhen, China was conducted from January 2020 to October 2020 to investigate the spatial and temporal distribution of dinoflagellate cysts in the surface sediment of Yantian Port. In total, 36 species representing five groups and two uncertain taxa were identified. The dominant species were Scrippsiella trochoidea, Alexandrium spp., Gymnodinium catenatum, Cochlodinium spp., and Lingulodinium polyedrum. The seasonal difference was not obvious in terms of temporal distribution. The number of species ranged from 32 to 36, and the abundance varied from 297 to 996 cysts/g. The annual average values of the diversity index, richness index, and evenness index were 3.65, 1.55, and 0.93, respectively. The annual number and abundance of heterotrophic species were higher than those of autotrophic species. The number and abundance of species at stations near the dock zone were lower than those near the adjacent area. Notably, six toxic dinoflagellate cysts were found in the surface sediment of Yantian Port, indicating a potential outbreak risk for their vegetative cells in the local coastal area. This study provides a picture of the “Seed Bank” of dinoflagellates near Yantian Port, Shenzhen, and provides a reference value for predicting the occurrence of algal blooms. © 2022 Science Press. All rights reserved.  相似文献   

5.
In this study, micronucleus (MCN) and chromosome aberration (CA) tests in Vicia faba root tip cells were carried out in order to assess the water quality and the comprehensive genotoxic potential of surface waters located in the urban area of Xi'an City, China. For these evaluations, water samples from different surface waters (four rivers, two lakes, two biological treatment plant effluents) were collected, the ultra-pure water and methyl methanesulfonate solution was used as the negative and positive control, respectively. In our results, highly significant differences in MCN perrnillage (average number of micronuclei per 1000 cells), CA frequencies and PI (pollution index) values were found among three rivers and two WWTP effluents, the tested samples from two rivers caused the decrease of mitotic index over 22% compared with the negative control. No significant changes were observed in micronuclei and chromosome aberrations frequencies at one river and two lakes during the period of test (wet season). These results point out a poor state of the water quality and genotoxic activity of the main surface waters in Xi'an City. It is recommended to establish a monitoring program for the presence of genotoxic agents in these surface waters.  相似文献   

6.
To protect the ecosystem of barren mountains, massive Cupressus funebris plantations were allowed in hilly areas of the central Sichuan Basin in the late 1980s. In recent years, Cupressus funebris plantations have faced problems such as biodiversity decline and soil erosion. To study the effects of different forest densities on understory species diversity and soil anti-scourability of Cupressus funebris plantations in Yunding Mountain, a typical sampling method was used to investigate the five different forest densities (1 100, 950, 800, 650, and 500 trees/hm2) and to analyze the correlation between the species diversity index, soil anti-scourability, and root index. In total, 176 species from 128 genera and 69 families were recorded in this area. The number of species in the herb layer was higher than that in the shrub layer. The species diversity index of the shrub layer first increased and then decreased with the decrease in stand density; and the species richness index D and Shannon–Wiener diversity index H showed peak values at a density of 650 trees/hm2. The species richness index D, Shannon–Wiener diversity index H, and Simpson dominance index H’ in the herb layer showed a bimodal trend of increasing, then decreasing, increasing again, and finally decreasing with the decrease in stand density; and the peak values were found at the densities of 650 and 950 trees/hm2. When soil anti-scourability decreased with stand density, it showed a trend of increasing and then decreasing, reaching a peak at a density of 650 trees/hm2. The positive correlation between the species richness index and soil anti-scourability was evident. Thus, 650 trees/hm2 is relatively more conducive to the stability of species diversity and soil anti-scourability in cypress plantations. © 2022 Authors. All rights reserved.  相似文献   

