首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Nakamaru Y  Tagami K  Uchida S 《Chemosphere》2006,63(1):109-115
Desorption levels of soil-sorbed selenium (Se) were studied by adding phosphate to 22 typical Japanese agricultural soils. Soil-soil solution distribution coefficients of Se (Kd-Se) were measured using a batch process as an index of Se sorption level, adding 75Se as a tracer. After the Kd measurement, extraction of soil-sorbed 75Se with a 0.1 M or 1 M Na2HPO4 solution followed to determine the amount of 75Se desorbed by the phosphate. When the 0.1 M Na2HPO4 solution was used, 18-70% of soil-sorbed Se was extracted (average: 47%). However, when the 1 M Na2HPO4 solution was used, 27-83% of soil-sorbed Se was extracted (average: 57%). The observed 75Se desorption percentage indicated the maximum Se removability by phosphate addition. The desorption percentage of Se with 1 M Na2HPO4 correlated with Kd-Se values, suggesting that the soil sample with higher Kd-Se contained more reactive components for phosphate-sorption than the soil sample with lower Kd-Se. To evaluate the effect of phosphate concentration on the Se sorption, the Kd-Se was measured for two typical soils under different levels of phosphate (0.1-10 mM PO4). The Kd values were decreased by phosphate addition for both soils. The Kd decrease was observed even for just 1 mM PO4. The phosphate addition with 1 mM PO4 is the same level as in P fertilizer applied to paddy fields in Japan. Therefore, it was suggested that Se desorption should occur in Japanese soils due to the phosphate input.  相似文献   

2.
The mobility of antimony (Sb) in Japanese agricultural soils was studied by radiotracer experiments using 124Sb tracer. The soil-solution distribution coefficients (Kd) of Sb were measured for 110 soil samples. These Kds ranged from 1 to 2065 L kg(-1); the geometric mean was 62 L kg(-1) excluding one extremely high value, 2065 L kg(-1). Experimental measurement of Kd showed a decrease with both increasing pH and increasing phosphate concentration. The latter suggested that one aspect of the Sb sorption phenomena in Japanese soil was influenced by specific adsorption of anions such as phosphate. However, other aspects could not be explained by this specific adsorption mechanism, because only 20-40% of soil-sorbed Sb could be extracted by phosphate solution.  相似文献   

3.

Studying the modes of selenium occurrence in high-Se soils and its behaviors can improve understanding and evaluating its cycling, flux, and balance in geo-ecosystems and its influence on health. In this paper, using a modified sequential chemical extraction technique, seven operationally defined selenium fractions and Se valence distribution were determined about five soils in which paddy was planted (W1, W2, W3, W4, W5) and five soils in which maize was planted (H1, H2, H3, H4, H5) around the selenium-rich core, Ziyang County, Shaanxi Province, China. The results show that selenium fractions in the soils mainly include sulfide/selenide and base-soluble Se, and ligand-exchangeable Se is also high for five soils in which paddy was planted. For water-soluble Se, Se (IV) is main Se valence and almost no Se (VI) was determined about five soils in which paddy was planted, while almost 1:1 of Se (IV) and Se (VI) coexist about five soils in which maize was planted. For exchangeable Se, similar results were found. For the first time, two typical high-Se soils (W1 soil and H1 soil) were chosen to measure the pH-dependent solid-solution distribution of selenite in the pH range 3–9, and the results were explained using LCD (ligand and charge distribution) adsorption modeling. The desorbed selenite concentrations from the two soils are in general underestimated by the model due to a comparable binding affinity of phosphate and selenite on goethite and much lower amount of total selenite than total reactively adsorbed phosphate. The pH dependency of adsorption of selenite added to the soil can be successfully described with the LCD model for W1 soil. Whereas considering the influence of Al-oxides, by lowering selenite adsorption affinity constant K of Se adsorption on goethite by 16 times, the LCD model can describe the adsorption much better. The results can help to understand selenium cycling, flux, and balance in typical high-Se soils.

