首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 671 毫秒
1.
硝酸盐连续回灌对生物反应器填埋场N2O产生的影响   总被引:1,自引:1,他引:0  
卞荣星  孙英杰  李晶晶  张欢欢 《环境科学》2014,35(11):4371-4377
异位硝化-原位反硝化是实现填埋场渗滤液脱氮处理的一种有效措施,但硝化反硝化过程中会产生强温室气体N2O.实验构建了3个新鲜垃圾生物反应器填埋场模拟装置,分别回灌NO-3-N浓度为50、100和300 mg·L-1的渗滤液,考察垃圾原位反硝化过程中N2O产生规律及其影响因素.结果表明,回灌不同浓度硝酸盐,N2O产生量均表现为初期浓度较大-下降-后期升高的规律;N2O产生量与回灌NO-3-N量正相关,其累积产生量分别为36 481、44 241、86 264μg,但反硝化消耗单位硝酸盐氮产生的N2O量(以N计)以及N2O转化率与回灌硝酸盐氮量呈负相关,N2O平均转化率分别为8.84‰、5.68‰和2.34‰.分析认为,各反应器垃圾降解后期反硝化碳源不足是N2O产生量高的主要原因.  相似文献   

2.
采用生物膜反应器耦合包埋型单宁酸铁处理低C/N比废水,考察其脱氮性能,分析了生物脱氮过程功能菌群的变化,以及单宁酸铁强化脱氮的作用机制.结果表明,生物膜反应器耦合包埋型单宁酸铁,具有低C/N比废水高效脱氮性能.进水C/N比为1:2.7时,TN平均去除率可达80.0%,TN平均去除负荷为1.38kg/(m3·d).生物膜反应器内随着进水C/N比降低,优势脱氮过程从同步硝化-反硝化过程向同步短程硝化-厌氧氨氧化-反硝化(SNAD)过程转变,厌氧氨氧化过程对TN去除的贡献率逐渐升高至76.2%,亚硝化菌群和厌氧氨氧化菌群成为优势生物脱氮功能菌群.包埋型单宁酸铁在生化处理后,通过吸附-催化氨氧化作用同步去除氨氮和亚硝酸盐氮,进一步提高TN去除性能.因此,耦合单宁酸铁强化生物膜反应器SNAD脱氮过程,是实现低C/N比废水高效脱氮新的有效途径.  相似文献   

3.
文章通过对国内外污水生物脱氮过程中氧化亚氮(N2O)产生途径最新研究成果的总结,着重讨论了污水生物处理过程中N2O释放的控制措施。在硝化过程中,N2O由氨氧化菌(AOB)的中间产物羟胺(NH2OH)和硝酰基(NOH)的分解以及AOB还原亚硝酸盐的过程产生;反硝化过程中,N2O还原酶(N2OR)的活性受到抑制,使得N2O不能被及时被还原而导致N2O积累。基于上述N2O产生途径提出了控制N2O释放量的控制措施:控制曝气量避免好氧硝化过程中DO浓度过低和缺氧反硝化过程中存在DO;通过延长污泥龄、增大内回流比和分段进水等措施控制硝化和反硝化过程中的亚硝酸盐浓度:缩短初沉池停留时间或投加外碳源,并选取甲醇或乙醇等易降解有机物作为碳源。今后可通过深入研究N2O产生机理和优化污水处理厂N2O释放量的准确检测,充分认识污水处理厂中N2O的产生环节,进一步指导污水厂N2O的释放控制。  相似文献   

4.
以两个平行运行的SBR反应器为研究对象,研究了碳磷比对同步硝化反硝化过程中污染物去除及温室气体N2O释放的影响.结果表明:系统对COD和氨氮的去除率均能达到90%以上,总磷和总氮去除率随碳磷比的降低而提高,这是由于低碳磷比下聚磷菌得到富集,同时部分聚磷菌利用NO3-和NO2-为电子受体吸收磷,从而实现脱氮除磷的同步提高.系统的N2O释放量随碳磷比的降低而降低,低碳磷比下N2O释放量仅为高碳磷比的76%.低碳磷比下N2O释放量的减少主要是由于异养反硝化过程对N2O释放的贡献降低导致的.  相似文献   

5.
碳磷比对SND过程污染物去除及N2O释放的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
以两个平行运行的SBR反应器为研究对象,研究了碳磷比对同步硝化反硝化过程中污染物去除及温室气体N2O释放的影响.结果表明:系统对COD和氨氮的去除率均能达到90%以上,总磷和总氮去除率随碳磷比的降低而提高,这是由于低碳磷比下聚磷菌得到富集,同时部分聚磷菌利用NO3-和NO2-为电子受体吸收磷,从而实现脱氮除磷的同步提高.系统的N2O释放量随碳磷比的降低而降低,低碳磷比下N2O释放量仅为高碳磷比的76%.低碳磷比下N2O释放量的减少主要是由于异养反硝化过程对N2O释放的贡献降低导致的.  相似文献   

