首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 765 毫秒
1.
2012年6月8~11日,江苏安徽2省发生了一次持续性的空气污染过程.利用MODIS观测的气溶胶产品和地面气象资料,结合火点监测资料和HYSPLIT后向轨迹模式,分析气溶胶光学厚度(AOD)、细粒子比例(FMF)、空气污染指数(API)的特征,探究这次空气污染的形成原因.研究表明,这次过程中苏皖2省8个代表城市的能见度大部分时间低于10km,相对湿度低于90%,API均达到或超过污染等级,AOD显著增长,且污染物以人类活动产生的细粒子为主.区域细粒子比例(RFMF)达0.79,高FMF(>0.6)出现的概率高达74.8%.另外,苏皖2省稳定的天气形势,不利于污染物扩散.6月8~11日,苏皖2省(北部地区为主)出现大量的火点,表明有秸秆焚烧现象的存在.从HYSPLIT模式的模拟结果来看,苏皖2省8个代表城市在此期间主要受到偏西方向的气流以及局地气流的影响,偏西方向的气流有利于外部秸秆焚烧的污染物经过输送影响本地区,同时局地气流不利于扩散,从而造成污染物积累,形成污染.  相似文献   

2.
该文基于CE-318反演的光学参数、环境监测站的细颗粒物分布和以卫星数据为基础所做的后向轨迹图,研究了2017年9月-2018年8月的桂林地区气溶胶特性,分析由CE-318数据反演的桂林地区的气溶胶光学参数。结果显示:气溶胶在500 nm通道的光学厚度反演值在0.136~3.490,波长指数的反演范围在0.065~1.776,平均值为1.164,较高的波长指数值表明桂林市的空气质量主要受人为气溶胶干扰。对观测期间总体和不同季节波长指数出现的频次进行统计,并进行高斯拟合。拟合结果表明:整个观测期间波长指数峰值出现在1.347处,确定主控粒子是细粒子;由环境监测站的桂林全年细颗粒物分布发现:研究期间,2017年11月、12月、2018年1月出现污染过程;利用卫星数据做污染日的HYSPLIT后向轨迹图观察发现:桂林污染较为严重时主要受东北和东南风场影响。  相似文献   

3.
北京雾霾天气期间气溶胶光学特性   总被引:28,自引:11,他引:17  
为了解北京地区雾霾天气条件下大气气溶胶的光学特性,利用2002~2008年AERONET资料分析了雾霾天气期间气溶胶光学厚度、Angstrom波长指数、粒子尺度谱分布和单次散射反照率等气溶胶光学特性参数.结果表明,北京地区雾霾天气期间气溶胶光学厚度表现出较高值,且随波长增大而减小,440 nm时平均气溶胶光学厚度达到1.34.Angstrom波长指数在雾霾天气时也表现出较高值,平均值达到1.11;其中高于0.9的波长指数出现频率达到94%,说明北京雾霾天气期间气溶胶粒子主要以细粒子为主.气溶胶体积尺度谱分布表现出双峰型结构,细模态的平均峰值半径随光学厚度增大而增大,而粗模态的平均峰值半径却随光学厚度增大表现出减小趋势;气溶胶粒子尺度谱中的主模态峰与光学厚度有关.雾霾天气期间平均单次散射反照率达到0.89,且随光学厚度增大表现出依次增大趋势,但对波长变化表现不敏感.  相似文献   

