首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
A sampling program was conducted to investigate the formation of disinfection by-products (DBPs) and dissolved organic carbon (DOC) at two advanced water treatment plants in Kaohsiung City, Taiwan. The results in this study can be used as a reference for the operational control of water treatment plants and the setting of regulations in Taiwan. Samples of drinking water were collected from two advanced water treatment plants from June 2007 to April 2008. Changes in the concentration of dissolved organic carbon, the trihalomethane formation potential, and the haloacetic acids formation potential were measured in raw water samples. Variations in the concentrations of trihalomethanes (THMs) and haloacetic acids (HAA5) in finished drinking water were evaluated. The major species of HAA5 were in the order of dichloroacetic acid and trichloroacetic acid and the THM was of trichloromethane. DOC was strongly related to DBPs in raw water. In this investigation, the removal efficiency of DBPs in Plant A (ultrafiltration/reverse osmosis system) exceeded that in Plant B (ozonation/biological activated carbon system). Both advanced water treatment plants greatly improved the quality of drinking water.  相似文献   

2.
Stability of drinking water can be indicated by the assimilable organic carbon (AOC). This AOC value represents the regrowth capacity of microorganisms and has large impacts on the quality of drinking water in a distribution system. With respect to the effectiveness of traditional and advanced processing methods in removing trace organic compounds (including TOC, DOC, UV254, and AOC) from water, experimental results indicate that the removal rate of AOC at the Cheng Ching Lake water treatment plant (which utilizes advanced water treatment processes, and is hereinafter referred to as CCLWTP) is 54%, while the removal rate of AOC at the Gong Yuan water treatment plant (which uses traditional water treatment processes, and is hereinafter referred to as GYWTP) is 36%. In advanced water treatment units, new coagulation–sedimentation processes, rapid filters, and biological activated carbon filters can effectively remove AOC, total organic carbon (TOC), and dissolved organic carbon (DOC). In traditional water treatment units, coagulation–sedimentation processes are most effective in removing AOC. Simulation results and calculations made using the AutoNet method indicate that TOC, TDS, NH3-N, and NO3-N should be regularly monitored in the CCLWTP, and that TOC, temperature, and NH3-N should be regularly monitored in the GYWTP.  相似文献   

3.
The Yellow River in winter as source water is characterized as high alkalinity, low temperature and low particle concentrations, which have brought many difficulties to water treatment plants. This study fully examines the optimized coagulation process of the Yellow River by conventional and pre-polymerized metal coagulants, pH adjustment and polyelectrolytes as the primary coagulants or coagulant aids. For all the metal coagulants, polyaluminum chlorides are superior to traditional metal coagulants due to their stable polymeric species and low consumption of alkalinity. The removal of natural organic matter by monomeric metal coagulants can be improved through pH adjustment, which is in accordance with the higher concentration of polymeric species formed at corresponding pH value. With the addition of polyelectrolytes as coagulant aids, the coagulation performance is significantly improved. The effective removal of dissolved organic matter is consistent with high charge density, while molecular weight is relatively important for removing particles, which is consistent with polyelectrolytes as primary coagulants. These results suggest that the coagulation mechanisms in the removal of dissolved organic matter and particles are different, which may be exploited for optimized coagulation for the typical source water in practice.  相似文献   

4.
The presence of natural organic matter (NOM) strongly impacts drinking water treatment, water quality, and water behavior during distribution. Dissolved organic carbon (DOC) concentrations were determined daily over a 22 month period in river water before and after conventional drinking water treatment using an on-line total organic carbon (TOC) analyzer. Quantitative and qualitative variations in organic matter were related to precipitation and runoff, seasons and operating conditions. Following a rainfall event, DOC levels could increase by 3.5 fold over baseflow concentrations, while color, UV absorbance values and turbidity increased by a factor of 8, 12 and 300, respectively. Treated water DOC levels were closely related to the source water quality, with an average organic matter removal of 42% after treatment.  相似文献   

