首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Twenty-five volatile organic compounds (VOCs) up to C10 were measured using Carbotrap multibed thermal adsorption tubes during the morning and afternoon rush hours on four different days in all three traffic tunnels in Kaohsiung, Taiwan. A gas chromatograph (GC) equipped with a flame-ionization detector (FID) was then used to analyze the VOCs. The analytical results show that VOC concentrations increase with traffic flow rate, and emission profiles in the three tunnels are mostly in the range C2-C6. In addition to the traffic conditions and vehicle type, the pattern of emissions in each tunnel was also influenced by other factors, such as vehicle age, nearby pollution sources, and the spatial or temporal variation of VOCs in the urban atmosphere. The ozone formation potential (OFP) in each tunnel was assessed based on the maximum incremental reactivities of the organic species, demonstrating that OFP increases with traffic flow rate. Vehicle distribution influences the contributions of organic group to OFP in a tunnel. Meanwhile, when ranked in descending order of contribution to OFP in all tunnels, the organic groups followed the sequence olefins, aromatics, and paraffins.  相似文献   

2.
The human health effects following exposure to ultrafine (<100 nm) particles (UFPs) produced by fuel combustion, while not completely understood, are generally regarded as detrimental. Road tunnels have emerged as locations where maximum exposure to these particles may occur for the vehicle occupants using them. This study aimed to quantify and investigate the determinants of UFP concentrations in the 4 km twin-bore (eastbound and westbound) M5 East tunnel in Sydney, Australia. Sampling was undertaken using a condensation particle counter (CPC) mounted in a vehicle traversing both tunnel bores at various times of day from May through July, 2006. Supplementary measurements were conducted in February, 2008. Over three hundred transects of the tunnel were performed, and these were distributed evenly between the bores. Additional comparative measurements were conducted on a mixed route comprising major roads and shorter tunnels, all within Sydney. Individual trip average UFP concentrations in the M5 East tunnel bores ranged from 5.53 × 104 p cm?3 to 5.95 × 106 p cm?3. Data were sorted by hour of capture, and hourly median trip average (HMA) UFP concentrations ranged from 7.81 × 104 p cm?3 to 1.73 × 106 p cm?3. Hourly median UFP concentrations measured on the mixed route were between 3.71 × 104 p cm?3 and 1.55 × 105 p cm?3. Hourly heavy diesel vehicle (HDV) traffic volume was a very good determinant of UFP concentration in the eastbound tunnel bore (R2 = 0.87), but much less so in the westbound bore (R2 = 0.26). In both bores, the volume of passenger vehicles (i.e. unleaded gasoline-powered vehicles) was a significantly poorer determinant of particle concentration. When compared with similar studies reported previously, the measurements described here were among the highest recorded concentrations, which further highlights the contribution road tunnels may make to the overall UFP exposure of vehicle occupants.  相似文献   

3.
ABSTRACT

Pollutant measurements in traffic tunnels have been used to estimate motor-vehicle emissions for several decades. The objective in this type of study is to use the traffic tunnel as a tool for characterizing motor vehicles rather than seeking a tunnel design with acceptably low pollutant concentrations. In the past, very simple aerodynamic models have been used to relate measured concentrations to vehicle emissions. Typically, it is assumed that velocities and concentrations are uniform across the tunnel cross section. In the present work, a vehicle emitting a known amount of sulfur hexafluoride (SF6) was driven repeatedly through a 730-m-long traffic tunnel in Vancouver, Canada. Comparing the measured SF6 concentrations to the known emission rates, it is possible to directly assess the accuracy of the simple tunnel aerodynamic models typically used to interpret tunnel data. Correction factors derived from this procedure were then applied to measurements of carbon monoxide and other pollutants to obtain gram-per-kilometer emission factors for vehicles. Although the specific correction factors measured here are valid only for the tunnel tested, the magnitude of the factors (up to two or more) suggests that the phenomena observed here should be considered when interpreting data from other tunnels.  相似文献   