4.
利用2015—2019年寿县国家气候观象台的CE-318型太阳光度计观测数据,比较分析了淮河流域农田背景区及其灰霾污染日、非灰霾污染日的气溶胶光学特性和类型的差异和联系.结果表明:①淮河流域农田背景区及其灰霾污染日、非灰霾污染日的AOD440平均值为0.60~0.86,以细粒子气溶胶为主,气溶胶散射能力强,吸收能力弱;②细粒子气溶胶增加在淮河流域农田背景区灰霾污染中占主导作用,灰霾污染发生时,AOD440平均值增大0.26,散射能力增强,吸收能力减弱,污染的气溶胶类型占比增加17.79%;③2015—2019年,淮河流域农田背景区及其灰霾污染日、非灰霾污染日的气溶胶光学厚度、细模态粒子体积浓度整体呈减小趋势,气溶胶散射能力逐年增强,吸收能力逐年减弱;④淮河流域农田背景区及其灰霾污染日,随着污染等级的增加,气溶胶光学厚度和污染的气溶胶类型占比增大,重度污染时颗粒物向大粒径方向移动,但仍为细粒子;⑤受气溶胶来源、吸湿增长和高温的影响,春夏季气溶胶光学厚度和单次散射反照率较高,秋冬季主要由雾霾污染造成,细粒子比例高,气溶胶光学厚度和单次散射反照率较低.  相似文献   

5.
北京不同污染事件期间气溶胶光学特性   总被引:2,自引:1,他引:1  
施禅臻  于兴娜  周斌  项磊  聂皓浩 《环境科学》2013,34(11):4139-4145
利用2005~2011年的AERONET观测数据,对北京不同污染事件期间(秸秆焚烧、烟花燃放以及沙尘天气)气溶胶光学特性进行了分析.气溶胶光学厚度受污染有显著上升,沙尘、秸秆、烟花气溶胶的AOD440 nm分别是干净背景的4.91、4.07、2.65倍.AOD与ngstrm波长指数的匹配能够较好地识别污染类型,沙尘对应高AOD和低α,烟花气溶胶α(1.09)稍低于秸秆(1.21)以及背景(1.27),表明烟花气溶胶的粗粒子更占优,秸秆对应更高的AOD则与其中黑碳颗粒较强的消光能力有关.单次散射反照率对波长敏感性不高,沙尘气溶胶的ω值(0.934)高于背景值(0.878)、秸秆气溶胶(0.921)以及烟花气溶胶(0.905),秸秆气溶胶受烟羽老化、吸湿性增长等影响表现出偏大现象.气溶胶粒子谱分布在背景与污染期间均为双峰模态,细模态和粗模态的峰值浓度半径分别为0.1~0.2μm以及2.24~3.85μm,粗细粒子浓度比值由小到大依次为背景(1.04)、秸秆焚烧(1.10)、烟花燃放(1.91)以及沙尘气溶胶(4.96).  相似文献   

6.
本文利用WRF-Chem模式模拟研究了2013年6月华北地区秸秆燃烧排放气溶胶的气象效应,并对秸秆燃烧产生的吸收性有机气溶胶(即棕碳或BrC)的光吸收效应进行分析.设置4组敏感性试验,通过与AERONET观测结果对比分析了BrC对光吸收的影响.结果表明:模式较好再现了研究时段内各变量变化;在不考虑BrC吸收的情况下,秸秆燃烧产生的气溶胶在主要的农业产区造成地表短波辐射的减弱,月平均值减弱约12.42W/m2,且造成近地面降温而2km以上高空增温,其中近地面温度降幅为0.12~3.64℃,致使边界层趋于稳定,垂直扩散能力减弱;气压整体升高,正变压中心与火点密集区域重合.同时,秸秆燃烧引发近地面较强的风辐散,抑制海洋高湿气团向秸秆燃烧区域的水平输送.在考虑BrC的吸收作用后,光学参数的模拟效果得到了一定提升,AAOD模拟值与观测值的拟合线性斜率由0.47升至0.53,AOD斜率值由0.19升至0.21.生物质燃烧排放BrC对气溶胶消光的影响显著,如AAOD与AOD均出现不同程度的上升.  相似文献   