  相似文献   

4.
To assess transport and ecotoxicological risks of metals, such as cadmium (Cd) in soils, models are needed for partitioning and speciation. We derived regression-based “partition-relations” based on adsorption and desorption experiments for main Australian soil types. First, batch adsorption experiments were carried out over a realistic range of dissolved Cd concentrations in agricultural soils in Australia. Results showed linear sorption relationships, implying the adequacy of using Kd values to describe partitioning. Desorption measurements were then carried out to assess in-situ Kd values and relate these to soil properties The best transfer functions for solid-solution partitioning were found for Kd values relating total dissolved Cd concentration to total soil Cd concentrations, accounting for the variation in pH, SOM contents and DOC concentrations. Model predictions compared well with measurements of an independent data set, but there was a tendency to underestimate dissolved Cd concentrations of highly polluted soils.  相似文献   

5.
This article reports on methabenzthiazuron [1-(1,3-benzothiazol-2-yl)-1,3-dimethylurea] (MBT) adsorption process on six agricultural allophanic and nonallophanic soils. The effect of amendment with exogenous organic matter was also studied. Adsorption kinetic fits an hyperbolic model. MBT adsorption reached an apparent equilibrium within 2 h and followed a second-order reaction. The maximum adsorbed amounts for natural soils ranged from 32 to 145 microg g(-1). Rate constants were considered relatively low (0.27-1.5 x 10(-4) [microg g(-1)](1-n) s-1); the slow process was attributed to a combined effect of difussion and adsorption. MBT adsorption fits the Freundlich model with r values > or =0.998 at P < or = 0.001 significance levels. Kf and Freundlich exponents (l/n) ranged from 5.3 to 82.1 cm3 g(-1) and from 0.66 to 0.73, respectively. Kf values for soils with a low organic matter content were lower than that obtained from the only typical allophanic soil derived from volcanic ash under study. Lineal regression analysis between Kf and organic matter content of nonallophanic soils gave a correlation coefficient of 0.980 (P = 0.02). Dispersion of Kd values together with close values of K(OM) indicate that organic matter (OM) was the principal component responsible for MBT adsorption in unamended soils. Addition of peat decreased soil pH and increased adsorption capacity for allophanic and nonallophanic soils. Kinetic experiments showed enhancements of Xmax values and lower rate constants.  相似文献   

6.
Isoproturon and trifluralin are herbicides of contrasting chemical characters and modes of action. Standard batch sorption procedures were carried out to investigate the individual sorption behaviour of 14C-isoproturon and 14C-trifluralin in five agricultural soils (1.8-4.2% OC), and the soil solid-liquid partition coefficients (Kd values) were determined. Trifluralin exhibited strong partitioning to the soil solid phase (Kd range 106-294) and low desorption potential, thus should not pose a threat to sensitive waters via leaching, although particle erosion and preferential flow pathways may facilitate transport. For isoproturon, soil adsorption was low (Kd range 1.96-5.75) and desorption was high, suggesting a high leaching potential, consistent with isoproturon being the most frequently found pesticide in UK surface waters. Soil partitioning was directly related to soil organic carbon (OC) content. Accumulation isotherms were modelled using a dual-phase adsorption model to estimate adsorption and desorption rate coefficients. Associations between herbicides and soil humic substances were also shown using gel filtration chromatography.  相似文献   

7.
Domkal is one of the 19, out of 26 blocks in Murshidabad district where groundwater contains arsenic above 0.05 mg/l. Many millions of cubic meters of groundwater along with arsenic and other heavy metals are coming out from both the hand tubewells, used by the villagers for their daily needs and shallow big diameter tubewells, installed for agricultural irrigation and depositing on soil throughout the year. So there is a possibility of soil contamination which can moreover affect the food chain, cultivated in this area. A somewhat detailed study was carried out, in both micro- and macrolevel, to get an idea about the magnitude of soil contamination in this area. The mean concentrations (mg/kg) of As (5.31), Fe (6740), Cu (18.3), Pb (10.4), Ni (18.8), Mn (342), Zn (44.3), Se (0.53), Mg (534), V (44.6), Cr (33.1), Cd (0.37), Sb (0.29) and Hg (0.54) in fallow land soils are within the normal range. The mean As (10.7), Fe (7860) and Mg (733) concentrations (mg/kg) are only in higher side whereas Hg (0.17 mg/kg) is in lower side in agricultural land soils, compared to the fallow land soils. Arsenic concentrations (11.5 and 28.0 mg/kg respectively) are high in those agricultural land soils where irrigated groundwater contains high arsenic (0.082 and 0.17 mg/l respectively). The total arsenic withdrawn and mean arsenic deposition per land by the 19 shallow tubewells per year are 43.9 kg (mean: 2.31 kg, range: 0.53-5.88 kg) and 8.04 kg ha(-1) (range: 1.66-16.8 kg ha(-1)) respectively. For the macrolevel study, soil arsenic concentration decreases with increase of distance from the source and higher the water arsenic concentration, higher the soil arsenic at any distance. A proper watershed management is urgently required to save the contamination.  相似文献   