4.
Airflow and pollutant dispersion in a cross-harbor traffic tunnel were experimentally and numerically studied. Concentrations of the gaseous pollutants CO, NOx, and total hydrocarbons (THC) at three axial locations in the tunnel, together with traffic flow rate, traffic speed, and types of vehicle were measured. Three-dimensional (3D) turbulent flow and dispersion of air pollutants in the tunnel were modeled and solved numerically using the finite volume method. Traffic emissions were modeled accordingly as banded line sources along the tunnel floor. The results reveal that cross-sectional concentrations are nonuniformly distributed and that concentrations rise with downstream distance. The piston effect of vehicles alone can provide 9-23% dilution of air pollutants in the tunnel, compounded to a 23-74% dilution effect according to the ventilation condition.  相似文献   

5.
On-road mobile sources contribute substantially to ambient air concentrations of the carcinogens 1,3-butadiene, benzene, and polycyclic aromatic hydrocarbons (PAHs). The current study measured benzene and 1,3-butadiene at the Baltimore Harbor Tunnel tollbooth over 3-hr intervals on seven weekdays (n = 56). Particle-bound PAH was measured on a subset of three days. The 3-hr outdoor 1,3-butadiene levels varied according to time of day and traffic volume. The minimum occurred at night (12 a.m.-3 a.m.) with a mean of 2 microg/m3 (SD = 1.3, n = 7), while the maximum occurred during the morning rush hour (6 a.m.-9 a.m.) with a mean of 11.9 microg/m3 (SD = 4.6, n = 7). The corresponding traffic counts were 1413 (SD = 144) and 16,893 (SD = 692), respectively. During the same intervals, mean benzene concentration varied from 3 microg/m3 (SD = 3.1, n = 7) to 22.3 microg/m3 (SD = 7.6, n = 7). Median PAH concentrations ranged from 9 to 199 ng/m3. Using multivariate regression, a significant association (p < 0.001) between traffic and curbside concentration was observed. Much of the pollutant variability (1,3-butadiene 62%, benzene 77%, and PAH 85%) was explained by traffic volume, class, and meteorology. Results suggest > 2-axle vehicles emit 60, 32, and 9 times more PAH, 1,3-butadiene, and benzene, respectively, than do 2-axle vehicles. This study provides a model for estimating curbside pollution levels associated with traffic that may be relevant to exposures in the urban environment.  相似文献   

6.
Abstract

Airflow and pollutant dispersion in a cross-harbor traffic tunnel were experimentally and numerically studied. Concentrations of the gaseous pollutants CO, NOx, and total hydrocarbons (THC) at three axial locations in the tunnel, together with traffic flow rate, traffic speed, and types of vehicle were measured. Three-dimensional (3D) turbulent flow and dispersion of air pollutants in the tunnel were modeled and solved numerically using the finite volume method. Traffic emissions were modeled accordingly as banded line sources along the tunnel floor. The results reveal that cross-sectional concentrations are nonuniformly distributed and that concentrations rise with downstream distance. The piston effect of vehicles alone can provide 9–23% dilution of air pollutants in the tunnel, compounded to a 23–74% dilution effect according to the ventilation condition.  相似文献   

7.
Particle number distributions were measured simultaneously upwind and downwind of a suburban-agricultural freeway to determine relationships with traffic and meteorological parameters. Average traffic volumes were 6330 vehicles/hr with 10% heavy-duty vehicles, and volumes were higher in July than November. Most downwind particle number distributions were bimodal, with a primary mode at approximately 10-25 nm, indicating that newly formed particles were sampled. Total downwind 6-237 nm particle number concentrations (Ntot) ranged from 9.3 x 10(3) to 2.5 x 10(5) cm(-3), with higher daily average concentrations in November compared with July. Ntot correlated with wind speed, temperature, and relative humidity. Upwind photochemically initiated nucleation likely led to elevated background nanoparticle concentrations in July, as evidenced by increasing upwind distribution modal diameter with increasing temperature and a strong correlation between upwind Ntot and solar radiation. Also in summer, Ntot showed stronger correlation with heavy-duty vehicle volumes than wind speed, temperature, and relative humidity. These results indicate the importance of measuring background particle size distributions simultaneously with roadside distributions. There may be a minimum vehicle volume from which useful real-world vehicle particle number distributions can be measured at roadside, even when collecting samples within 10 m of the traveled lanes.  相似文献   

