首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
By enrichment culturing of the sludge collected from the industrial wastewater treatment pond, we isolated a highly efficient nicosulfuron degrading bacterium Serratia marcescens N80. In liquid medium, Serratia marcescens N80 grows using nicosulfuron as the sole nitrogen source, and the optimal temperature, pH values, and inoculation for degradation are 30–35°C, 6.0–7.0, and 3.0% (v/v), respectively. With the initial concentration of 10 mg L?1, the degradation rate is 93.6% in 96 hours; as the initial concentrations are higher than 10 mg L?1, the biodegradation rates decrease as the nicosulfuron concentrations increase; when the concentration is 400 mg L?1, the degradation rate is only 53.1%. Degradation follows the pesticide degradation kinetic equation at concentrations between 5 mg L?1 and 50 mg L?1. Identification of the metabolites by the liquid chromatography/mass spectrometry (LC/MS) indicates that the degradation of nicosulfuron is achieved by breaking the sulfonylurea bridge. The strain N80 also degraded some other sulfonylurea herbicides, including ethametsulfuron, tribenuron-methyl, metsulfuron-methyl, chlorimuron-ethyl,and rimsulfuron.  相似文献   

2.
Enrichment culturing of sludge taken from an industrial wastewater treatment pond led to the identification of a bacterium (Klebsiella jilinsis H. Zhang) that degrades chlorimuron-ethyl with high efficiency. Klebsiella jilinsis strain 2N3 grows with chlorimuron-ethyl as the sole nitrogen source at the optimal temperature range of 30–35°C and pH values between 6.0–7.0. In liquid medium, the degradation activity was further induced by chlorimuron-ethyl. Degradation rates followed the pesticide degradation kinetic equation at concentrations between 20 and 200 mg L?1. Using initial concentrations of 20 and 100 mg L?1, the degradation rates of chlorimuron-ethyl were 83.5 % and 92.5 % in 12 hours, respectively. At an initial concentration higher than 200 mg L?1, the degradation rate decreased slightly as the concentration increased. The 2N3 strain also degraded the sulfonylurea herbicides ethametsulfuron, metsulfuron-methyl, nicosulfuron, rimsulfuron, and tribenuron-methyl. This study provides scientific evidence and support for the application of K. jilinsis in bioremediation to reduce environmental pollution.  相似文献   

3.
This study assesses the growth of the microalgae Nannochloris oculata in the presence of lindane and the ability of N. oculata to remove lindane from media. Algal biomass increased with 0.1 and 0.5 mg L?1 of lindane, and lindane concentrations in the media decreased. N. oculata removed 73% and 68.2% of lindane in the 0.1 and 0.5 mg L?1 media concentrations, respectively. Algal biomass decreased to the level of the control at lindane concentrations greater than 2.5 mg L?1, probably due to toxicity. N. oculata removed lindane from the media at concentrations lower than 1.0 mg L?1. Thus, N. oculata may be useful for lindane bioremediation in contaminated aquatic systems.  相似文献   

4.
This investigation was undertaken to determine the atrazine degradation by fungal enzyme extracts (FEEs) in a clay-loam soil microcosm contaminated at field application rate (5 μg g?1) and to study the influence of different soil microcosm conditions, including the effect of soil sterilization, water holding capacity, soil pH and type of FEEs used in atrazine degradation through a 24 factorial experimental design. The Trametes maximaPaecilomyces carneus co-culture extract contained more laccase activity and hydrogen peroxide (H2O2) content (laccase = 18956.0 U mg protein?1, H2O2 = 6.2 mg L?1) than the T. maxima monoculture extract (laccase = 12866.7 U mg protein?1, H2O2 = 4.0 mg L?1). Both extracts were able to degrade atrazine at 100%; however, the T. maxima monoculture extract (0.32 h) achieved a lower half-degradation time than its co-culture with P. carneus (1.2 h). The FEE type (p = 0.03) and soil pH (p = 0.01) significantly affected atrazine degradation. The best degradation rate was achieved by the T. maxima monoculture extract in an acid soil (pH = 4.86). This study demonstrated that both the monoculture extracts of the native strain T. maxima and its co-culture with P. carneus can efficiently and quickly degrade atrazine in clay-loam soils.  相似文献   