7.
As low oxygen and high ultraviolet (UV) exposure might significantly affect the microbial existence in plateau, it could lead to a specialized microbial community. To determine the abundance and distribution of ammonia-oxidizing archaea (AOA) in agricultural soil of plateau, seven soil samples were collected respectively from farmlands in Tibet and Yunnan cultivating the wheat, highland-barley, and colza, which are located at altitudes of 3200-3800 m above sea level. Quantitative PCR (q-PCR) and clone library targeting on amoA gene were used to quantify the abundances of AOA and ammonia-oxidizing bacteria (AOB), and characterize the community structures of AOA in the samples. The number of AOA cells (9.34 × 10^7-2.32× 10^8 g^-1 soil) was 3.86-21.84 times greater than that of AOB cells (6.91 × 10^6-1.24 × 10^8 g^-1 soil) in most of the samples, except a soil sample cultivating highland- barley with an AOA/AOB ratio of 0.90. Based Kendall's correlation coefficient, no remarkable correlation between AOA abundance and the environmental factor was observed. Additionally, the diversities of AOA community were affected by total nitrogen and organic matter concentration in soils, suggesting that AOA was probably sensitive to several environmental factors, and could adjust its community structure to adapt to the environmental variation while maintaining its abundance.  相似文献   

8.
To reveal the response of non-structural carbohydrates (NSC) and carbon and nitrogen isotopes in plant leaves to global warming, we conducted soil warming experiments in the Fujian Sanming Forest Ecosystem and Global Change National Observation and Research Station of China. We designed two treatments: control (CT) and warming (W; cable heating, +4 ℃). Heating cables were installed 20 cm from each other at a depth of 10 cm and were heated in March 2016. In this study, Cunninghamia lanceolata saplings were used to analyze seasonal changes in leaf non-structural carbohydrates, and carbon and nitrogen isotopes. The results showed that (1) warming significantly reduced the soluble sugar, starch, and NSC content of leaves in spring but without any significant difference during other seasons. (2) Leaf δ13C increased significantly in spring and winter after warming, whereas leaf δ15N did not change significantly. (3) No significant correlation was observed between leaf δ13C, δ15N, or NSC content during the warming treatment, but a negative correlation was observed between leaf δ15N, δ13C, and sugar to starch ratio. A positive correlation between leaf δ15N and starch content was identified. In summary, when temperature increases, plants adjust the NSC content during different seasons for osmotic regulation, change the characteristics of the nutrient cycle, and alter the plant water and nutrient use strategies to maintain plant growth. In the future, we should further study the seasonal variation characteristics of NSC content and isotopes and the relationship between NSC content and the carbon and nitrogen cycles in plants under the context of long-term warming. © 2022 Science Press. All rights reserved.  相似文献   

9.
To evaluate bacterial community variation in the mushroom shiro of Suillus granulatus during fruiting, we collected soil samples from the mushroom shiro in the pine (Pinus tabuliformis) forest of mountainous area in Beijing from May to November and evaluated the bacterial community using polymerase chain reaction - denaturing gradient gel electrophoresis (PCR-DGGE). Total soil DNA was extracted using a commercial soil DNA isolation kit. PCR amplification and DGGE were performed using bacterial universal primers 338F and 518R. The specific bands were excised from the gel and sequenced. The results revealed that soil bacterial community maintained considerably high level and changed seasonally with the mushroom fruiting. In total, 53 bands of DGGE profiles were sequenced and divided into 5 phyla (Acidobacteria, Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria and 22 genera (Acidobacterium, Aminobacter, et al). Species from Proteobacteria and Acidobacteria were the dominant bacterial groups sharing considerably high relative abundance, while class a-Proteobacteria was the most abundant group. The variation of the relative abundance of γ-Proteobacteria species was consistent with the mushroom fruiting season. The relative abundance of Acidobacteria species obviously increased before mushroom flush (in July). The fruiting of S. granulatus and the relative abundance of γ-Proteobacteria were correlated with each other. The present study provided a basis for conservation and domestication of mushroom S. granulatus.  相似文献   