7.
通过对2013年10月东北三江平原农作物收获期大气颗粒物的在线监测,结合卫星火点数据与后向轨迹模拟,分析了秸秆燃烧和作物收割等农业活动对大气颗粒物质量浓度及粒径分布的影响.结果表明:作物收获前期?中期和后期大气PM2.5的平均质量浓度分别为36.0,158.3,33.8μg/m3;现场观测表明,水稻收割(321.1μg/m3)和秸秆燃烧(2777.1μg/m3)时监测田块内PM2.5的平均浓度分别是收割前和燃烧前平均浓度的2.5倍和11.5倍;卫星火点及后向轨迹分析发现,观测期间PM2.5与该地区卫星火点数量的变化趋势比较一致,且气团轨迹经过火点较集中区域时测得较高的PM2.5浓度值;对不同粒径(<1μm,1~2.5μm,2.5~10μm)大气颗粒物质量浓度的观测表明,收获中期受大面积秸秆燃烧的影响,0~1 μm粒径组分明显增加,而收获后期由于降水过程对0~1μm粒径颗粒物的清除效率较低,故该粒径颗粒物仍维持较高比例.  相似文献   

8.
利用探空资料、NECP再分析资料、AERONET气溶胶反演资料等分析了北京地区一次典型灰霾天气过程的成因及气溶胶光学特性参数变化情况.结果表明:此次灰霾期间,稳定的环流形势、湿润的环境及逆温结构的存在是灰霾得以持续和发展的重要原因.灰霾期间AOD、PM2.5浓度逐渐增大,能见度逐渐降低,这可能与局地气溶胶的累积和相对湿度的增大有关,使气溶胶粒子的消光性增强.气溶胶的体积谱表现为双峰型结构,细粒子体积浓度峰值远大于粗粒子浓度峰值,且细粒子浓度峰值逐日增大,Angstrom波长指数在1.2~1.4之间,两参数均可表明此次灰霾过程的污染粒子以气溶胶细粒子为主;灰霾期间SSA逐日增大,表明气溶胶粒子的散射性逐渐增强,SSA随波长的变化主要呈现两种变化趋势,这与当日主控粒子的尺度有关.因气溶胶的作用,使到达地面的辐射通量减小.这些光学特性参量的变化为了解北京地区灰霾期间气溶胶特性及其气候效应提供了参考.  相似文献   

9.
长江三角洲地区大气污染过程分析   总被引:1,自引:0,他引:1  
针对2015年和2016年12月2个月的4次污染过程,利用中分辨率成像光谱仪(MODIS)Terra卫星的气溶胶光学厚度(AOD),Angstrom波长指数(AE)气溶胶数据,并结合PM2.5和PM10的浓度以及比值变化分析,发现以PM2.5为代表的人为因素产生的细颗粒物是造成研究地区污染发生的重要因素.并且利用MODIS火点数据以及美国海军气溶胶分析与预测系统(NAAPS)模拟分析污染物成分,发现2015年12月12~16日和19~27日2次污染都以人为因素产生的细粒子污染物为主,沙尘以及生物质燃烧产生的烟粒对研究地区影响较小.2016年12月6~10日和15~18日2次污染过程产生的原因不同,利用潜在源贡献因子分析法(PSCF)分析发现6~10日污染天气的产生主要是由西北方向含有大量沙尘粒子气流以及南方生物质燃烧产生的大量烟粒共同输送到研究地区,加之研究地区大量人为污染细粒子的产生,导致了此次混合型污染天气发生.15~18日污染过程与2015年2次污染过程相似,主要原因都在于人为因素产生的细颗粒污染物的影响,沙尘以及烟粒对污染过程起到了加剧的作用.  相似文献   