8.
Abstract

This paper focuses on the auto commuting micro-environment and presents typical carbon monoxide (CO) concentrations to which auto commuters in central Riyadh, Saudi Arabia were exposed. Two test vehicles traveling over four main arterial roadways were monitored for inside and outside CO levels during eighty peak and off-peak hours extending over an eight month period. The relative importance of several variables which explained the variability in CO concentrations inside autos was also assessed. It was found that during peak hours auto commuters were exposed to mean CO levels that ranged from 30 to 40 ppm over trips that typically took between 25 to 40 minutes. The mean ratio of inside to outside CO levels was 0.84. Results of variance component analyses indicated that the most important variables affecting CO concentrations inside autos were, in addition to the smoking of vehicle occupants, traffic volume, vehicle speed, period of day and wind velocity. An increase in traffic volume from 1,000 to 5,000 vehicles per hour (vph) increased mean CO level exposure by 71 percent. An increase in vehicle speed from 14 to 55 km/h reduced mean CO exposure by 36 percent. The number of traffic interruptions had a moderate effect on mean concentrations of CO inside vehicles.  相似文献   

9.
Abstract

On-road mobile sources contribute substantially to ambient air concentrations of the carcinogens 1,3-butadiene, benzene, and polycyclic aromatic hydrocarbons (PAHs). The current study measured benzene and 1,3-butadiene at the Baltimore Harbor Tunnel tollbooth over 3-hr intervals on seven weekdays (n = 56). Particle-bound PAH was measured on a subset of three days. The 3-hr outdoor 1,3-butadiene levels varied according to time of day and traffic volume. The minimum occurred at night (12 a.m.–3 a.m.) with a mean of 2 µg/m3 (SD = 1.3, n = 7), while the maximum occurred during the morning rush hour (6 a.m.–9 a.m.) with a mean of 11.9 µg/m3 (SD = 4.6, n = 7). The corresponding traffic counts were 1413 (SD = 144) and 16,893 (SD = 692), respectively. During the same intervals, mean benzene concentration varied from 3 µg/m3 (SD = 3.1, n = 7) to 22.3 µg/m3 (SD = 7.6, n = 7). Median PAH concentrations ranged from 9 to 199 ng/m3. Using multivariate regression, a significant association (p < 0.001) between traffic and curbside concentration was observed. Much of the pollutant variability (1,3-butadiene 62%, benzene 77%, and PAH 85%) was explained by traffic volume, class, and meteorology. Results suggest >2-axle vehicles emit 60, 32, and 9 times more PAH, 1,3-butadiene, and benzene, respectively, than do 2-axle vehicles. This study provides a model for estimating curbside pollution levels associated with traffic that may be relevant to exposures in the urban environment.  相似文献   

10.
The concentrations of semi-volatile polycyclic aromatic hydrocarbons (PAHs), hydrocarbons (HCs), particulate matter (PM 1, 2.5 and 10 μm) and total suspended particles (TSPs) were measured in a traffic tunnel in Gothenburg, Sweden. Emission factors (EFs) were also calculated. These variables are assumed to provide good estimates of average vehicle emissions, since all types of vehicle, using all types of fuel, pass through this tunnel. It was shown that the majority of particle-associated PAHs were found on particles with an aerodynamic diameter of <1 μm. The concentrations of PAHs were one order higher in magnitude in air samples from the tunnel than in air samples at two urban locations. However, the PAH profiles of air samples from the tunnel and the urban sites were similar. This was demonstrated using principal component analysis (PCA). Finally, and notably, there was no significant change in the total emissions when the proportion of heavy-duty vehicles (HDVs) increased from 8% to 24%. Previously, diesel vehicles had been found to release larger quantities of PAHs and related substances. Advances in fuel quality, and HDV motor and exhaust system design during the last decade may have contributed to this promising result. However, it was shown, using partial least squares regression to latent structures (PLS), that some of the parameters measured displayed correlations with the proportions of HDVs and light-duty vehicles (LDVs). Concentrations of total HCs, TSPs, dibenzothiopene, phenantrene, anthracene and monomethyl-derivatives of phenantrene and anthracene were all correlated to the proportion of HDVs. The concentrations of naphthalene, some mono- and dimethylnaphthalenes and most large PAHs (with 5–7 fused rings) were correlated to the proportion of LDVs.  相似文献   