6.
利用SBR反应器,通过在线pH曲线控制好氧-缺氧反应时间,成功实现了短程生物脱氮,并考察了分段进水条件下流量分配对SBR反应器运行性能及N2O产量的影响.结果表明,与原水分2次在不同阶段等量加入反应器的二段进水方式相比,原水分3次等量进入反应器的三段进水方式能够有效降低脱氮过程中外碳源投加量和氧化亚氮产量;氧化亚氮主要产生于硝化过程,反硝化过程能够将硝化阶段积累的N2O还原至N2.2次、3次等量进水条件下,生物短程脱氮过程中乙醇投加量分别为0.8和0.6 mL,N2O释放量分别为8.86和5.05 mg·L-1(以N计).硝化过程中NO-2-N的积累是导致系统N2O产生的主要原因.  相似文献   

7.
吕永涛  刘婷  曾玉莲  孙婷  张瑶  王磊 《环境科学》2017,38(5):1991-1996
为减少生物短程反硝化对外碳源的依赖,研究了无机环境下Fe(0)-活性炭强化短程反硝化的脱氮效果,并探究了不同铁碳比及初始pH值对系统脱氮效果及N+2O释放的影响.结果表明Fe(0)-活性炭可强化生物短程反硝化,将亚硝氮去除率由7.4%提高到31.1%.当m(铁)∶m(碳)由2∶1降至1∶1和1∶2时,反硝化速率与亚硝氮去除率均呈现先升后降的趋势,m(铁)∶m(碳)为1∶1时达到最大,分别为5.58 mg·(g·h)~(-1)与41.1%,且此时N+2O的释放量较小,为0.10 mg.当pH值由6.0升至9.0的过程中,反硝化速率由7.39 mg·(g·h)~(-1)下降至5.96 mg·(g·h)~(-1),N+2O的释放量由0.19 mg下降至0.12 mg.以上结果表明,在m(铁)∶m(碳)为1∶1和pH为弱酸性的条件下,Fe(0)-活性炭能强化短程反硝化获得较好的脱氮效果,但低pH值会增加N+2O的释放量.  相似文献   

8.
污水生物反硝化脱氮过程是一氧化二氮(N2O)的重要释放源之一.试验采用序批式反应器以甲醇为碳源(电子供体),硝酸盐(NO3--N)为电子受体驯化反硝化菌,并采用批处理试验研究不同电子受体、不同碳氮(C/N)比和不同初始亚硝酸盐(NO2--N)质量浓度条件下N2O释放情况.在典型周期试验和批处理试验中均能检测到N2O的释放.以NO2--N为电子受体时会释放较多的N2O,而以NO3--N为电子受体时释放的N2O相对较少.不同C/N比通过影响反硝化菌的活性进而影响N2O的释放,反硝化菌的活性和N2O的释放量均随着C/N比的降低而降低.N2O的释放量随着初始NO2--N质量浓度的增加而增加,一定浓度范围内的NO2--N会增强反硝化菌的活性.初始NO2--N质量浓度与N2O的释放量具有较好的指数相关性.  相似文献   

9.
亚硝酸盐对外碳源反硝化过程N2O还原的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
本试验通过批次试验考察了亚硝酸盐对外碳源反硝化过程N2O还原的影响.结果表明NO2--N初始浓度为5.92~35.23mg/L时,随着NO2--N浓度的增加,反硝化过程中N2O的积累量逐渐增加;当NO2--N浓度为35.23mg/L时,NO2--N还原量的46.26%被转化为N2O.通过对比试验得出,N2O还原酶与亚硝酸盐还原酶对电子的竞争和游离亚硝酸(FNA)对N2O还原酶的抑制会导致N2O比还原速率下降,造成反硝化过程N2O积累.基于上述试验结果提出,污水处理厂可通过调控运行条件控制NO2--N浓度,降低反硝化过程的N2O的产生与释放;也可以通过短程硝化提高NO2--N浓度,促进反硝化过程N2O的积累,再通过N2O氧化甲烷减少N2O排放,同时提高产能37%.  相似文献   

10.
脱氮型生物反应器填埋场中N_2O产生潜势分析   总被引:1,自引:1,他引:0  
阐述了微生物硝化和反硝化过程中N2O的产生机理以及影响因素,重点介绍底物浓度、O2量、含水率、pH、温度等因素对N2O产生的影响。根据N2O产生机理及影响因素分析,结合脱氮型生物反应器填埋场运行过程中不同影响因素的变化,对脱氮型生物反应器填埋场N2O的产生进行了分析探讨。认为相比于其他生物反应器填埋场,脱氮型生物反应器填埋场可能会增加N2O的产生量,该问题需要进行深入研究。  相似文献   