10.
利用2011年10月17~22日连续在线观测沈阳地区大气能见度、颗粒物质量浓度ρ(PM10)、ρ(PM2.5)、ρ(PM1.0)、以及通过太阳光度计测量数据反演得到的气溶胶光学厚度、Angstrom波长指数、气溶胶粒子谱分布数据,结合相对湿度、风速、温度等气象资料,分析了2011 年秋季沈阳一次雾霾天气过程中能见度与颗粒物质量浓度及气溶胶光学特征变化.结果表明:相对温度偏高、小风天气以及颗粒物质量浓度累积是造成沈阳能见度下降、引发雾霾天气的主要因素;雾霾期间细粒子所占比例较高,ρ(PM10)、ρ(PM2.5)、ρ(PM1.0)平均值分别为138.8、103.3、94.9μg/m3,比雾霾过程前均增加约2倍左右,PM2.5/PM10和PM1.0/PM10分别为74.7%和68.6%;当RH0.90),RH >80%时, 能见度与颗粒物浓度间的相关性减弱;雾霾期间气溶胶光学厚度明显增加,雾霾前气溶胶光学厚度和Angstrom波长指数平均值分别为0.82和0.94,雾霾期间气溶胶光学厚度和Angstrom波长指数平均值分别为1.42和1.25;雾霾天气过程中,细模态粒子的峰值浓度约是雾霾前细粒子浓度的2倍,说明沈阳地区大气污染物以细粒子为主,进而影响气溶胶光学特征发生变化.  相似文献   

11.
This study finds out seasonal and monthly variations in Aerosol Optical Depth (AOD) over eastern and western routes of China Pakistan Economic Corridor (CPEC) and the relationship between AOD and meteorological parameters (i.e., temperature, rainfall and wind speed). The Moderate Resolution Imaging Spectroradiometer (MODIS) and Multi-angle Imaging Spectroradiometer (MISR) data was used from the terra satellite for the period of 2000-2016. This study aims to overtake the conventional view of the purpose of using the satellite datasets. This study takes on to the concept that validated satellite data sets rather should be used for the analysis instead of just validation specifically for our study region. Hence, after comparing MODIS AOD with MISR AOD, only MISR AOD dataset is used for further analysis. The results show a decreasing trend of AOD in summer season, a positive relationship between temperature and AOD during winter and spring seasons whereas a positive relationship between wind speed and AOD in winter and spring seasons over eastern and western routes. Periodic analysis of MODIS AOD and MISR AOD depicts May-Aug as the peak period of aerosol concentration over central Pakistan. The inter-annual analysis shows the aerosol trend remained higher during summer season however rainfall shows the washout effect. Eastern route has higher standard deviation and larger values for aerosol prevalence as compared to western route. The trajectory analysis using the HYSPLIT model suggests the bias of air mass trajectory caused deviation in the aerosol trend in the year 2014.  相似文献   

12.
四川盆地地形复杂、气候特殊,是我国颗粒物污染高发地.为探究四川盆地气溶胶分布和周期变化特征,深入认识气溶胶污染特性及其气候效应,结合卫星遥感探测方法,利用2006-2017年MODIS C006 3 km AOD(气溶胶光学厚度)产品,分析了四川盆地AOD的时空特征.结果表明:①MODIS AOD(MODIS数据反演的气溶胶光学厚度)与太阳光度计CE318观测的AOD、ρ(PM2.5)、ρ(PM10)线性相关系数分别为0.78、0.77、0.75,表明MODIS C006 3 km AOD产品适用于四川盆地颗粒物污染研究.②四川盆地AOD平均值范围为0.1~1.3,其中,成都平原和四川盆地东南部地区是AOD高值(AOD值>1.0)中心,四川盆地周边高海拔区AOD均小于0.3.③2006-2017年AOD年均值范围为0~2.5,整体呈"倒N型"曲线下降,其峰值和谷值分别出现在2013年和2017年;2013年AOD大于1.0的区域占四川盆地的34.1%,是12 a中颗粒物污染最重的一年;2017年AOD小于0.3的面积占57.1%.④AOD季节性变化呈春季最大、夏季次之、秋季最小的特征.⑤AOD月变化呈"双峰型"波动特征,AOD月均值范围为0~2.5,其中,2-5月AOD月均值均大于0.7,8月AOD月均值为0.6,11-12月AOD月均值均小于0.5.研究显示,四川盆地颗粒物污染防治应以成都平原城市群和四川省南部城市群为主,应重点控制细颗粒物排放,合理安排工业企业的周期性生产强度.   相似文献   