5.
The degradation of chlorpyrifos (CP) by an endophytic bacterial strain (HJY) isolated from Chinese chives (Allium tuberosum Rottl. ex Spreng) was investigated. Strain HJY was identified as Sphingomonas sp. based on morphological, physiological, and biochemical tests and a 16S rDNA sequence analysis. Approximately 96% of 20 mg L?1 CP was degraded by strain HJY over 15 days in liquid minimal salts medium (MSM). The CP degradation rate could also be increased by glucose supplementation. The optimal conditions for the removal of 20 mg L?1 CP by strain HJY in MSM were 2% inoculum density, pH 6.0, and 30–35°C. The CP degradation rate constant and half-life were 0.2136 ± 0.0063 d?1 and 3.2451 ± 0.0975 d, respectively, under these conditions, but were raised to 0.7961 ± 0.1925 d?1 and 0.8707 ± 0.3079 d with 1% glucose supplementation. The detection of metabolic products and screening for degrading genes indicated that O,O-diethyl O-3,5,6-trichloropyridinol was the major degradation product from CP, while it was likely that some functional genes were undetected and the mechanism responsible for CP degradation by strain HJY remained unknown. Strain HJY is potentially useful for the reduction of CP residues in Chinese chives and may be used for the in situ phytoremediation of CP.  相似文献   

6.
A solvent tolerant bacterium Serratia marcescens NCIM 2919 has been evaluated for degradation of DDT (1,1,1-trichloro-2,2-bis (4-chlorophenyl) ethane). The bacterium was able to degrade up to 42% of initial 50 mg L?1 of DDT within 10 days of incubation. The highlight of the work was the elucidation of DDT degradation pathway in S. marcescens. A total of four intermediates metabolites viz. 2,2-bis (chlorophenyl)-1,1-dichloroethane (DDD), 2,2-bis (chlorophenyl)-1,1-dichloroethylene (DDE), 2,2-bis (chlorophenyl)-1-chloroethylene (DDMU), and 4-chlorobenzoic acid (4-CBA) were identified by GC-Mass and FTIR. 4-CBA was found to be the stable product of DDT degradation. Metabolites preceding 4-CBA were not toxic to strain as reveled through luxuriant growth in presence of varying concentrations of exogenous DDD and DDE. However, 4-CBA was observed to inhibit the growth of bacterium. The DDT degrading efficiency of S. marcescens NCIM 2919 hence could be used in combination with 4-CBA utilizing strains either as binary culture or consortia for mineralization of DDT. Application of S. marcescens NCIM 2919 to DDT contaminated soil, showed 74.7% reduction of initial 12.0 mg kg?1 of DDT after 18-days of treatment.  相似文献   

7.
A significant proportion of xenobiotic recalcitrant azo dyes are being released in environment during carpet dyeing. The bacterial strain Stenotrophomonas sp. BHUSSp X2 was isolated from dye contaminated soil of carpet industry, Bhadohi, India. The isolated bacterial strain was identified morphologically, biochemically, and on the basis of 16S rRNA gene sequence. The isolate decolorized 97 % of C.I. Acid Red 1 (Acid RED G) at the concentration of 200 mg/l within 6 h under optimum static conditions (temperature ?35 °C, pH 8, and initial cell concentration 7?×?107 cell/ml). Drastic reduction in dye degradation rate was observed beyond initial dye concentration from 500 mg/l (90 %), and it reaches to 25 % at 1000 mg/l under same set of conditions. The analysis related to decolorization and degradation was done using UV-Vis spectrophotometer, HPLC, and FTIR, whereas the GC-MS technique was utilized for the identification of degradation products. Phytotoxicity analysis revealed that degradation products are less toxic as compared to the original dye.  相似文献   

8.
This investigation was undertake to determine the effect of glyphosate, chlorpyrifos and atrazine on the lag phase and growth rate of nonochratoxigenic A. niger aggregate strains growing on soil extract medium at ?0.70, ?2.78 and ?7.06 MPa. Under certain conditions, the glyphosate concentrations used significantly increased micelial growth as compared to control. An increase of about 30% was observed for strain AN 251 using 5 and 20 mg L?1 of glyphosate at ?2.78 MPa. The strains behaved differently in the presence of the insecticide chlorpyrifos. A significant decrease in growth rate, compared to control, was observed for all strains except AN 251 at ?2.78 MPa with 5 mg L?1. This strain showed a significant increase in growth rate. With regard to atrazine, significant differences were observed only under some conditions compared to control. An increase in growth rate was observed for strain AN 251 at ?2.78 MPa with 5 and 10 mg L?1 of atrazine. By comparison, a reduction of 25% in growth rate was observed at ?7.06 MPa and higher atrazine concentrations. This study shows that glyphosate, chlorpyrifos and atrazine affect the growth parameters of nonochratoxigenic A. niger aggregate strains under in vitro conditions.  相似文献   