8.
The results of a potted soil experiment to determine the soil and plant factors ruling radium availability and uptake by ryegrass and clover are described. Nine soils with distinct soil characteristics were spiked with 226 Ra. They were thoroughly characterized and the solid liquid partitioning coefficient, Kd, was determined. Kd ranged from 38 l kg(-1) to 446 l kg(-1) (average: 188+/-156 l kg(-1)) and was linearly related to cation exchange capacity (CEC) and organic matter (OM) content. The soil-to-plant transfer factor (TF) was significantly affected by the chemical properties of the soils and ranged from 0.054 kg kg(-1) to 0.719 kg kg(-1) for ryegrass and from 0.034 kg kg(-1) to 1.494 kg kg(-1) for clover. Overall, no significant difference in TF between ryegrass and clover was observed. TF was related to Kd, to CEC, OM (for ryegrass only when excluding one soil) and the calcium concentration in the soil solution (for both plants if excluding one soil). Radium flux were calculated from the radium concentration in the soil solution and the evapotranspiration, to predict total radium uptake derived from shoot radium concentration and biomass yield. It was found that radium uptake could be predicted from the radium flux (R2=0.61 and 0.83 for ryegrass and clover, respectively). Higher predictability (R2=0.70 and 0.91 for ryegrass and clover, respectively) was obtained when relating total radium uptake to a radium flow considering competition effects at the root surface by bivalent cations.  相似文献   

9.
Lim TT  Goh KH 《Chemosphere》2005,58(1):91-101
Two batches of fine soil fraction of an acidic soil were deliberately contaminated with selenite (Se(IV)) and selenate (Se(VI)), respectively, and aged for more than 220 days. Speciation analysis using continuous flow-through hydride generation atomic absorption spectrometry (HGAAS) indicated that the species were predominant in their respective aged soils. A selective sequential extraction scheme was employed to fractionate the Se retained in the soils into six fractions of varying retentions. Abilities of various chemical reagents in extracting the Se in the two soil batches were then evaluated. The reagents investigated were sodium salts such as sodium chloride (NaCl), sodium sulfate (Na2SO4), sodium carbonate (Na2CO3), and sodium phosphate (Na3PO4), and two oxidants, namely, hydrogen peroxide (H2O2) and potassium permanganate (KMnO4). It was found that NaCl, Na2SO4, and Na2CO3 could only extract the exchangeable fraction of Se, while Na3PO4 could extract the exchangeable and strongly-bound fractions. Selenate was extracted more than Se(IV) by the salts. The kinetics of Se(IV) extraction by Na3PO4 could be best described by the Elovich model, while the Ritchie second-order model was the most appropriate to describe Se(VI) extraction. Efficiencies of the oxidants in Se(IV) extraction highly depended on their applied dosages. Both H2O2 and KMnO4 were able to extract greater than 93% of total Se, and therefore were significantly more effective than the salts in Se(IV) extraction.  相似文献   

