首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
气溶胶地基观测数据和颗粒物浓度数据的同步定量评估可为了解长安区大气污染的垂直分布特征,制定合理的大气污染控制提供更有效的依据.基于CE-318太阳光度计观测数据,分析了2018年10月~2021年4月西安市长安区月均和季均气溶胶光学特性分布和变化特征,结合近地面颗粒物浓度数据,分析了不同季节、不同污染程度下气溶胶光学厚度(AOD)对颗粒物浓度的响应.结果表明:(1)观测期间长安区AOD季节变化分明:秋季(1.02)>冬季(1.00)>夏季(0.63)>春季(0.47); AOD月度、年际差异大,2019年AOD(0.51)略高于2020年(0.48).(2)整个观测期间长安区气溶胶主控模态存在明显的季节、月度差异,从春季到冬季气溶胶主控模态逐渐从粗模态向细模态转变;2019年气溶胶主控模态的季节变化与整个观测时段类似,2020年各季节气溶胶Angstrom波长指数(Angstrom)分布稳定,气溶胶粒子均以粗模态的形式存在;整个观测时段来看长安区气溶胶类型以混合型气溶胶为主.(3)AOD和Angstrom的关系存在明显的季节差异,春季大气污染以粗模态的气溶胶粒子为主导...  相似文献   

2.
杭州市大气气溶胶光学特性研究   总被引:3,自引:1,他引:2  
利用太阳分光光度计(CE-318)对杭州市地面的气溶胶光学特性进行观测,并对卫星反演的中分辨率成像光谱仪(Moderate Resolution Imaging Spectroradiometer,MODIS)气溶胶产品进行验证.结果表明,MODIS气溶胶产品在杭州地区的精度较高,3个站点全部数据回归曲线的斜率和截距分...  相似文献   

3.
CE-318太阳光度计自动进行太阳直接辐射和天空光扫描探测,通过反演计算可获取大气气溶胶各种光学特性,在大气环境监测与研究领域发挥着重要作用。介绍了CE-318太阳光度计的仪器结构、测量工作程序和反演算法,并对2010年重庆城区大气Angstrom波长指数测量结果进行了简要分析。  相似文献   

4.
杭州地区大气气溶胶光学特性高光谱研究   总被引:8,自引:2,他引:6  
利用ASD地物光谱仪对杭州地区的气溶胶光学特性进行了观测并结合同步观测的太阳分光光度计CE-318的数据对其精度进行检验.分析表明,在时间演变中.杭州市冬季气溶胶光学厚度值比夏季大,气溶胶光学特性的日进程变化比较明显;从空间分异上,杭州不同区域间的差异也比较显著;杭州地区大气的浑浊度系数和波长指数主要分布在0.02~0.2和0.2~2.6之间.在气溶胶光学厚度、浑浊度系数和波长指数等大气环境重要变量中,气溶胶光学厚度和浑浊度系数之间存在正相关,而气溶胶光学厚度和波长指数之间存在负相关.  相似文献   

5.
文章利用MODIS L1B数据和NASA的V5.2气溶胶光学厚度反演算法反演了长江三角洲地区的高空间分辨率的气溶胶光学厚度,反演结果与CE-318地基观测数据的进行对比验证,两者的相关系数在0.7以上,反演结果精度良好,表明MODIS反演高空间分辨率气溶胶光学厚度的可行性。利用反演的高空间分辨率气溶胶光学厚度,结合长江三角洲地区地表覆盖数据,建立两者的交叉列联表,分析了长江三角洲地区的气溶胶光学厚度和地表覆盖类型变化的关系:地表覆盖类型的变化驱动着气溶胶光学厚度的变化,森林、草原等植被覆盖度高的地区,气溶胶光学厚度值要低于城镇等人为活动较高地区。  相似文献   