9.
A nicotine-degrading bacterium, strain HF-2, was isolated from tobacco waste-contaminated soil and identified as a member of Arthrobacter sp. based on morphology, physiological tests, 16S rDNA sequence and phylogenetic characteristics. At thermal denaturation test indicated that the G + C mol% of strain HF-1 was 63.5. The relationship between the growth of the isolate and the nicotine degradation suggested that strain HF-2 could utilize nicotine as sole sources of carbon, nitrogen and energy. Blue pigment was observed during the nicotine degradation by strain HF-2. The isolate grew well at 20 to 33°C, initial pH 6.5 to 8.0 and 0.5 to 2.0 g L?1 of nicotine concentration in the nicotine inorganic salt media. The maximum growth and nicotine degradation occurred at 30°C, initial pH 7.0 and 0.7 g·L?1 of nicotine concentration in media under natural incubation condition. Strain HF-2 could degrade 100% of nicotine under the optimized incubation conditions for 43 h. The concentrations of nicotine were monitored by high performance liquid chromatography. This study demonstrates Arthrobacter sp. strain HF-2 had a great ability to degrade nicotine, and it may be available for the application to the bioremediation of environments contaminated by tobacco waste.  相似文献   

10.
The objective of the present study was to examine a biological model under greenhouse conditions for the bioremediation of atrazine contaminated soils. The model consisted in a combination of phytoremediation (using Phaseolus vulgaris L.) and rhizopheric bio-augmentation using native Trichoderma sp., and Rhizobium sp. microorganisms that showed no inhibitory growth at 10,000 mg L?1 of herbicide concentration. 33.3 mg of atrazine 50 g?1 of soil of initial concentration was used and an initial inoculation of 1 × 109 UFC mL?1 of Rhizobium sp. and 1 × 105 conidia mL?1 of Trichoderma sp. were set. Four treatments were arranged: Bean + Trichoderma sp. (B+T); Bean + Rhizobium sp. (BR); Bean + Rhizobium sp. + Trichoderma sp. (B+R+T) and Bean (B). 25.51 mg of atrazine 50 g?1 of soil (76.63%) was removed by the B+T treatment in 40 days (a = 0.050, Tukey). This last indicate that the proposed biological model and methodology developed is useful for atrazine contaminated bioremediation agricultural soils, which can contribute to reduce the effects of agrochemical abuse.  相似文献   

11.
Chlorophenols, like many other synthetic compounds, are persistent problem in industrial areas. These compounds are easily degraded in certain natural environments where the top soil is organic. Some studies suggest that mineral soil contaminated with organic compounds is rapidly remediated if it is mixed with organic soil. We hypothesized that organic soil with a high degradation capacity even on top of the contaminated mineral soil enhances degradation of recalcitrant chlorophenols in the mineral soil below. We first compared chlorophenol degradation in different soils by spiking pristine and pentachlorophenol-contaminated soils with 2,4,6-trichlorophenol in 10-L buckets. In other experiments, we covered contaminated mineral soil with organic pine forest soil. We also monitored in situ degradation on an old sawmill site where mineral soil was either left intact or covered with organic pine forest soil. 2,4,6-Trichlorophenol was rapidly degraded in organic pine forest soil, but the degradation was slower in other soils. If a thin layer of the pine forest humus was added on top of mineral sawmill soil, the original chlorophenol concentrations (high, ca. 70 μg g?1, or moderate, ca. 20 μg g?1) in sawmill soil decreased by >40 % in 24 days. No degradation was noticed if the mineral soil was kept bare or if the covering humus soil layer was sterilized beforehand. Our results suggest that covering mineral soil with an organic soil layer is an efficient way to remediate recalcitrant chlorophenol contamination in mineral soils. The results of the field experiment are promising.  相似文献   