10.
The fumigant 1,3-dichloropropene (1,3-D) is considered a major replacement to methyl bromide, which is to be phased out of use in the United States by 2005. The main purpose of this study was to evaluate soil-water partitioning of 1,3-D in two California agricultural soils (Salinas clay loam and Arlington sandy loam). The partition coefficients (Kd and Kf) were determined by directly measuring the concentration of 1,3-D in the solid phase (Cs) and aqueous phase (Cw) after batch equilibration. In the Salinas clay loam, the Kf of cis-1,3-D in adsorption and desorption isotherms was 0.47 and 0.54, respectively, with respective values of 0.39 and 0.49 for trans-1,3-D. This slight hysteric effect suggests that a different range of forces are involved in the adsorption and desorption process. Since n was near unity in the Freundlich equation, the Freundlich isotherms can also be approximated using the liner isotherm. At 25 degrees C, the Kd of the 1,3-D isomers in both soils ranged from 0.46 to 0.56, and the Koc (organic matter partition coefficient) ranged from 58 to 70. The relatively low Kd values and a Koc that falls within the range of 50-150, suggests that 1,3-D is weakly sorbed and highly mobile in these soils. Understanding the sorption behavior of 1,3-D in soil is important when developing fumigation practices to reduce the movement of 1,3-D to the air and groundwater.  相似文献   

11.
The oxidative dissolution of mine wastes gives rise to acidic, metal-enriched mine drainage (AMD) and has typically posed an additional risk to the environment. The poly-metallic mine Dabaoshan in South China is an excellent test site to understand the processes affecting the surrounding polluted agricultural fields. Our objectives were firstly to investigate metal ion activity in soil solution, distribution in solid constituents, and spatial distribution in samples, secondly to determine dominant environment factors controlling metal activity in the long-term AMD-polluted subtropical soils. Soil Column Donnan Membrane Technology (SC-DMT) combined with sequential extraction shows that unusually large proportion of the metal ions are present as free ion in the soil solutions. The narrow range of low pH values prevents any pH effects during the binding onto oxides or organic matter. The differences in speciation of the soil solutions may explain the different soil degradation observed between paddy and non-paddy soils.  相似文献   

12.
Elevated levels of bioavailable As in mining soils, agricultural areas and human habitats may cause potential toxicity to human health, plants and microbe. Therefore, it is essential to determine proper soil chemical extraction method in order to estimate plant-available As in mining soils and protect agricultural and environmental ecosystems by evaluation of environmental risk and implementation of remediation measures. In this study, six single soil chemical extraction processes and four-step sequential chemical extraction protocol were used to determine the relative distribution of As in different chemical forms of soils and their correlations with total As in plants grown in mining areas and greenhouse experiments. The strongest relationship between As determined by single soil chemical extraction and As in plant biomass was found for sodium acetate and mixed acid extractant. The mean percent of total As extracted was: ammonium oxalate (41%)>hydroxylamine hydrochloride (32%)>mixed acid (16%)>phosphate (6%)>sodium acetate (1.2%)>water (0.13%). This trend suggests that most of the As in these soils is inside the soil mineral matrix and can only be released when iron oxides and other minerals are dissolved by the stronger chemical extractant. Single soil chemical extraction methods using sodium acetate and mixed acids, that extract As fractions complexed to soil particles or on the surface of mineral matrix of hydrous oxides of Fe, Mn and Al (exchangeable+sorbed forms) can be employed to estimate and predict the bioavailable As fraction for plant uptake in mining affected soils. In sequential chemical extraction methods, ammonium nitrate and hydroxylamine hydrochloride may be used to provide closer estimates of plant-available As in mining soils.  相似文献   

13.
Merini LJ  Cuadrado V  Giulietti AM 《Chemosphere》2008,71(11):2168-2172
The 2,4-dichlorophenoxyacetic acid (2,4-D) is a hormone-like herbicide widely used in agriculture. Although its half life in soil is approximately two weeks, the thousands of tons introduced in the environment every year represent a risk for human health and the environment. Considering the toxic properties of this compound and its degradation products, it is important to assess and monitor the 2,4-D residues in agricultural soils. Furthermore, experiments of phyto/bioremediation are carried out to find economic and environmental friendly tools to restore the polluted soils. Accordingly, it is essential to accurately measure the amount of 2,4-D and its metabolites in soils. There is evidence that 2,4-D extraction from soil samples seriously depends on the physical and chemical properties of the soil, especially in those soils with high content of humic acids. The aim of this work was to assess the variables that influence the recovery and subsequent analysis of 2,4-D and its main metabolite (2,4-dichlorophenol) from those soils samples. The results showed that the recovery efficiency depends on the solvent and method used for the extraction, the amount and kind of solvent used for dissolving the herbicide and the soil water content at the moment of spiking. An optimized protocol for the extraction and quantification of 2,4-D and its main metabolite from soil samples is presented.  相似文献   