13.
为探究全国大气气溶胶光学厚度(AOD)的分布及变化特征,利用最新的MODIS/Terra C6.1 550 nm AOD月数据分析了2001~2017年全国AOD的时空分布及变化趋势.结果表明,空间特征:年均AOD空间分布呈现两个显著的高值中心和低值中心,第一高值中心位于以人为气溶胶为主的华北平原、华中地区、长三角地区、珠三角地区和四川盆地,第二高值中心位于以尘埃气溶胶为主的塔克拉玛干沙漠地区,两个低值中心分别位于内蒙古地区东部至东北地区北部以及青藏高原.时间特征:各区域AOD峰值主要出现在春、夏季,塔克拉玛干沙漠地区、四川盆地和珠三角地区AOD在3~4月达到峰值,华北平原、华中地区和长三角地区AOD在5~7月达到峰值.趋势特征:2001~2006年,我国西北地区和内蒙古地区AOD呈现减少趋势,我国中东部地区和西南地区东部AOD呈现增长趋势.2007~2012年,青藏高原和塔克拉玛干沙漠地区AOD变化趋势由减少转为增长,华北平原和四川盆地AOD的增幅减弱,长三角地区AOD呈现弱的下降趋势.2013~2017年,我国大部地区AOD呈显著地下降趋势.  相似文献   

14.
郭霖  孟飞  马明亮 《环境科学》2022,43(7):3483-3493
深入了解大气气溶胶时空变化及其影响因素,对控制大气污染,改善大气环境具有重要意义.首先利用2013~2019年的VIIRS IP气溶胶光学厚度(AOD)数据分析华北平原AOD的时空变化规律.其次,选取SO2、 NO2、 PM2.5、气象数据、 NDVI、 DEM、 GDP和POPU作为影响因素,基于XGBoost模型分别建立华北平原5个代表城市的AOD与其影响因素之间的连接模型,定量估算并揭示AOD时空分布规律背后各个影响因素的贡献.结果表明在空间分布上,华北平原AOD以太行山脉为界,呈现东南高西北低的格局.在时间变化上,5个城市AOD年均值整体呈下降趋势,AOD月均值先上升后下降,最高值出现在7月,最低值出现在12月.此外,建立的华北地区5个城市AOD估算模型精度较高,R2在0.60~0.67之间.华北平原的AOD影响因素中,NO2和SO2是对5个城市AOD贡献最大的影响因素,此外,PM2.5是另外一种重要的污染排放影响因素.气象因...  相似文献   

15.
中国近15年气溶胶光学厚度时空分布特征   总被引:1,自引:0,他引:1  
利用MODIS 04_L2气溶胶日产品统计其月度、季度及年度均值数据,研究中国大陆地区近15a气溶胶光学厚度(AOD)空间分布状况;通过Spearman秩相关检验法,探讨中国大陆地区近15a的AOD年均值与季均值的逐年变化趋势.结果表明:在空间分布上,我国AOD多年均值高值中心主要位于四川盆地、南疆盆地、华中地区、长江三角洲、华北平原、关中平原,珠江三角洲地区也有小范围的高值区;低值中心主要位于川西和藏东南、内蒙和冀北交界以及河套地区.在逐年变化趋势上,西北地区AOD值主要呈下降趋势,其中川西和藏东南、陕甘宁交界呈显著下降趋势;东部地区AOD值主要呈现上升趋势,且华中地区、长江三角洲、华北平原以及关中平原呈显著上升趋势;在全国范围内AOD年均值整体呈现上升趋势,但趋势不显著;AOD值随季节变化较显著,具体表现为春夏较高、秋冬较低;AOD高值区以及呈上升趋势的地区基本都处在胡焕庸线东南,表明人类活动对AOD值影响比较显著.  相似文献   