10.
Warming and nitrogen deposition directly or indirectly affect the plant-soil element cycle under global change. To examine the effects of warming and nitrogen deposition on leaf and soil carbon (C), nitrogen (N), phosphorus (P) contents, and their stoichiometric ratios in Cunninghamia lanceolata saplings, four types of treatments were assigned: control (CT), warming (W, + 4 ºC), nitrogen deposition (N, 40 kg ha-1 a-1), and warming + nitrogen deposition (WN) treatments. The results showed that: (1) compared with CT, W treatment significantly decreased leaf P content by 54.54% and increased leaf C/P and N/P by 85.26% and 83.39%, respectively; WN treatment significantly decreased leaf C content and P content by 1.99% and 51.03%, respectively, but increased the leaf C/P by 68.01% with no significant differences in leaf N content among treatments. The leaf N/P ratio of each treatment was less than 10, but that of the W and WN treatments were closer to 10 than that of the CT treatment. Meanwhile, W and WN treatments significantly increased tree height. (2) No significant differences were observed in soil total carbon (TC), total nitrogen (TN), and total phosphorus (TP) contents among treatments. Compared with CT, W treatment significantly decreased soil C/N by 4.09%, while neither W nor WN treatment affected soil C/P and N/P. W treatment increased the available soil content compared to CT treatment. (3) The correlation analysis showed that leaf N content was significantly negatively correlated with soil C/N in the CT treatment; in the W treatment leaf N content and N/P were significantly positively correlated with soil TN and TP content, respectively. Leaf N content was significantly negatively correlated with soil TC and TN in the N treatment, and leaf contents had no significant correlation with soil C, N, and P contents or their stoichiometric characteristics in the WN treatment. This study showed that N limitation still exists in C. lanceolata saplings. Warming and the interaction between warming and nitrogen deposition could alleviate N limitation and promote the growth of C. lanceolata. © 2022 Authors. All rights reserved.  相似文献   

11.
The aim of this study was to investigate the benthic bacterial communities in different depths of an urban river sediment accumulated with high concentrations of nutrients and metals. Vertical distributions of bacterial operational taxonomic units (OTUs) and chemical para- meters (nutrients: NH4+, NO3, dissolved organic carbon, and acid volatile sulfur; metals: Fe, Zn, and Cu) were characterized in 30 cm sediment cores. The bacterial OTUs were measured using the terminal restriction fragment length polymorphism analysis. Biodiversity indexes and multivariate statistical analyses were used to characterize the spatial distributions of microbial diversity in response to the environmental parameters. Results showed that concentrations of the nutrients and metals in this river sediment were higher than those in similar studies. Furthermore, high microbial richness and diversity appeared in the sediment. The diversity did not vary obviously in the whole sediment profile. The change of the diversity indexes and the affiliations of the OTUs showed that the top layer had different bacterial community structure from deeper layers due to the hydrological disturbance and redox change in the surface sediment. The dominant bacterial OTUs ubiquitously existed in the deeper sediment layers (5-27 cm) corresponding to the distributions of the nutrients and metals. With much higher diversity than the dominant OTUs, the minor bacterial assemblages varied with depths, which might be affected by the sedimentation process and the environmental competition pressure.  相似文献   

12.
Epidemiological studies have shown that there is a link between asthma and brain damage,but toxicological studies have not fully confirmed yet,especially the effects of asthma on the brain. In this study,at first,we explore the effects of asthma on the brain through the establishment of an allergic asthma model. Then PM_(2.5),a typical outdoor air pollutant and formaldehyde,a typical indoor air pollutant were selected to be closer to the true environment and find whether there is any synergism between them. In this study,an ovalbumin( OVA)-sensitized mice asthma model was established. 30 male Balb/c mice were randomly divided into 5 groups:( 1) saline control group,( 2) OVA-sensitized group,( 3) OVA-combined with formaldehyde exposure group,( 4) OVA-combined with PM_(2.5) exposure group,( 5) Combination of OVA,formaldehyde and PM_(2.5) exposure group. The mice were inhaled with formaldehyde or/and instilled with PM_(2.5) from day 1 to 18. The mice asthma model was developed by OVA sensitization and challenge. The mice were sensitized with OVA+Al( OH)3( 5 mg OVA and 175 mg Al( OH)3 in 30 m L saline each time) or saline( 30 m L saline each time) by intraperitoneal injection on day 1,7 and 14.This was then followed by an aerosol challenge in 1% OVA( 30 min·d~(-1)) from day 19 to 25( 7 times) using an ultrasonic nebulizer. On the 26 th day,the organ coefficient of mice brain was counted,then the contents of oxidative stress of mice brain were measured,including reactive oxygen species( ROS),glutathione( GSH) and malondialdehyde( MDA),and the concentrations of NF-κB and interleukin-1β( IL-1β) were detected by using ELISA kits.Detection of interleukin-6( IL-6) was made with immunohistochemical method. Histological assay for brain was also conducted. In our results,all the OVA treated groups showed a significant increase of ROS and a significant decrease of GSH contents when compared with the control group. Except OVA-sensitized group,other OVA treated groups also showed a significant increase of MDA contents when compared with the control group,and MDA contents of OVA-sensitized group showed significant change when compared to the combined exposure group. In ROS and GSH,combined exposure showed some joint effect compared with single exposure. When OVA was applied in combination with formaldehyde and PM_(2.5),NF-κB was activated. And all the OVA treated groups showed increased levels of IL-1β and IL-6 compared with the control group. And the combined exposure showed an aggravated effect when compared with OVA-sensitized group. Histopathological observation of the hippocampus in mice brain clearly showed the difference of eosin( EO) stained neurons in the combined exposure group compared with the control group and OVA-sensitized group. The pyramidal neurons of the mice with allergic asthma exposed to formaldehyde and/or PM_(2.5) had been reduced in number,the cells were swollen and the dendrites had disappeared. Allergic asthma can cause damage to the brain through oxidative stress. Exposure to formaldehyde and PM_(2.5) will increase the damage caused by allergic asthma to the brain,which may be mediated by oxidative stress and NF-κB activation.This promotes the release of the inflammatory factors,resulting in increased inflammation.  相似文献   