14.
Leachate from ash landfills is frequently enriched with As and Se but their off-site movement is not well understood. The attenuation potential of As and Se by soils surrounding selected landfills during leachate seepage was investigated in laboratory column studies using simulated ash leachate. As(III, V) and Se(IV, VI) concentrations as well as pH, flow rate, and a tracer were monitored in influent and effluent for up to 800 pore volumes followed by sequential desorption, extraction, and digestion of column segments. Column breakthrough curves (BTCs) were compared to predictions based on previously measured sorption isotherms. Early As(V) breakthrough and retarded As(III) breakthrough relative to predicted BTCs are indicative of oxidative transformation during seepage. For Se(VI), which exhibits linear sorption and the lowest sorption propensity, measured BTCs were predicted fairly well by equilibrium sorption isotherms, except for the early arrival of Se(IV) in one site soil, which in part, may be due to higher column pH values compared to batch isotherms. Most of the As and Se retained by soils during leaching was found to be strongly sorbed (60–90%) or irreversibly bound (10–40%) with <5% readily desorbable. Redox potential favoring transformation to the more sorptive valence states of As(V) and Se(IV) will invoke additional attenuation beyond equilibrium sorption-based predictions. With the exception of Se(IV) on one site soil, results indicate that attenuation by down-gradient soils of As and Se in ash landfill seepage will often be no less than what is predicted by equilibrium sorption capacity with further attenuation expected due to favorable redox transformation processes, thus mitigating contaminant plumes and associated risks.  相似文献   

15.
The distribution and chemical fractionation of heavy metals retained in mangrove soils receiving wastewater were examined by soil column leaching experiments. The columns, filled with mangrove soils collected from two swamps in Hong Kong and the People's Republic of China, were irrigated three times a week for 150 days with synthetic wastewater containing 4 mg l(-1) Cu, 20 mg l(-1) Zn, 20 mg l(-1) Mn and 0.4 mg l(-1) Cd. Soil columns leached with artificial seawater (without any heavy metals) were used as the control. At the end of the leaching experiments, soil samples from each column were divided into five layers according to its depth viz. 0-1, 1-3, 3-5, 5-10 and > 10 cm, and analyzed for total and extractable heavy metal content. The fractionation of heavy metals in the surface soil samples (0-1 cm) was investigated by the sequential extraction technique. In both types of mangrove soils, the surface layer (0-1 cm) of the columns receiving wastewater had significantly higher concentrations of total Cu, Cd, Mn and Zn than the control. Concentrations declined significantly with soil depth. The proportion of exchangeable heavy metals in soils receiving wastewater was significantly higher than that found in the control, about 30% of the total heavy metals accumulated in the soil masses of the treated columns were extracted by ammonium acetate at pH 4. The sequential extraction results show that in native mangrove soils (the soils without any treatment), the major portion of Cu, Zn, Mn and Cd was associated with the residual and precipitated fractions with very low concentrations in more labile phases. However, in mangrove soils receiving wastewater, a significantly higher percentage of Mn, Zn and Cd was found in the water-soluble and exchangeable fractions. Copper appeared to be more strongly adsorbed in mangrove soils than the other heavy metals. In general, heavy metal accumulation in the surface mangrove soils collected in Hong Kong was higher than those in the PRC, although the metals in the latter soil type were more strongly bound. These findings suggest that whether the heavy metal retained in managrove soils becomes a secondary source or a permanent sink would depend on the kinds of heavy metals and also the types of mangrove soils.  相似文献   

16.
通过批量实验和柱状实验并结合磷的分级提取探究了给水处理厂废弃铁铝泥(ferric-alum water treatment re-siduals,FARs)吸附正磷酸盐的效果。批量实验结果表明,Langmuir和Freundlich方程均能较好地描述FARs对磷的等温吸附过程,且当pH从5增至9时,FARs磷的饱和吸附量从41.68 mg/g减小到17.08 mg/g。pH越低,磷与FARs的结合能力越强。柱状实验结果表明,FARs具有显著的磷吸附能力,在运行的89 d里,磷的去除率保持在80%以上。出水pH与进水相比略有增加,但增加量不会对地表水体造成影响。磷的分级提取结果进一步说明,被吸附的磷主要以释磷风险小的铁铝结合态存在。综合实验结果表明,FARs可以作为高效磷吸附剂应用于地表水除磷。  相似文献   