6.
周茹  朱君 《中国环境科学》2020,40(4):1429-1436
利用2013年地基CE-318太阳光度计观测数据,结合中分辨率成像光谱仪(MODIS)遥感产品和HYSPLIT后向轨迹分析,研究了一次东南亚生物质燃烧污染长距离输送至中国西南昆明站点过程(2013年4月5~8日)中,气溶胶光学特性和辐射特性的变化及其可能来源.结果表明,此次污染过程期间,我国西南地区生物质燃烧活动较少,而中南半岛地区生物质燃烧活动显著.4月5~7日,昆明站点气溶胶光学厚度(AOD)升高,消光波长指数(EAE)和吸收波长指数(AAE)均增大.此外,依据EAE和AAE分类方法,5~6日昆明站点以城市工业气溶胶为主,7~8日以生物质燃烧气溶胶为主,其细模态峰值半径(0.11μm)小于5~6日(0.15μm),7日细模态粒子体积浓度峰值(约为0.16μm3/μm2)是5日的2倍.气溶胶直接辐射强迫(ARF)日变化结果表明4月7日气溶胶对地表的降温效应达到最大,对大气的加热作用最强.气溶胶直接辐射强迫效率值(ARFE)的变化表明生物质燃烧气溶胶对大气顶的降温作用减弱.MODIS遥感以及HYSPLIT模式后向轨迹表明,此次昆明站点生物质燃烧气溶胶主要来源于东南亚地区(主要是印度北部、印缅北部和不丹地区).  相似文献   

7.
利用2011年10月17~22日连续在线观测沈阳地区大气能见度、颗粒物质量浓度ρ(PM10)、ρ(PM2.5)、ρ(PM1.0)、以及通过太阳光度计测量数据反演得到的气溶胶光学厚度、Angstrom波长指数、气溶胶粒子谱分布数据,结合相对湿度、风速、温度等气象资料,分析了2011 年秋季沈阳一次雾霾天气过程中能见度与颗粒物质量浓度及气溶胶光学特征变化.结果表明:相对温度偏高、小风天气以及颗粒物质量浓度累积是造成沈阳能见度下降、引发雾霾天气的主要因素;雾霾期间细粒子所占比例较高,ρ(PM10)、ρ(PM2.5)、ρ(PM1.0)平均值分别为138.8、103.3、94.9μg/m3,比雾霾过程前均增加约2倍左右,PM2.5/PM10和PM1.0/PM10分别为74.7%和68.6%;当RH0.90),RH >80%时, 能见度与颗粒物浓度间的相关性减弱;雾霾期间气溶胶光学厚度明显增加,雾霾前气溶胶光学厚度和Angstrom波长指数平均值分别为0.82和0.94,雾霾期间气溶胶光学厚度和Angstrom波长指数平均值分别为1.42和1.25;雾霾天气过程中,细模态粒子的峰值浓度约是雾霾前细粒子浓度的2倍,说明沈阳地区大气污染物以细粒子为主,进而影响气溶胶光学特征发生变化.  相似文献   

8.
利用MODIS遥感数据反演广州市气溶胶光学厚度   总被引:10,自引:1,他引:9       下载免费PDF全文
利用中分辨率成像光谱仪(MODIS)数据和NASA的V5.2气溶胶业务反演算法,对广州市进行了高空间分辨率气溶胶光学厚度的反演,并应用地面太阳光度计(CE-318)观测的气溶胶光学厚度进行验证.结果表明,利用MODIS L1B数据进行高分辨率气溶胶光学厚度反演,结果精度较高.利用反演结果分析2008~2009年冬季广州市的气溶胶光学厚度时空变化特征,2008年12月的气溶胶光学厚度较低,平均大约为0.65,随后气溶胶光学厚度逐渐增大,到2009年2月,气溶胶光学厚度平均大约为1.35.广州市气溶胶光学厚度空间差异显著,在0.1~1之间变化,呈东北低西南高的空间分布特征.即森林覆盖率比较高的地区气溶胶较低.  相似文献   