13.
Nitrogen contamination of surface water is a worldwide environmental problem with intensive agricul- ture and high population densities. We assessed the spatial and seasonal variation in concentrations of total nitrogen and different nitrogen species present in surface-water in Beijing, China. Also, chemical (NO3-N/C1-) and isotopic (615Nnitrate) indicators were used to identify nitrate sources. The results showed that, during 2009 and 2010, nitrate nitrogen concentrations ranged from 0.7 to 7.6 mg· L^-1, ammonium nitrogen from 0. I to 3.4 mg· L^-1, and total nitrogen from 2.4 to 17.0mg· L^-1. Inorganic nitrogen accounted for between 60 and 100% of total nitrogen at the ten monitoring sites. Nitrate nitrogen, ammonium nitrogen, and total nitrogen concentrations at the 2 downstream monitoring sites in south-eastern Beijing were significantly higher than those at the other eight upstream monitoring sites (P 〈 0.01). Examination of seasonal variation showed that there was a significant inverse relationship between nitrate nitrogen concentrations and precipitation, and that nitrate nitrogen concentrations peaked in the dry seasons. The information given by the 15Nnitrate values and nitrate nitrogen concentrations, combined with the NO3-N/C1- ratio distribution, showed that domestic sewage was the major source of nitrate in Beijing. Methods to control and reduce sewage pollution are urgently needed to help manage surface water quality in Beijing.  相似文献   

14.
The uterotrophic assay has been commonly used to test environmental estrogens in vivo, however, it is often not sensitive enough sometimes. An alternative way is to evaluate estrogenicity through biomarker genes. MicroRNA (miRNA) is a class of regulatory gene, which has been shown to be a good biomarker for many diseases and toxicological effects in recent years, and some evidences showed that estrogen induced response was partially mediated by miRNAs. In this study, two types of microarrays were used to test the 17[3-estradiol (E2) induced miRNA expression profile at different time points in the immature mouse uterus. Statistical analysis showed the aldehyde slide based array had less variation than the amino slide based array, and 11 dysregulated miRNAs were screened out for significant fold change. Real-time PCR was performed to further confirm that 4 out of 7 selected miRNAs, namely miR-451, miR-155, miR-335- 5p, and miR-365, are E2 regulated miRNAs in the uterus. The function of the predicted targets of these miRNAs is involved in cell grow control, which is consistent with the main E2 function in the uterus. MiR-451 had similar strong responses to E2 in the uterus of both immature and overiectomized mice, and could be a potential biomarker for estrogenicity in the uterus.  相似文献   