12.
A soil contaminated with a B20 biodiesel blend (20 % biodiesel, 80 % diesel) has been treated by modified Fenton process with or without chelant addition. All experiments were conducted without pH adjustment. The reagents used were as follows: hydrogen peroxide as oxidant (400–4,000 mmol L?1), ferric ion as catalyst (5–20 mmol L?1), and trisodium citrate (50 mmol L?1) as chelating agent. Soil was spiked at two different pollutant concentrations (1,000–10,000 mg diesel kg?1 soil). Higher total petroleum hydrocarbon (TPH) removal efficiencies were obtained (up to 75 %) after the treatment in the absence of the chelant due to the low pH obtained in this case. In the presence of chelant, the TPH conversion obtained was lower because both higher pH is obtained and chelant competes with diesel for the oxidant. On the other hand, at neutral pH, the lifetime of the oxidant was increased. Fatty acid methyl esters (FAMEs) are easier to remove than diesel aliphatic hydrocarbons from the blend. An important decrease of the aqueous phase toxicity was observed after the modified Fenton reaction, supporting that nontoxic by-products were released to the aqueous phase during the treatment.  相似文献   

13.
Most studies on the treatment of chlorinated contaminants by Fe(0) focus on aqueous system tests. However, few is known about the effectiveness of these tests for degrading chlorinated contaminants such as 1,1,1-trichloroethane (TCA) in soil. In this work, the reductive degradation performance of 1,1,1-TCA by Fe(0) was thoroughly investigated in a soil slurry system. The effects of various factors including acid-washed iron, the initial 1,1,1-TCA concentration, Fe(0) dosage, slurry pH, and common constituents in groundwater and soil such as Cl?, HCO3 ?, SO4 2?, and NO3 ? anions and humic acid (HA) were evaluated. The experimental results showed that 1,1,1-TCA could be effectively degraded in 12 h for an initial Fe(0) dosage of 10 g L?1 and a soil/water mass ratio of 1:5. The soil slurry experiments showed two-stage degradation kinetics: a slow reaction in the first stage and a fast reductive degradation of 1,1,1-TCA in the second stage. The reductive degradation of 1,1,1-TCA was expedited as the mass concentration of Fe(0) increased. In addition, high pHs adversely affected the degradation of 1,1,1-TCA over a pH range of 5.4–8.0 and the reductive degradation efficiency decreased with increasing slurry pH. The initial 1,1,1-TCA concentration and the presence of Cl? and SO4 2? anions had negligible effects. HCO3 ? anions had a accelerative effect on 1,1,1-TCA removal, and both NO3 ? and HA had inhibitory effects. A Cl? mass balance showed that the amount of Cl? ions released into the soil slurry system during the 1,1,1-TCA degradation increased with increasing reaction time, suggesting that the main degradation mechanism of 1,1,1-TCA by Fe(0) in a soil slurry system was reductive dechlorination with 1,1-DCA as the main intermediate. In conclusion, this study provides a theoretical basis for the practical application of the remediation of contaminated sites containing chlorinated solvent.  相似文献   

14.
In the present study, a new fungal strain capable of imidacloprid degradation was isolated from agricultural wastewater drain. The fungal strain of YESM3 was identified as Aspergillus terreus based on ITS1-5.8S rDNA-ITS2 gene sequence by PCR amplification of a 500 bp sequence. Screening of A. terreus YESM3 to the insecticide imidacloprid tolerance was achieved by growing fungus in Czapek Dox agar for 6 days at 28°C. High values (1.13 and 0.94 cm cm?1) of tolerance index (TI) were recorded at 25 and 50 mg L?1 of imidacloprid, respectively in the presence and absence of sucrose. However, at 400 mg L?1 the fungus did not grow. Effects of the imidacloprid concentration, pH, and inoculum size on the biodegradation percentage were tested using Box–Behnken statistical design and the biodegradation was monitored by HPLC analysis at different time intervals. Box–Behnken results indicated that optimal conditions for biodegradation were at pH 4 and two fungal discs (10 mm diameter) in the presence of 61.2 mg L?1 of imidacloprid. A. terreus YESM3 strain was capable of degrading 85% of imidacloprid 25 mg L?1 in Czapek Dox broth medium at pH 4 and 28°C for 6 days under static conditions. In addition, after 20 days of inoculation, biodegradation recorded 96.23% of 25 mg L?1 imidacloprid. Degradation kinetics showed that the imidacloprid followed the first order kinetics with half-life (t50) of 1.532 day. Intermediate product identified as 6-chloronicotinic acid (6CNA) as one of the major metabolites during degradation of imidacloprid by using HPLC. Thus, A. terreus YESM3 showed a potential to reduce pollution by pesticides and toxicity in the effected environment. However, further studies should be conducted to understand the biodegradation mechanism of this pesticide in liquid media.  相似文献   