11.
The emission rate of particle-phase petroleum biomarkers in vehicular exhaust compared to the concentrations of these biomarkers in ambient air is used to determine the particulate organic compound concentration due to primary particle emissions from motor vehicles in the southern California atmosphere. A material balance on the organic particulate matter emitted from motor vehicle traffic in a Los Angeles highway tunnel first is constructed to show the proportion which is solvent-extractable and which will elute from a GC column, the ratio of resolved to unresolved compound mass, the portion of the resolved material that can be identified as single organic compounds, and the contribution of different classes of organic compounds to the overall identified fraction. It is shown that the outdoor ambient concentrations of the petroleum biomarkers track primary emissions measured in the highway tunnel, confirming that direct emissions of these compounds from vehicles govern the observed ambient petroleum biomarker concentrations. Using organic chemical tracer techniques, the portion of fine organic particulate matter in the Los Angeles atmosphere which is attributable to direct particle emissions from vehicle exhaust is calculated to vary from 7.5 to 18.3% at different sites throughout the air basin during a summertime severe photochemical smog episode. A similar level of variation in the contribution of primary motor vehicle exhaust to fine particulate organic matter concentrations during different times of day is seen. While peak atmospheric concentrations of fine particulate organic carbon are observed during the 1200–1600 PDT afternoon sampling period, only 6.3% of that material is apportioned to the directly emitted particles from vehicle exhaust. During the morning traffic peak between 0600–1000 PDT, 19.1% of the fine particulate organic material is traced to primary emissions from motor vehicles.  相似文献   

12.
BACKGROUND, AIMS AND SCOPE: Over the last few years there has been extensive research for new indicators providing information about deposition resulting from road traffic and tunnel experiments received special attention in emission research. Mosses have been used for the estimation of atmospheric heavy metal and PAH depositions for more than three decades, although they were used only a few times for estimating ambient air pollution caused by traffic. In the current study, the suitability of using a moss species for monitoring road traffic emissions inside a tunnel was evaluated. This was a first-time ever attempt to use plants (mosses) as bioindicators in a tunnel experiment. Specifically, two relevant questions were examined: 1) Do mosses accumulate toxic substances derived from road traffic emissions under the extremely adverse conditions which can be found in a tunnel, and 2) Which substances can mainly be attributed to road traffic emissions and therefore be taken as efficient and reliable indicators for motor vehicles? METHODS: For the first time a biomonitor (the moss species Hylocomium splendens (Hedwig) B.S.G.) was used in a road tunnel experiment to analyse emissions from road traffic. Moss samples were exposed for four weeks in wooden frames (size 10 cm x 10 cm), covered by a thin plastic net with a mesh size of 1 cm x 1 cm. 17 elements, mainly heavy metals, and the 16 EPA-PAHs together with coronene were analysed by ICP-AES, AAS and GC-MSD. RESULTS: Enrichment factors, calculated by comparing post-experiment concentrations to those of a background site, were high for most PAHs, especially benzo(g,h,i)perylene (150.7), coronene (134.7), benzo(a)anthracene (125.0), indeno(1,2,3-c,d)pyrene (79.8), chrysene (78.1), pyrene (69.6) and benzo(b)-fluoranthene (67.4), and among the other elements for Sb (73.1), Mo (59.6), Cr (33.9), As (24.1), Cu (19.6), and Zn (17.1). All these substances can thus be taken as indicators for road traffic pollution. Concentrations were also significantly higher in the tunnel mosses for all investigated substances than along busy roads outside tunnels. Cluster analysis revealed groups of substances which could sensibly be attributed to various sources (abrasion processes, Diesel combustion) and enrichment in the various particle size classes. DISCUSSION: The extreme high concentrations in the analysed moss samples from inside the tunnel were due to higher concentrations in the ambient tunnel air, and the fact that already deposited chemical substances are not lost by rain, as well as efficient uptake capacities even under the extremely adverse conditions in a tunnel. In accordance with previous studies our results suggest that PAHs are better indicators for emissions from the burning process than heavy metals. CONCLUSIONS: As in open fields, mosses are suitable indicators for monitoring traffic emissions in tunnels. In addition to biomonitoring in open fields, in tunnel experiments mosses are even better indicators, because the confounding effects of other sources of pollution and the 'noise' in the accumulation process (e.g. washout through wet deposition) are minimised. The results of our study demonstrate the usefulness of mosses for surveying heavy metals and PAH emissions and deposition arising from road traffic sources, even under the extremely adverse conditions of the tunnel environment. RECOMMENDATION: It can be considered that biomonitors like mosses are a suitable alternative to technical particle filters inside tunnels. They are easy to handle, low in costs and valuable information regarding traffic emissions can be obtained. PERSPECTIVE: The results of this pilot-study proved the feasibility of the method, however, should be corroborated by further investigations based on a sample set that allows for generalization of the findings and might even include other moss species. A comparison of technical measurements with the biomonitoring method could lead to a more general acceptance of the results.  相似文献   