5.
Coagulation is the most important stage in drinking water treatment processes for the maintenance of acceptable treated water quality and economic plant operation, which involves many complex physical and chemical phenomena. Moreover, coagulant dosing rate is non-linearly correlated to raw water characteristics such as turbidity, conductivity, pH, temperature, etc. As such, coagulation reaction is hard or even impossible to control satisfactorily by conventional methods. Traditionally, jar tests are used to determine the optimum coagulant dosage. However, this is expensive and time-consuming and does not enable responses to changes in raw water quality in real time. Modelling can be used to overcome these limitations. In this study, an Adaptive Neuro-Fuzzy Inference System (ANFIS) was used for modelling of coagulant dosage in drinking water treatment plant of Boudouaou, Algeria. Six on-line variables of raw water quality including turbidity, conductivity, temperature, dissolved oxygen, ultraviolet absorbance, and the pH of water, and alum dosage were used to build the coagulant dosage model. Two ANFIS-based Neuro-fuzzy systems are presented. The two Neuro-fuzzy systems are: (1) grid partition-based fuzzy inference system (FIS), named ANFIS-GRID, and (2) subtractive clustering based (FIS), named ANFIS-SUB. The low root mean square error and high correlation coefficient values were obtained with ANFIS-SUB method of a first-order Sugeno type inference. This study demonstrates that ANFIS-SUB outperforms ANFIS-GRID due to its simplicity in parameter selection and its fitness in the target problem.  相似文献   

6.
Because of increasing need to balance health risks for pathogen control and disinfection by-products (DBP) formation in drinking water supplies, water utilities are forced to closely examine and optimize their disinfection practices. This research was designed to investigate the effects of independent variables of dissolved organic carbon (DOC), ferric chloride dosage, chlorine dose, and reaction time on trihalomethanes (THMs) formation in Terkos Lake Water (TLW) of Istanbul City. A statistically-based empirical model was developed for predicting THM formation during enhanced coagulation. The R 2 and F value of model were 0.762 and 460, respectively. The model was found to be statistically significant for all four variables, and model predictions appear to be most accurate for this study. A multiple linear model exhibited the best fit of data. It was observed that THM formation depended primarily on DOC removal. Model calibration, testing and validation were accomplished by using independent data set.  相似文献   

7.
微库仑法测水样中可吸附有机卤素(AOX)受多种因素影响,其中溶解性有机碳(DOC)的影响非常显著。DOC对微库仑法2种前处理方法(双柱法和振荡法)的影响差异很大。双柱法受DOC影响较小,当DOC浓度小于1 000 mg/L时,AOX加标回收率范围为94.0%~104%。振荡法受DOC影响较明显,随着DOC浓度的升高,AOX回收率持续下降,当DOC浓度达到1 000 mg/L时,AOX加标回收率下降至72.1%,但DOC浓度小于100 mg/L时,AOX加标回收满足方法要求。进一步研究发现,DOC对振荡法的影响主要由于竞争吸附降低了活性炭对AOX的吸附容量,而非吸附速率,虽然增大活性炭用量可在一定程度上减小DOC对AOX测定的影响,但对样品进行稀释是减少DOC影响的最简单高效的办法。同时,DOC对不同类型的有机卤代物影响不同,有机溴受DOC影响程度小于有机氯。  相似文献   

8.
For some utilities, new US drinking water regulations may require the removal of disinfection byproduct (DBP) precursor material as a means of minimizing DBP formation. The Environmental Protection Agency's Stage 1 DBP Rule relies on total organic carbon (TOC) concentrations as a measure of the effectiveness of treatment techniques for removing organic material that could act as DBP precursors. Accordingly, precise and accurate methods are needed for the determination of TOC and dissolved organic carbon (DOC) concentrations in raw and finished potable water supplies. This review describes the current analytical technologies and summarizes the key factors affecting measurement quality. It provides a look into the fundamental principles and workings of TOC analyzers. Current peroxydisulfuric acid wet ashing methods and combustion methods are discussed. Issues affecting quality control, such as non-zero blanks and preservation, are covered. Some of the difficulties in analyzing water for TOC and DOC that were identified up to 20 years ago still remain problematic today. Limitations in technology, reagent purity, operator skill and knowledge of natural organic matter (NOM) can preclude the level of precision and accuracy desirable for compliance monitoring.  相似文献   

9.
The potential biodegradation and subsequent transformation of 17β-estradiol (E2) to estrone (E1) were examined in the presence of various dissolved organic matter (DOM) isolated from effluent, river and lake waters. In addition, estrogenicity was estimated in association with the removal of E2 via its sorption onto DOM and biodegradation. The more biodegradable lake-derived DOM promoted more extensive transformation of E2 into E1 than the effluent organic matter through a biodegradation process. Overall, under all conditions, biodegradation dominated the removal of E2 in water. The increased dissolved organic carbon (DOC) concentrations in river and lake-derived DOM (e.g. 6.5 mg C L(-1)) reduced the removal of E2 by decreasing its biodegradation due to the moderate sorption of E2 onto DOM. The effluent organic matter showed greater removal of E2 via biodegradation, as well as significantly high sorption. This was associated with a large amount of hydrophobic fulvic acid (FA)- and humic acid (HA)-like organic components, as shown by the small increase in the specific UV absorbance at 254 nm (SUVA(254)). An increase in the DOC concentration reduced the removal of E2, resulting in high estrogenicity. The present study suggests that both organic composition and DOC concentration influenced the removal of E2 and, therefore, should be fully considered when assessing estrogenicity and its impacts on the aquatic environment.  相似文献   