15.
To study the dissipation rates and final residual levels of chlorantraniliprole and thiamethoxam in maize straw, maize, and soil, two independent field trials were conducted during the 2014 cropping season in Beijing and Anhui Provinces of China. A 40% wettable powder (20% chlorantraniliprole?+?20% thiamethoxam) was sprayed onto maize straw and soil at an application rate of 118 g of active ingredient per hectare (g a.i.ha?1). The residual concentrations were determined by ultra-high-performance liquid chromatography–tandem mass spectrometry. The chlorantraniliprole half-lives in maize straw and soil were 9.0–10.8 and 9.5–21.7 days, respectively. The thiamethoxam half-lives in maize straw and soil were 8.4–9.8 and 4.3–11.7 days, respectively. The final residues of chlorantraniliprole and thiamethoxam in maize straw, maize, and soil were measured after the pesticides had been sprayed two and three times with an interval of 7 days using 1 and 1.5 times the recommended rate (72 g a.i. ha?1 and 108 g a.i. ha?1, respectively). Representative maize straw, maize, and soil samples were collected after the last treatment at pre-harvest intervals of 7, 14, and 28 days. The chlorantraniliprole residue was below 0.01 mg kg?1 in maize, between 0.01 and 0.31 mg kg?1 in maize straw, and between 0.03 and 1.91 mg kg?1 in soil. The thiamethoxam residue concentrations in maize, maize straw, and soil were <0.01, <0.01, and 0.01–0.03 mg kg?1, respectively. The final pesticide residues on maize were lower than the maximum residue limit (MRL) of 0.02 mg kg?1 after a 14-day pre-harvest interval. Therefore, a dosage of 72 g a.i. ha?1 was recommended, as it can be considered safe to human beings and animals.  相似文献   

16.
The ecotoxic effects of carbaryl (carbamate insecticide) were investigated with a battery of four aquatic bioassays. The nominal effective concentrations immobilizing 50% of Daphnia magna (EC50) after 24 and 48 h were 12.76 and 7.47 µg L?1, respectively. After 21 days of exposure of D. magna, LOECs (lowest observed effect concentrations) for cumulative molts and the number of neonates per surviving adult were observed at carbaryl concentration of 0.4 µg L?1. An increase of embryo deformities (curved or unextended shell spines) was observed at 1.8 and 3.7 µg L?1, revealing that carbaryl could act as an endocrine disruptor in D. magna. Other bioassays of the tested battery were less sensitive: the IC50-72h and IC10-72h of the algae Pseudokirchneriella subcapitata were 5.96 and 2.87 mg L?1, respectively. The LC50-6d of the ostracod Heterocypris incongruens was 4.84 mg L?1. A growth inhibition of H. incongruens was registered after carbaryl exposure and the IC20-6d was 1.29 mg L?1. Our results suggest that the daphnid test sensitivity was better than other used tests. Moreover, carbaryl has harmful and toxic effects on tested species because it acts at low concentrations on diverse life history traits of species and induce embryo deformities in crustaceans.  相似文献   

17.
The temporal and spatial distribution characteristics of environmental parameters and the phytoplankton community were investigated in October 2010 and January 2011 in the Qinhuai River, Nanjing, China. Results showed that the water quality in the study area was generally poor, and the main parameters exceeding standards (level V) were nitrogen and phosphorus. The observed average concentrations of the total nitrogen (TN) were 4.90 mg?L?1 in autumn and 9.29 mg?L?1 in winter, and those of the total phosphorus (TP) were 0.24 mg?L?1 in autumn and 0.88 mg?L?1 in winter, respectively. Thirty-seven species, 30 genera, and four phyla of phytoplankton were detected in the river. Cyanophyta and Bacillariophyta were the dominant phyla in autumn, with average abundance and biomass of 221.5?×?104?cells?L?1 and 4.41 mg?L?1, respectively. The dominant population in winter was Bacillariophyta, and the average abundance and biomass were 153.4?×?104?cells?L?1 and 6.58 mg?L?1, respectively. The results of canonical correspondence analysis (CCA) between environmental parameters and phytoplankton communities showed that Chlorophyta could tolerate the higher concentrations of the permanganate index, nitrogen, and phosphorus in eutrophic water; Bacillariophyta could adapt well to changing water environments; and the TN/TP ratio had obvious impacts on the distributions of Cyanophyta, Euglenophyta, and some species of Chlorophyta. CCA analyses for autumn and winter data revealed that the main environmental parameters influencing phytoplankton distribution were water temperature, conductivity, and total nitrogen, and the secondary factors were dissolved oxygen, NH4 +–N, NO3–N, TN, CODMn, TN/TP ratio, and oxidation-reduction potential.  相似文献   