13.
Simultaneous measurements of nitrous acid (HONO) and nitrogen dioxide (NO2) using a differential optical absorption spectroscopy system, nitrogen oxide (NO) by an in situ chemiluminescence analyser and carbon dioxide (CO2) by a gas chromatographic technique were carried out in the Wuppertal Kiesbergtunnel. At high traffic density HONO concentrations of up to 45 ppbV were observed. However, at low traffic density unexpectedly high HONO concentrations of up to 10 ppbV were measured caused by heterogeneous HONO formation on the tunnel walls. In addition to the tunnel campaigns, emission measurements of HONO, NO2, NO and CO2 from different single vehicles (a truck, a diesel and a gasoline passenger car) were also performed. For the correction of the HONO emission data, the heterogeneous HONO formation on the tunnel walls was quantified by two different approaches (a) in different NO2 emission experiments in the tunnel without traffic and (b) on tunnel wall residue in the laboratory. The HONO concentration corrected for heterogeneous formation on the tunnel walls, in relation to the CO2 concentration can be used to estimate the amount of HONO, which is directly emitted from the vehicle fleet. From the measured data, emission ratios (e.g. HONO/NOx) and emission indices (e.g. mg HONO kg−1 fuel) were calculated. The calculated emission index of 88±18 mg HONO kg−1 fuel allows an estimation of the HONO emission rates from traffic into the atmosphere. Furthermore, the heterogeneous formation of HONO from NO2 on freshly emitted exhaust particles is discussed.  相似文献   

14.
PCDD/F emissions from heavy duty vehicle diesel engines   总被引:1,自引:0,他引:1  
Geueke KJ  Gessner A  Quass U  Bröker G  Hiester E 《Chemosphere》1999,38(12):2791-2806
The currently available information on PCDD/F emissions from diesel vehicles is briefly surveyed. Considerable uncertainty is identified concerning the emissions from heavy duty diesel trucks which have been measured only twice so far. These measurements led to emission factors differing by a factor of 200; similar discrepancy was also revealed by measurements of ambient air in traffic tunnels. New PCDD/F emission measurement results are presented which have been carried out at the exhaust systems of a stationary engine and of a modern heavy duty vehicle engine at transient operation conditions simulated on a test bench. PCDD/F concentrations in the exhaust gases were found to be in the range of control blank samples. Based on the highest concentration observed in the truck engine exhaust (9.7 pg I-TEQ/dry standard m3) a worst case estimate of the annual PCDD/F emission freight from diesel fuel combustion in the European countries of about 30 g I-TEQ/year is calculated. This emission appears to be irrelevant compared to the overall emission rate of more than 6,000 g I-TEQ/year being inventoried recently. Finally the possibilities to link congener/homologue profiles of diesel emission to profiles found in food or human samples are discussed.  相似文献   