10.
Brominated organic and inorganic by-products are generated during ozonation of groundwater containing high bromide concentrations. This study measured concentrations of bromate, bromoform, bromoacetic acids, bromoacetonitriles, bromoacetone, 2,4-dibromophenol and aldehyde generated by ozonation. The potential mutagenicity of ozonated waters was assessed using the Ames and Microtox tests. Test results for the 18 ozonated groundwater samples demonstrate that bromate formation is associated with high pH, bromide and alkalinity content, low levels of dissolved organic carbon (DOC) and ammonia, and low alkalinity. Brominated organic by-products were correlated with high bromide ion and natural organic matter content, and low ammonia concentrations. The Ames test results demonstrate that all extracts from ozonated water have mutagenic activity; however, the 18 raw groundwater samples had no mutagenicity. The Microtox test results also show that the ozonated water samples were highly toxic. Generally, both bromide and DOC content promoted the formation of ozonation by-products and mutagenicity. Controlling of bromide and DOC concentrations is an effective method of reducing potential by-product formation and eliminating mutagenicity problems associated with groundwater ozonation.  相似文献   

11.
Chromophoric dissolved organic matter (CDOM) fluorescence or absorption is often proposed as a rapid alternative to chemical methods for the estimation of bulk dissolved organic carbon (DOC) concentration in natural waters. However, the robustness of this method across a wide range of systems remains to be shown. We measured CDOM fluorescence and DOC concentration in four tropical freshwater and coastal environments (estuary and coastal, tropical shallow lakes, water from the freshwater lens of two small islands, and soil leachates). We found that although this method can provide an estimation of DOC concentration in sites with low variability in DOC and CDOM sources in systems where the variability of DOC and CDOM sources are high, this method should not be used as it will lead to errors in the estimation of the bulk DOC concentration.  相似文献   

12.
Accurate determinations of total (TOC), dissolved (DOC) and particulate (POC) organic carbon concentrations are critical for understanding the geochemical, environmental, and ecological roles of aquatic organic matter. Of particular significance for the drinking water industry, TOC measurements are the basis for compliance with US EPA regulations. The results of an interlaboratory comparison designed to identify problems associated with the determination of organic matter concentrations in drinking water supplies are presented. The study involved 31 laboratories and a variety of commercially available analytical instruments. All participating laboratories performed well on samples of potassium hydrogen phthalate (KHP), a compound commonly used as a standard in carbon analysis. However, problems associated with the oxidation of difficult to oxidize compounds, such as dodecylbenzene sulfonic acid and caffeine, were noted. Humic substances posed fewer problems for analysts. Particulate organic matter (POM) in the form of polystyrene beads, freeze-dried bacteria and pulverized leaf material were the most difficult for all analysts, with a wide range of performances reported. The POM results indicate that the methods surveyed in this study are inappropriate for the accurate determination of POC and TOC concentration. Finally, several analysts had difficulty in efficiently separating inorganic carbon from KHP solutions, thereby biasing DOC results.  相似文献   

13.
红枫湖水体中碳的时空分布特征分析   总被引:1,自引:0,他引:1  
基于2013年8月、10月、11月及2014年3月在红枫湖5个表层水样采集点、3个分层水样采集点测定的总碳、无机碳、总有机碳及二氧化碳数据,结合当时的气象数据对碳的时空分布特征讨论分析。结果表明,虽然调查期间同时间相同水层各个水样采集点的上述4个指标差异并不明显,但同一时间不同分层水体及各水样采集点不同季节在碳分布上存在一定差异。温度越高,光照越长,生物活性越强,湖体碳被生物利用的比例越大,总碳、无机碳、总有机碳含量就越低,较强的生物活性也伴随更多的二氧化碳产生。上、下层水体因光与温度差异所导致的碳分布差异会因季节性翻湖而消失。  相似文献   