15.
16.
Riparian zone vegetation is an important part of the riparian ecosystem and plays an important role in the riparian zone functioning. Herbs, which are one of the main types of riparian vegetation, are extremely sensitive to environmental changes and human activities and have become a hot spot of riparian vegetation research. In this study, the herbaceous communities of four representative rivers (Xiaoyi, Baohe, Fuhe, and Baigouyin River) entering Baiyangdian Lake in China were researched. The herbaceous species in their riparian zones were systematically investigated using the sample plot method. The Shannon-Wiener diversity (H’), Pielou evenness (J), and Patrick richness (R) indices were estimated to examine the species composition and diversity of the herb communities, following which redundancy analysis (RDA) was conducted. The relationship between species diversity, distribution patterns of herbaceous plant communities, and soil environmental factors in the riparian zone of the four rivers is discussed. (1) Eighty-three species of herbaceous plants belonging to 66 genera and 27 families in the riparian zone entering Baiyangdian Lake. Most herbaceous plants, including Poaceae, Compositae, and Chenopodiaceae, were weeds or associated plants. Riparian vegetation was greatly affected by human disturbance. (2) All the three estimated indices of the Xiaoyi, Baigouyin, and Fuhe rivers were better than those of the Baohe River. (3) The vegetation coverage and species diversity of riparian herbaceous communities were positively correlated with soil organic matter and water content but negatively correlated with pH, total nitrogen, and total phosphorus. Therefore, these communities are conducive to the restoration of vegetation and the stability of biodiversity in the riparian core area to reduce the disturbance of human activities and increase humidity. © 2022 Science Press. All rights reserved.  相似文献   

17.
Desertification has emerged as a serious threat to the alpine meadows of Northwest Sichuan in recent decades. Artificial vegetation had certain effects on desertification recovery, while how the CO2 flux changed and its reasons are still unclear. During the growing season in 2016 (i.e., from July to September), we selected the desertified alpine meadows with different recovery degrees, including the early stage of restoration, the middle stage of restoration, the late stage of restoration, and control (the unrecovered desertification meadow) as four transects. CO2 flux was measured by the instrument LI-8100, and the microenvironment factors that affected CO2 flux changes were analyzed. The results showed that the carbon sequestration function of desertified alpine meadows gradually increased with the degree of recovery. Net ecosystem exchange (NEE) were -1.61, -3.55, and -4.38 μmol m-2 s-1 in the early, mid-term, and late transects, respectively, and the most dramatic changes occurred from the early stage to mid-term stage, increasing by 120.50%. Both ecosystem respiration (ER) and soil respiration (SR) were enhanced significantly with restoration (P < 0.05). In mid or late July, NEE, ER, and SR reached their maximum values, and thereafter, the indicators varied to near zero (P < 0.05). During the whole growing season, the daily dynamic in CO2 flux for the control alpine meadow was mild and retained the trend of continuous release all day, but that in the desertified alpine meadow was a single peak pattern. Moreover, with restoration process, the peak of CO2 flux increased and reached a peak in the late stage of the recovery process. The regression analysis showed that there was a significant positive correlation between CO2 flux and vegetation coverage, aboveground biomass, and soil moisture (0-5 cm) (P < 0.01), and a weak correlation with 0-5-cm soil temperature (P < 0.01). This indicates that topsoil moisture (5 cm) is a more significant factor for CO2 flux than topsoil temperature during the growing season in the restoration of desertified alpine meadows in Northwest Sichuan. In general, the vegetation recovery significantly improved the carbon-sequestration ability of the desertified alpine meadows during the growing season in Northwest Sichuan, and at the middle stage of restoration, the carbon-sequestration ability improved significantly due to vegetation restoration and increase in topsoil (0-5 cm) moisture. © 2018 Science Press. All rights reserved.  相似文献   