15.
Air pollutants such as polycyclic aromatic hydrocarbons (PAHs), their nitrated derivatives (NPAHs), and some metals on airborne particles in Nagasaki city, Japan were determined over a period of 12 months by high-performance liquid chromatography with chemiluminescence, fluorescence and flameless atomic absorption spectrometry. The average concentrations (range) were 18.24 (4.07-41.54) ng/m3 for total PAHs, 0.91 (0.23-4.10) pg/m3 for NPAHs, 7.95 (1.71-16.31) ng/m3 for Pb, 11.56 (3.35-24.96) ng/m3 for Mn and 3.79 (0.97-14.71) ng/m3 for Ni (n = 136). The toxic equivalency factors adjusted concentration of total PAHs determined in Nagasaki city area was 2.33 ng/m3. Concentrations of total PAHs and NPAHs in winter were higher than those in summer. In a weekly variations study, total PAHs and NPAHs concentrations, as well as traffic volume showed a similar tendency with all values higher during weekdays and lower at the weekend. The correlation coefficients between total PAHs or NPAHs and traffic volume were 0.781 and 0.818, respectively. These results suggested that one of the main sources for NPAHs and PAHs in a city area might be motor vehicles.  相似文献   

16.
Volatile organic compounds (VOCs) were measured from 2007 to 2010 at the center of Shanghai, China. Because VOCs are important precursors for ozone photochemical formation, detailed information of VOC sources needs to be investigated. The results show that the measured VOC concentrations in Shanghai are dominated by alkanes (43%) and aromatics (30%), following by halo-hydrocarbons (14%) and alkenes (6%). Based on the measured VOC concentrations, a receptor model (PMF; positive matrix factorization) coupled with the information related to VOC sources (the distribution of major industrial complex, meteorological conditions, etc.) is applied to identify the major VOC sources in Shanghai. The result shows that seven major VOC sources are identified by the PMF method, including (1) vehicle related source which contributes to 25% of the measured VOC concentrations, (2) solvent based industrial source to 17%, (3) fuel evaporation to 15%, (4) paint solvent usage to 15%, (5) steel related industrial production to 12%, (6) biomass/biofuel burning to 9%, and (7) coal burning to 7%. Furthermore, ozone formation potential related to VOC sources is calculated by the MIR (maximum incremental reactivity) technique. The most significant VOC source for ozone formation potential is solvent based industrial sources (27%), paint solvent usage (24%), vehicle related emissions (17%), steel related industrial productions (14%), fuel evaporations (9%), coal burning (6%), and biomass/biofuel burning (3%). The weekend effect on the VOC concentrations shows that VOC concentrations are generally higher in the weekdays than in the weekends at the sampling site, suggesting that traffic conditions and human activities have important impacts on the VOC emissions in Shanghai.  相似文献   

17.
The purpose of this study was to evaluate the effect of traffic volume on ambient black carbon (BC) concentration in an inner-city neighborhood "hot spot" while accounting for modifying effects of weather and time. Continuous monitoring was conducted for 12 months at the Baltimore Traffic Study site surrounded by major urban streets that together carry over 150,000 vehicles per day. Outdoor BC concentration was measured with an Aethalometer; vehicles were counted pneumatically on two nearby streets. Meteorological data were also obtained. Missing data were imputed and all data were normalized to a 5-min observational interval (n = 105,120). Time-series modeling accounted for autoregressively (AR) correlated errors. This study found that outdoor BC was positively correlated at a statistically significant level with neighborhood-level vehicle counts, which contributed at a rate of 66 +/- 10 (SE) ng/m3 per 100 vehicles every 5 min. Winds from the SW-S-SE quarter were associated with the greatest increases in BC (376-612 ng/m3). These winds would have entrained BC from Baltimore's densely trafficked central business district, as well as a nearby interstate highway. The strong influence of wind direction implicates atmospheric transport processes in determining BC exposure. Dew point, mixing height, wind speed, season, and workday were also statistically significant predictors. Background exposure to BC was estimated to be 905 ng/m3. The optimal, statistically significant representation of BC's autocorrelation was AR([1:6]) x 288 x 2016, where the short-term AR factor (lags 1-6) indicated that BC concentrations are correlated for up to 30 min, and the AR factors for lags 288 and 2016 indicate longer-term autocorrelations at diurnal and weekly cycles, respectively. It was concluded that local exposure to BC from mobile sources is substantially modified by meteorological and temporal conditions, including atmospheric transport processes. BC concentration also demonstrates statistically significant autocorrelation at several time scales.  相似文献   