14.
Soil-aquifer treatment (SAT) of wastewater is an increasingly valued practice for replenishing aquifers due to ease of operation and low maintenance needs and therefore low cost. In this study, we investigated the fate of endotoxins through laboratory-scale SAT soil columns over a four month period. The effluent of rapid sand filtration was run through the columns under gravity flow conditions. Four SAT columns were packed with four different filter materials (fine sand, medium sand, coarse sand and very coarse sand). The effluent of rapid sand filtration (average dissolved organic carbon (DOC) = 4 mg l(-1) and average endotoxin concentration = 4 EU ml(-1)) was collected from a domestic wastewater treatment plant in Sapporo, Japan. DOC removal ranged from 12.5% to greater than 22.5% during the study, with DOC levels averaging 3.1 and 3.5 mg l(-1) for the SAT columns packed with different soils. Endotoxin transformation exhibited different profiles, depending on the time and soil type. Reduction in endotoxin concentration averaged 64.3% and was as high as 86.7% across the soil columns 1, 2, 3 and 4, respectively. While DOC removal was gradual, the reductions in endotoxin levels were rather rapid and most of the removal was achieved in the top layers. Soil with a larger grain size had lower efficiency in removing endotoxin. Tests were performed to evaluate the transformation of organic matter showing endotoxicity and to determine the mechanisms responsible for changes in the structural and size properties of dissolved organic matter (OM) during SAT. Dissolved OM was fractionated using Sep-Pack C18 Cartridges into hydrophobic and hydrophilic fractions. Dialysis tubes with different molecular weight cut-offs were used to perform size fractions of OM showing endotoxicity. Evaluation of the transformation of organic matter showing endotoxicity during SAT indicated that both hydrophobic and large molecules were reduced. Moreover, experimental findings showed that adsorption test data fit to the Freundlich isotherm and were affected by the particle grain size with higher adsorption capacity for fine and medium sand.  相似文献   

15.
This study assesses the prevalence of disinfection by-product (DBP) precursors in some Southeast Queensland drinking water sources by conducting formation potential experiments for the four regulated trihalomethanes (THMs), and the potent carcinogen, N-nitrosodimethylamine (NDMA). NDMA formation potentials were consistently low (<5-21 ng/L), and total THM (tTHM) formation potentials were consistently below the Australian Drinking Water Guideline (250 μg/L). NDMA concentration of finished drinking waters was also monitored and found to be <5 ng/L in all cases. The effect of coagulation and advanced oxidation on the formation of NDMA and THMs is also reported. UV/H(2)O(2) pre-treatment was effective in producing water with very low THMs concentrations, and UV irradiation was an effective method for NDMA degradation. H(2)O(2) was not required for the observed NDMA degradation to occur. Coagulation using alum, ferric chloride or poly(diallyldimethylammonium chloride) (polyDADMAC) was ineffective in removing DBPs precursors from the source water studied, irrespective of the low dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) attained. Rather, coagulation with polyDADMAC caused an increase in NDMA formation potential upon chloramination, and all coagulants led to an increased tTHM formation potential upon chlorination due to the high bromide concentration of the source water studied.  相似文献   

16.
Progress made in analytical techniques allows the formulation of new concepts in the biogeochemistry of organic carbon. The second part of our review summarizes the latest evolution and introduces new ideas in the biogeochemistry of marine dissolved organic carbon (DOC). Via classification of different fractions and sources of DOC, characterization of its composition, age and availability for bacterial utilization, and fate of DOC, we show the role of DOC in the global carbon cycle and the significance of bulk DOC in the oceans. Special emphasis is placed on the microbial loop in the cycling of DOC and its relation with higher trophic levels (phytoplankton and zooplankton). Significant progress has also been made in the study of the roles of colloidal organic material in metal complexation, ultraviolet radiation in dissolved organic matter photochemical oxidation, and chromophore-containing constituents of DOC as the signature of DOC for satellite observations. The importance of bulk DOC in the global carbon cycle requires the inclusion of this fraction in the regional and global carbon models. We predict that future DOC study in the ocean will focus on the development of sophisticated, almost continuously recording, moored DOC instrument arrays for the monitoring of small-scale DOC horizontal and vertical patchiness; widespread time series stations including estuarine, coastal and open environments; more detailed chemical characterization of different fractions of organic carbon from diverse marine habitats; parameterization of predictive models of DOC cycling on regional and global scales, incorporating the microbial loop; and finally, monitoring of DOC dynamics from satellites on regional and global scales.  相似文献   