18.
Heavy metal concentrations in muscle and their relation to thegrowth of two marine fish species,including tonguefish( Cynoglossus arel) and mullet( Mugil cephalus),were studied. The samples were collected in Bach Dang estuary andconcentrations of heavy metals( As,Cd,Co,Mn,Cu,Zn,Pb,and V) in muscle of the fisheswere determined. The result showed that the accumulated trend of heavy metal is different between fish species. The concentration of As,Zn,Mn,V,Cu,Pb,Co and Cd in tonguefish were 73. 7 ± 30. 6,22. 82 ± 4.87,3. 44 ± 2. 13,1. 61 ± 0. 15,0. 71 ± 0. 13,0. 45 ± 0. 24,0. 03 ± 0. 02 and 0. 02 ± 0. 02 mg·g-1,respectively. Meanwhile the concentration of Zn,As,V,Mn,Cu,Pb,Co and Cd in mullet were 83. 41 ±19. 68,9. 78 ± 1. 92,1. 36 ± 0. 54,1. 29 ± 0. 51,0. 65 ± 0. 12,0. 42 ± 0. 20,0. 06 ± 0. 03 and0. 03 ± 0. 01mg·g-1,respectively. Comparison of metal levels among thesespecies indicated that the concentrations of As and Mn in tonguefish were significantly higher than those in mullet,whereas Zn levels in mullet were found to be higher than that in tonguefish. There is no significant differences of Cd,Co,Cu,Pb and V levels in muscle between two species. Significant inversed relationshipsbetween concentration levels of metals and lengths of tonguefish were found for Mn,Cu and Zn,butnot for As,Cd,Pb,and V. There were no significant relationships between the heavy metal concentrations and the length of mullet. In general,decreasesof the heavy metal concentrations corresponded to the increases of fish body lengths,particularly for As,Co,Cu,Mn and V and the exception for Cd. Terefore reduced risks were associated with consuming biggermullet fish,and increased risks of As and Cd were associated with consuming bigger tonguefish in Bach Dang river mouth.  相似文献   

19.
Squaliobarbus curriculus is one of the most economically important edible freshwater fish in the Pearl River. To assess the level of genetic diversity and genetic variation of S. curriculus populations w ithin t he Pearl R iver, samples were collected from six geographical populations from six drainages. 978 base pairs of the D-loop sequence were obtained as a molecular marker. 106 haplotypes were defined among 170 S. curriculus individuals. Populations of S. curriculus in the Pearl River displayed a high haplotypic diversity index (h = 0.9820) and high nucleotide diversity index (π = 0.01353). T he results of genetic distance and genetic differentiation index show that genetic differentiation among S. curriculus populations is not significant. The neighbor-joining tree shows two clades. Clade A is composed of most haplotypes of S. curriculus. Clade B includes two private haplotypes from the Xijiang River. Haplotype network analysis is consistent with the results of genetic distance and genetic differentiation. The results of AMOVA analysis showed that most variation was found within populations (99.36%). Neutral test analysis explained that there was population expansion in the history of S. curriculus in the Pearl River. Xijiang River could be the center of origin, as supported by all the results. © 2018 Science Press. All rights reserved.  相似文献   

20.
Nitrogen (N) loss in irrigated croplands from coupled nitrification and denitrification shows considerable differences due to differences in soil properties and agricultural management practices. Previous research has demonstrated that soil physicochemical properties strongly affect nitrification and denitrification capacities of cropland soils. However, existing research on soil nitrification and denitrification following the conversion of native desert soils to irrigated croplands lacks long-term tracking and monitoring capabilities. Therefore, six types of reclamation years of irrigated croplands and uncultivated sandy land in the Hexi Corridor marginal oasis in northwestern China were selected for study, and the differences in soil nitrification and denitrification rates and physicochemical properties were studied over 42 sites in the desert-oasis ecotone derived from seven reclamation sequences, including the years of 0, 15, 30, 50, 80, 100, and 150. The results showed that the nitrification and denitrification rates of soil first increased and then decreased with the increase in reclamation years. The highest soil nitrification rate and denitrification rate were observed at 80 years of cultivation (101.4 μg g-1 d-1) and 100 years of cultivation (0.93 μg g-1 d-1), respectively. In addition, the soil nitrification and denitrification rates in the natural sandy land were significantly lower than those in the cultivated croplands (P < 0.05). There were significant correlations among soil nutrients, soil moisture, and soil particle size composition between the nitrification and denitrification rates (P < 0.05). Regression analysis showed that environmental variables accounted for 69.7% and 75.7% of the variation in nitrification and denitrification rates, respectively. Among them, organic matter content, pH, soil moisture, and NH4+-N content were the key factors affecting the change in soil denitrification rate, while organic matter content, NO3--N, pH, and clay content were the key factors affecting the change in soil denitrification rate. © 2022 Science Press. All rights reserved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号