18.
ABSTRACT

In August 1995, measurements of CO, NOx, speciated nonmethane hydrocarbons (NMHC), and CO2 were made in Vancouver's Cassiar Connector, a 730-m-long level-grade highway traffic tunnel. Two characteristics of the Vancouver setting are the presence of many propane vehicles and a mandatory inspection and maintenance (I/M) program. Although the driving conditions and vehicle fleets are otherwise outwardly similar to those of recent Tuscarora-tunnel studies, CO/NO ratios at the Cassiar Connector are significantly lower than those measured at Tuscarora. The Cassiar measurements are consistent with the MOBILE5A mobile emissions model predictions. The Canadian version of MOBILE5A—known as MOBILE5C—gives nearly identical results, indicating that differences in Canadian and U.S. emission standards cannot explain differences between Cassiar and U.S. tunnels. Considering the modeling results as well as measured ethene/acetylene ratios indicative of noncatalyst vehicles, it appears that vehicle deterioration remains the major issue in in-use vehicle emissions—even in Vancouver, where there is a mandatory loaded-mode I/M program.  相似文献   

19.
Road environments significantly affect in cabin concentration of particulate matter (PM). This study conducted measurements of in-vehicle and on-road concentrations of PM10, PM2.5, PM1, and particle number (PN) in size of 0.02–1 µm, under six ventilation settings in different urban road environments (tunnels, surface roads and elevated roads). Linear regression was then used to analyze the contributions of multiple predictor variables (including on-road concentrations, temperature, relative humidity, time of day, and ventilation settings) to measured variations. On-road measurements of PM2.5, PM1, and PN concentrations from the open surface roads were 5.5%, 3.7%, and 16% lower, respectively, than those measured in tunnels, but 7.6%, 7.1% and 24% higher, respectively, than those on elevated roads. The highest on-road PM10 concentration was observed on surface roads. The time series pattern of in-vehicle particle concentrations closely tracked the on-road concentrations outside of the car and exhibited a smoother profile. Irrespective of road environment, the average I/O ratio of particles was found to be the lowest when air conditioning was on with internal recirculation, the highest purification efficiency via ventilation was obtained by switching on external air recirculation and air conditioning. Statistical models showed that on-road concentration, temperature, and ventilation setting are common factors of significance that explained 58%-80%, 64%-97%, and 87%-98% of the variations in in-vehicle PM concentrations on surface roads, on elevated roads, and in tunnels, respectively.

Implications: Inside vehicles, both driver and passengers will be exposed to elevated particle concentrations. However, for in-vehicle particles, there has been no comprehensive comparative study of the three-dimensional traffic environment including tunnels surface roads and elevated roads. This study focuses on the analysis of the trends and main influencing factors of particle concentrations in different road environments. The results can provide suggestions for the driver's behavior, and provide data support for the environmental protection department to develop pollutant concentration limits within the vehicle.  相似文献   


20.
The South Coast Air Quality Management District (SCAQMD) conducted a 1-year special particulate monitoring study from January 1995 to February 1996. This monitoring data indicates that high PM10 and PM2.5 concentrations were observed in the fall (October, November, and December), with November concentrations being the highest. During the rest of the year, PM2.5 and PM10 masses gradually increased from January to September. Monthly PM10 mass varied from 20 to 120 micrograms/m3, and monthly PM2.5 mass varied from 13 to 63 micrograms/m3. The PM2.5-to-PM10 ratio varied daily and ranged between 22 and 96%. Two types of high-PM days were observed. The first type was observed under fall stagnation conditions, which lead to high secondary species concentrations. The second type was observed under high wind conditions, which lead to high primary coarse particles of crustal components. The highest 24-hr average PM10 concentration (226.3 micrograms/m3) was observed at the Fontana station, while the highest PM2.5 concentration (129.3 micrograms/m3) was observed at the Diamond Bar station.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号