17.
In order to provide support for the discussion of the fate of organic matter in estuaries, a laboratory simulation was performed by changing freshwater ionic strength, pH and organic matter content. The change in spectroscopic characteristics caused by variations in salinity, pH and organic matter concentration in the filtered samples was observed by UV-Vis and fluorescence spectroscopy. The increase in emission fluorescence intensity of dissolved organic matter (DOM) due to increasing salinity (in the range 0 to 5 g l-1) is affected by the pH of the samples. The emission fluorescence intensity at the three maxima observed in the fluorescence spectra, is linearly correlated with dissolved organic carbon (DOC) concentration at several salinity values in the same sample. The increase in organic matter concentration caused a shift in the emission peak wavelength at 410 nm for several salinity values. We concluded that it is necessary to take into account the influence of salinity and pH on emission fluorescence of dissolved organic matter if it is to be used as a tracer in estuarine or near shore areas.  相似文献   

18.
七虎林河源头区地表腐殖质随着径流的冲刷进入水体,形成了天然有机质(NOM),其中,溶解性有机质(DOM)易对河流水质造成影响。为了研究七虎林河中DOM的时空分布特征及其对水质的影响,开展了6次采样,分析了水体及土壤吸收光谱和荧光光谱特征参数,利用平行因子(PARAFAC)算法解析了水体DOM的特性及来源。结果表明:七虎林河上游水体五日生化需氧量(BOD5)、高锰酸盐指数(CODMn)、化学需氧量(COD)、可溶性有机碳(DOC)的浓度分别为1.4 mg/L±0.2 mg/L、6.1 mg/L±3.0 mg/L、21 mg/L±8 mg/L、7.0 mg/L±3.2 mg/L,BOD5/COD平均值为0.08,说明流域内水体DOM的可生化性差,对水质影响较小。光谱特征参数紫外吸收系数(SUVA254)、荧光指数(FI)、腐殖化指数(HIX)、生物源指数(BIX)分析结果表明,七虎林河上游云山水库库上林区河段DOM的物质组成与水库及库下河段差异显著。库上河段DOM的芳香碳含量更高、分子量更大、自生源组分...  相似文献   

19.
Dissolved organic carbon (DOC) was studied in atmospheric deposition samples collected on a weekly basis in 2005-2009 at 10 forest plots in Italy. The plots covered a wide range of geographical attributes and were representative of the main forest types in Italy. Both spatial and temporal variations in DOC concentrations and fluxes are discussed, with the aim of identifying the main factors affecting DOC variability. DOC concentration increased from bulk to throughfall and stemflow water samples at all sites, as an effect of leaching from leaves and branches, going from 0.7-1.7 mg C L(-1) in bulk samples to 1.8-15.8 mg C L(-1) in throughfall and 4.2-10.7 mg C L(-1) in stemflow, with striking differences among the various plots. Low concentrations were found in runoff (0.5-2.0 mg C L(-1)), showing that the export of DOC via running waters was limited. The seasonality of DOC in throughfall samples was evident, with the highest concentration in summer when biological activity is at a maximum, and minima in winter due to limited DOC production and leaching. Statistical analysis revealed that DOC had a close relationship with organic and total nitrogen, and with nutrient ions, and a negative correlation with precipitation amount. Forest type proved to be a major factor affecting DOC variability: concentration and, to a lesser extent, fluxes were lower in stands dominated by deciduous species. The character of evergreens, and the size and shape of their leaves and needles, which regulate the interception mechanism of dry deposition, are mainly responsible for this.  相似文献   

20.
Dissolved organic matter (DOM) in raw and treated wastewater from two breweries in Thailand was profiled and monitored for the purpose of water reclamation. The wastewater and the effluent from the use of an upflow anaerobic sludge blanket (UASB) and activated sludge (AS) were collected and analyzed through a resin fractionation method using the fluorescent excitation?Cemission matrix (FEEM) technique. The results revealed that the major organic fractions in the brewery wastewater were hydrophobic acid (HPOA) and hydrophilic base (HPIB), accounting for 65% of total dissolved organic carbon (DOC) mass for brewery A and 56% of total DOC mass for brewery B. The FEEM results indicated that the organic matter in the wastewaters of both breweries were mainly composed of tryptophan-like substances, represented by peaks C (230 nmEx/340?C365 nmEm) and D (265?C295 nmEx/315?C390 nmEm), and humic-like substances, represented by peaks E (290 nmEx/400 nmEm), F (330?C335 nmEx/395?C410 nmEm), and G (255?C265 nmEx/435?C455 nmEm). The analysis revealed that the reduction of DOM occurred mostly during the UASB treatment where most of the DOM reduction resulted from the removal of the HPOA and HPIB fractions. The HPOA fraction, a group of humic-like substances, is of particular concern when reclaiming treated brewery wastewater, and although it was reduced by more than 80% of its initial amount, it was still a dominant DOM fraction in the effluents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号