17.
Most of the Cd applied through phosphatic fertilizers in sandy soils tends to stay in mobile forms (soluble or exchangeable) and hence the risk of it leaching to underground water or its uptake by plants is higher. A sequential extraction procedure was used to assess the efficacy of amending materials (soils containing inorganic or organic adsorption components) on the re-distribution of forms of Cd in a sandy soil. Amendment of the sandy soil with each of the three soils (yellow earth, lateritic podzolic and peaty sand) was generally effective in altering the more mobile or available forms of Cd to immobile or unavailable forms. The extent of alteration varied with the type of component present in the amendment soil, pH and the rate of Cd addition. The yellow earth was more effective at pH 7, whereas the peaty sand was equally effective at both pH 4 and 7 in altering the mobile to immobile forms. The lateritic podzolic soil was the least effective of the soils used at any of the pH values.  相似文献   

18.
The solid-solution distribution or partition coefficient (Kd) is a measure of affinity of potentially toxic elements (PTE) for soil colloids. Kd plays a key role in several models for defining PTE guideline values in soils and for assessing environmental risks, and its value depends on edaphic and climatic conditions of the sites where the soils occur. This study quantified Kd values for Cd, Co, Cr, Cu, Hg, Ni, Pb, and Zn from representative soil samples from Brazil’s eastern Amazon region, which measures 1.2 million km2. The Kd values obtained were lower than those set by both international and Brazilian environmental agencies and were correlated with the pH, Fe and Mn oxide content, and cationic exchange capacity of the soils. The following order of decreasing affinity was observed: Pb?>?Cu?>?Hg?>?Cr?>?Cd?≈?Co?>?Ni?>?Zn.  相似文献   

19.
Sorption of ametryn and imazethapyr in 25 soils from Pakistan and Australia was investigated using the batch method. The soils varied widely in their intrinsic capacities to sorb these herbicides as shown by the sorption coefficients, Kd, which ranged from 0.59 to 47.6 for ametryn and 0.02 to 6.94 for imazethapyr. Generally the alkaline soils of Pakistan had much lower Kd values of both herbicides than the soils of Australia. Both soil pH and soil organic carbon (SOC) were correlated significantly with the sorption of ametryn, whereas only soil pH was strongly correlated with imazethapyr sorption. No correlation was found between Kd values of the herbicides and the clay contents of the soils. Multiple regression analysis showed that Kd values were better correlated (r2=0.94 and 0.89 for ametryn and imazethapyr, respectively) if SOC and pH were simultaneously taken into account. The study indicated that sorption of these herbicides in the alkaline soils of Pakistan was low and consequently there is considerable risk of groundwater contamination.  相似文献   

20.
Goh KH  Lim TT 《Chemosphere》2004,55(6):849-859
Factors that can affect As and Se adsorption by soils influence the bioavailability and mobility of these elements in the subsurface. This research attempted to compare the adsorption capacities of As(III), As(V), Se(IV), and Se(VI) on a tropical soil commonly found in Singapore in a single-species system. The effect of reaction time, pH, and competitive anions at different concentrations on the adsorption of both As and Se species were investigated. The As and Se adsorption isotherm were also obtained under different background electrolytes. The batch adsorption experiments showed that the sequence of the As and Se adsorption capacities in the soil was As(V) > Se(IV) > As(III) > Se(VI). The adsorption kinetics could be best described by the Elovich equation. The adsorption of As(V), Se(IV), and Se(VI) appeared to be influenced by the variable pH-dependent charges developed on the soil particle surfaces. Phosphate had more profound effect than SO4(2-) on As and Se adsorption in the soil. The competition between PO4(3-) and As or Se oxyanions on adsorption sites was presumably due to the formation of surface complexes and the surface accumulation or precipitation involving PO4(3-). The thermodynamic adsorption data for As(V) and Se(IV) adsorption followed the Langmuir equation, while the As(III) and Se(VI) adsorption data appeared to be best-represented by the Freundlich equation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号