16.
基于卫星遥感和地面观测资料的霾过程分析   总被引:3,自引:0,他引:3  
利用MODIS、CALIPSO卫星观测的气溶胶产品和地面空气质量、气象资料,并结合HYSPLIT后向轨迹模式,探讨了2013年12月1~9日长江三角洲地区一次持续性的严重霾污染过程的形成、特征及其可能来源.研究表明,此次污染过程中长江三角洲地区8个代表城市大部分时间处于霾污染的状况下,气溶胶光学厚度(AOD)显著增长,空气质量指数(AQI)均达到或超过污染限值,且以中度以上污染为主.污染发生时,气溶胶主要存在于地面至2km的大气层内,尤其是850m以下.根据体积退偏比和色比得出球形气溶胶出现频率高于非球形气溶胶,大粒径气溶胶出现频率高于小粒径气溶胶,进而得到污染期间气溶胶的主要类型为“污染型”气溶胶.污染物的近距离的输送和持续小风,无降水的静稳气象条件而导致污染物难以扩散稀释而累积在本地是造成长江三角洲区域污染范围广、时间长、程度重的主要原因.  相似文献   

17.
周茹  朱君 《中国环境科学》2020,40(4):1429-1436
利用2013年地基CE-318太阳光度计观测数据,结合中分辨率成像光谱仪(MODIS)遥感产品和HYSPLIT后向轨迹分析,研究了一次东南亚生物质燃烧污染长距离输送至中国西南昆明站点过程(2013年4月5~8日)中,气溶胶光学特性和辐射特性的变化及其可能来源.结果表明,此次污染过程期间,我国西南地区生物质燃烧活动较少,而中南半岛地区生物质燃烧活动显著.4月5~7日,昆明站点气溶胶光学厚度(AOD)升高,消光波长指数(EAE)和吸收波长指数(AAE)均增大.此外,依据EAE和AAE分类方法,5~6日昆明站点以城市工业气溶胶为主,7~8日以生物质燃烧气溶胶为主,其细模态峰值半径(0.11μm)小于5~6日(0.15μm),7日细模态粒子体积浓度峰值(约为0.16μm3/μm2)是5日的2倍.气溶胶直接辐射强迫(ARF)日变化结果表明4月7日气溶胶对地表的降温效应达到最大,对大气的加热作用最强.气溶胶直接辐射强迫效率值(ARFE)的变化表明生物质燃烧气溶胶对大气顶的降温作用减弱.MODIS遥感以及HYSPLIT模式后向轨迹表明,此次昆明站点生物质燃烧气溶胶主要来源于东南亚地区(主要是印度北部、印缅北部和不丹地区).  相似文献   

18.
为探究南京秋季污染过程的特征和影响因素,利用MODIS(Moderate Resolution Imaging Spectroradiometer)传感器获得的气溶胶光学厚度(Aerosol Optical Depth)、波长指数(Angstrom Exponent)、火点数据及CALIPSO(Cloud-Aerosol Lidar And Infrared Pathfinder Satellite Observations)卫星数据和来自NECP、MICAPS的温度、相对湿度、风向风速等常规气象要素数据,对南京2015年10月、2016年9月两次污染过程进行分析.研究结果表明:两次污染过程的AE412-470值(埃斯特朗波长指数α)均高于1,由此判断两次污染均以人为排放产生的细粒子为主.但2015年10月的AE412-470值明显低于2016年9月,说明在2015年10月污染过程中粗粒子所占比重高于2016年9月.结合对后向轨迹的分析发现,南京地区2015年10月污染天气的发生还受长距离输送的影响,污染源主要为来自内蒙古、山西等地的污染型沙尘粒子.研究还发现,较高的相对湿度、较低的地表风速、低混合层高度及贴地逆温等气象条件会导致污染物难以扩散稀释而累积在南京地区,造成该区域在秋季出现较严重的污染天气.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号