11.
Bionitrification is considered to be a potential source of nitrous oxide (N2O) emissions, which are produced as a by-product during the nitrogen removal process. To investigate the production of N2O during the process of nitrogen removal via nitrite, a granular sludge was studied using a labscale sequence batch reactor operated with real-time control. The total production of N2O generated during the nitrification and denitrification processes were 1.724 mg/L and 0.125 mg/L, respectively, demonstrating that N2O is produced during both processes, with the nitrification phase generating larger amount. In addition, due to the NEO-N mass/oxidized ammonia mass ratio, it can be concluded that nitrite accumulation has a positive influence on N2O emissions. Results obtained from PCRDGGE analysis demonstrate that a specific Nitrosomonas microorganism is related to N2O emission.  相似文献   

12.
1株好氧脱氮菌的筛选与脱氮特性研究   总被引:4,自引:2,他引:2  
研究好氧反硝化菌的筛选、生物脱氮机制及代谢特征.采用极限稀释及平板划线法对好氧条件下能同步硝化/反硝化的细菌进行广泛筛选,分离到6株具有好氧脱氮效果的异养菌,其中YY-5菌具有高效的好氧脱氮能力.对该菌株好氧脱氮过程气相和液相中可能生成的气态产物以及硝态氮等形式的含氮产物变化进行定量检测分析,探讨脱氮过程氮素的去向及其...  相似文献   

13.
代伟  赵剑强  丁家志  刘双 《环境科学》2019,40(8):3730-3737
采用稳定运行在高盐高碱环境厌氧/好氧/缺氧(A_n/O/A)模式下的序批式生物膜反应器(SBBR),考察在不同碳氮比(C/N)条件下,硝化反硝化过程及N_2O产生特征.结果表明,在C/N为5、2和对照组(C/N=0)时,总氮去除率分别为(98. 17±0. 42)%、(65. 78±2. 47)%和(44. 08±0. 27)%; N_2O的产生量分别为(32. 07±2. 03)、(21. 81±0. 85)和(17. 32±0. 95) mg·L~(-1); N_2O转化率(N_2O产生量在去除总氮中的比例)分别为(29. 75±0. 93)%、(30. 04±2. 17)%和(41. 69±0. 80)%.高盐高碱条件下,亚硝酸盐氧化菌(NOB)受到很强的抑制作用,硝化过程基本停留在亚硝酸盐阶段.由于高盐高碱环境对N_2O还原酶活性的抑制,使得异养反硝化过程产生了大量N_2O,随着碳氮比的增大,有更多的碳源用于反硝化过程,因而总氮去除率和N_2O产生量均随之增加.随着碳氮比的增大,N_2O转化率随之降低,这可能是由于异养反硝化过程氮素还原酶对电子的竞争所形成的,碳氮比越高,电子竞争越弱.高通量测序表明:在SBBR中,氨氧化细菌(AOB)被富集,而几乎不存在NOB;优势异养反硝化菌属主要是Thauera、Azoarcus和Gemmobacter.  相似文献   

14.
Nitrous oxide (N2O) is a potent greenhouse gas that can be emitted during biological nitrogen removal. N2O emission was examined in a multiple anoxic and aerobic process at the aeration rates of 600 mL/min sequencing batch reactor (SBRL) and 1200 mL/min (SBRH). The nitrogen removal percentage was 89% in SBRL and 71% in SBRH, respectively. N2O emission mainly occurred during the aerobic phase, and the N2O emission factor was 10.1% in SBRL and 2.3% in SBRH, respectively. In all batch experiments, the N2O emission potential was high in SBRL compared with SBRH. In SBRL, with increasing aeration rates, the N2O emission factor decreased during nitrification, while it increased during denitrification and simultaneous nitrification and denitrification (SND). By contrast, in SBRH the N2O emission factor during nitrification, denitrification and SND was relatively low and changed little with increasing aeration rates. The microbial competition affected the N2O emission during biological nitrogen removal.  相似文献   

15.
亚硝酸盐对聚磷菌吸磷效果的影响   总被引:12,自引:3,他引:9  
李捷  熊必永  张树德  杨宏  张杰 《环境科学》2006,27(4):701-703
以厌氧/好氧生化反应器中的聚磷菌为实验对象,探讨了亚硝酸盐对聚磷菌吸磷效果的影响.结果表明:低浓度NO2--N可以作为聚磷菌的电子受体,实现NO2--N型反硝化除磷,但吸磷总量和吸磷速率明显低于NO3--N型反硝化除磷的效果;当NO2--N和NO3--N共存于缺氧环境时,NO2--N对NO3--N型反硝化除磷的除磷总量和速率没有影响,但会降低NO3--N的消耗量;NO2--N型反硝化除磷污泥的好氧吸磷量和速率均低于传统A/O厌氧放磷污泥的效果,但由于它经历了缺氧吸磷和好氧吸磷2个阶段,因此,从吸磷总量或出水水质看,二者相差不大.  相似文献   