18.
Present work demonstrates Cr (VI) detoxification and resistance mechanism of a newly isolated strain (B9) of Acinetobacter sp. Bioremediation potential of the strain B9 is shown by simultaneous removal of major heavy metals including chromium from heavy-metals-rich metal finishing industrial wastewater. Strain B9 tolerate up to 350 mg L?1 of Cr (VI) and also shows level of tolerance to Ni (II), Zn (II), Pb (II), and Cd (II). The strain was capable of reducing 67 % of initial 7.0 mg L?1 of Cr (VI) within 24 h of incubation, while in presence of Cu ions 100 % removal of initial 7.0 and 10 mg L?1 of Cr (VI) was observed with in 24 h. pH in the range of 6.0–8.0 and inoculum size of 2 % (v/v) were determined to be optimum for dichromate reduction. Fourier transform infrared spectroscopy and transmission electron microscopy studies suggested absorption or intracellular accumulation and that might be one of the major mechanisms behind the chromium resistance by strain B9. Scanning electron microscopy showed morphological changes in the strain due to chromium stress. Relevance of the strain for treatment of heavy-metals-rich industrial wastewater resulted in 93.7, 55.4, and 68.94 % removal of initial 30 mg L?1 Cr (VI), 246 mg L?1 total Cr, and 51 mg L?1 Ni, respectively, after 144 h of treatment in a batch mode.  相似文献   

19.
Nitrogen (N) losses from agricultural fields have been extensively studied. In contrast, surface runoff and N losses have rarely been considered for bamboo forests that are widespread in regions such as southern China. The thriving of bamboo industries has led to increasing fertilizer use in bamboo forests. In this study, we evaluated surface runoff and N losses in runoff following different fertilization treatments under field conditions in a bamboo (Phyllostachys pubescens) forest in the catchment of Lake Taihu in Jiangsu, China. Under three different fertilization regimes, i.e., control, site-specific nutrient management (SSNM), and farmer's fertilization practice (FFP), the water runoff rate amounted to 356, 361, and 342 m3?ha?1 and accounted for 1.91, 1.98, and 1.85 % of the water input, respectively, from June 2009 to May 2010. The total N losses via surface runoff ranged from 1.2 to 1.8 kg?ha?1. Compared with FFP, the SSNM treatment reduced total nitrogen (TN) and dissolved nitrogen (DN) losses by 31 and 34 %, respectively. The results also showed that variations in N losses depended mainly on runoff fluxes, not N concentrations. Runoff samples collected from all treatments throughout the year showed TN concentrations greater than 0.35 mg?L?1, with the mean TN concentration in the runoff from the FFP treatment reaching 8.97 mg?L?1. The loss of NO3 ?–N was greater than the loss of NH4 +–N. The total loss of dissolved organic nitrogen (DON) reached 23–41 % of the corresponding DN. Therefore, DON is likely the main N species in runoff from bamboo forests and should be emphasized in the assessment and management of N losses in bamboo forest.  相似文献   

20.
A highly tolerant phenol-degrading yeast strain PHB5 was isolated from wastewater effluent of a coke oven plant and identified as Candida tropicalis based on phylogenetic analysis. Biodegradation experiments with C. tropicalis PHB5 showed that the strain was able to utilize 99.4 % of 2,400 mg l?1 phenol as sole source of carbon and energy within 48 h. Strain PHB5 was also observed to grow on 18 various aromatic hydrocarbons. Haldane model was used to fit the exponential growth data and the following kinetic parameters were obtained: μ max?=?0.3407 h?1, K S?=?15.81 mg l?1, K i?=?169.0 mg l?1 (R 2?=?0.9886). The true specific growth rate, calculated from μ max, was 0.2113. A volumetric phenol degradation rate (V max) was calculated by fitting the phenol consumption data with Gompertz model and specific degradation rate (q) was calculated from V max. The q values were fitted with Haldane model, yielding following parameters: q max?=?0.2766 g g?1 h?1, K S ?=?2.819 mg l?1, K i ?=?2,093 (R 2?=?0.8176). The yield factor (Y X/S ) varied between 0.185 to 0.96 g g?1 for different initial phenol concentrations. Phenol degradation by the strain proceeded through a pathway involving production of intermediates such as catechol and cis,cis-muconic acid which were identified by enzymatic assays and HPLC analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号