16.
曝气生物滤池好氧反硝化脱氮的研究   总被引:4,自引:3,他引:1  
邓康  黄少斌  胡婷 《环境科学》2010,31(12):2945-2949
采用某钢铁厂含氮废水,利用生物滤池工艺,研究了曝气生物滤池的挂膜、溶解氧、碳氮比对好氧反硝化脱氮的影响.结果表明,利用富含好氧反硝化菌的富集菌液进行挂膜,16 d基本完成挂膜,脱氮率90%.当溶解氧较低时(DO为1.5~4.2mg/L),随着溶解氧的增大,反硝化效率提高,其中以DO为3.5 mg/L时的效果最好,脱氮率为95.4%.随着曝气量继续增加,脱氮率有所下降,当DO为8.0 mg/L时,脱氮率仍有44.8%.可推断系统中有好氧反硝化菌,存在以O2作为电子受体的好氧反硝化现象.随着碳氮比(COD/N)增大,反硝化效果提高.当COD/N为6~7时,基本能够满足反硝化所需碳源.此时脱氮率大于96%,亚硝态氮在整个反应过程中几乎没有积累,COD去除率在85%左右.  相似文献   

17.
传统观点认为土壤氮素转化要有微生物的参与,但越来越多的研究发现,非生物转化在一些特定条件下同样发挥着不可忽略的作用,该途径下N2O产生量甚至超过生物学过程而占主导作用.作为一种重要的非生物土壤氮素转化方式,化学反硝化产生途径虽然已经被发现近一个世纪,但在现代生态学研究中通常因研究分散而往往被忽视.鉴于此,对土壤化学反硝化及N2O产生机制、影响因素的研究进展进行总结,并对化学反硝化的不足和薄弱环节提出展望.结果表明:土壤化学反硝化及N2O产生的机制主要包括高价氮还原和羟胺分解两种作用;影响土壤化学反硝化的因素主要包括pH、温度、反应底物浓度、有机质、固相界面及金属离子,如高pH、固相界面和Cu2+的存在均会促进化学反硝化过程;不同形态Fe直接参与化学反硝化生成N2O的途径不同,主要包括Fe2+还原NO2-和NO3-,Fe3+氧化NH2OH.然而,现有研究对于化学反硝化机理的边界划分等问题仍不明确,因此,建议强化羟胺在土壤化学反硝化途径中作用机理的基础性研究,以及多因素综合影响下化学反硝化强度和N2O产生特征方面的应用性研究.   相似文献   

18.
农田土壤N2O产生的关键微生物过程及减排措施   总被引:27,自引:7,他引:27  
氧化亚氮(N2O)作为一种重要的温室气体,其全球排放总量仍然在持续上升.它不仅可以产生温室效应,还可以间接破坏臭氧层,使其在全球气候变化和生态环境变化研究中备受关注.土壤生态系统是大气中N2O的最重要排放源.本文详细论述了农田土壤中反硝化作用、硝化作用、硝化微生物的反硝化作用以及硝酸盐异化还原成铵作用等过程产生N2O的微生物学机制,并从土壤理化性质(土壤pH、氮素、有机质、土壤温度和湿度)和土壤生物等方面对农田土壤N2O排放的影响进行综述,在此基础上对农田土壤N2O的减排措施进行总结,并就今后农田土壤N2O排放的研究重点和方向进行了展望,为调控农田土壤温室气体排放、氮转化过程和提高氮素利用效率提供科学依据.  相似文献   

19.
Nitrous oxide (N2O) emission has been reported to be enhanced during denitrification when internally-stored compounds are used as carbon sources. However, negligible N2O emissions have been detected in the few studies where polyhydroxyalkanoates (PHA) were specifically used. This study investigated and compared the potential enhancement of N2O production, based on utilization of an internally-stored polymer and external carbon (acetate) by a denitrifying phosphorus removal culture. Results indicated that at relatively low chemical oxygen demand-to-nitrogen (COD/N) ratios, more nitrite was reduced to N2O in the presence of an external carbon source as compared to an internal carbon source (PHA). At relatively higher COD/N ratios, similar N2O reduction rates were obtained in all cases regardless of the type of carbon source available. N2O reduction rates were, however, generally higher in the presence of an internal carbon source. Results from the study imply that when the presence of an external carbon source is not sufficient to support denitrification, it is likely competitively utilized by different metabolic pathways of denitrifying polyphosphate accumulating organisms (DPAOs) and other ordinary denitrifiers. This study also reveals that the consumption of PHA is potentially the rate-limiting step for N2O reduction during denitrification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号