9.
四川盆地地形复杂、气候特殊,是我国颗粒物污染高发地.为探究四川盆地气溶胶分布和周期变化特征,深入认识气溶胶污染特性及其气候效应,结合卫星遥感探测方法,利用2006-2017年MODIS C006 3 km AOD(气溶胶光学厚度)产品,分析了四川盆地AOD的时空特征.结果表明:①MODIS AOD(MODIS数据反演的气溶胶光学厚度)与太阳光度计CE318观测的AOD、ρ(PM2.5)、ρ(PM10)线性相关系数分别为0.78、0.77、0.75,表明MODIS C006 3 km AOD产品适用于四川盆地颗粒物污染研究.②四川盆地AOD平均值范围为0.1~1.3,其中,成都平原和四川盆地东南部地区是AOD高值(AOD值>1.0)中心,四川盆地周边高海拔区AOD均小于0.3.③2006-2017年AOD年均值范围为0~2.5,整体呈"倒N型"曲线下降,其峰值和谷值分别出现在2013年和2017年;2013年AOD大于1.0的区域占四川盆地的34.1%,是12 a中颗粒物污染最重的一年;2017年AOD小于0.3的面积占57.1%.④AOD季节性变化呈春季最大、夏季次之、秋季最小的特征.⑤AOD月变化呈"双峰型"波动特征,AOD月均值范围为0~2.5,其中,2-5月AOD月均值均大于0.7,8月AOD月均值为0.6,11-12月AOD月均值均小于0.5.研究显示,四川盆地颗粒物污染防治应以成都平原城市群和四川省南部城市群为主,应重点控制细颗粒物排放,合理安排工业企业的周期性生产强度.   相似文献   

10.
乌鲁木齐大气气溶胶的光学特性分析   总被引:7,自引:1,他引:7       下载免费PDF全文
根据CE318自动跟踪太阳光度计于2002年4月23日~2003年3月15日在乌鲁木齐地区进行观测取得的资料,反演得出气溶胶光学厚度、Angstrom大气浑浊度系数β和波长指数α.分析表明,气溶胶光学厚度随波长增加而降低;其日变化在春夏季起伏波动多,而冬季日变幅最大;全年气溶胶光学厚度在7月最小,3月最大,与3种主要污染物PM10、SO2和NO2浓度的月分布不尽相同;波长指数α表明春季风沙天气导致了气溶胶颗粒物半径增大,而Angstrom大气浑浊度系数β反映了夏季大气比较洁净,冬季气溶胶数量多,3月为整层大气污染最严重时期.  相似文献   

11.
为初步探讨利用气溶胶光学指标判别污染物来源的适用性,选取天津市冬季一次重污染过程(2017年11月17—21日),对气溶胶的七波段吸收系数、三波段散射系数及其化学组分进行在线观测及分析,研究气溶胶光学特性的变化,并结合化学组分定性分析污染过程不同阶段的污染来源.结果表明:SSA(单散射反照率)可以从散射性组分和吸光性组分对消光贡献的变化判断污染来源.污染积累期,颗粒物中散射性组分(SO42-、NO3-、NH4+)的增幅高于吸光性组分EC(元素碳),导致污染积累期的SSA值高于污染前期和污染消散期,说明污染积累期存在较明显的二次转化过程.SAE(散射波长指数)可以从粒径角度推断污染来源.此次观测的污染积累期SAE值呈较明显的下降趋势,说明在细粒径段(2.5 μm以下)颗粒物粒径有增大的趋势,这主要与颗粒物中无机盐的吸湿增长及颗粒物之间的碰并有关.AAE(吸收波长指数)在一定程度上可以指示吸光颗粒物的类型.污染前期,BrC(棕色碳)在370、470 nm处对光吸收的贡献率分别为50.7%、33.8%;同期PM2.5中ρ(Cl-)、ρ(K+)同步升高,卫星遥感显示,观测点周围有大量火点出现,推测主要受祭祖活动的影响.研究显示,气溶胶光学指标能够从散射性组分和吸光性组分对消光贡献变化、粒径变化、吸光颗粒物类型角度定性解析一部分污染来源,但其对于燃煤源和机动车等重要源类的指示作用还有待进一步研究.   相似文献   

12.
利用2015—2019年寿县国家气候观象台的CE-318型太阳光度计观测数据,比较分析了淮河流域农田背景区及其灰霾污染日、非灰霾污染日的气溶胶光学特性和类型的差异和联系.结果表明:①淮河流域农田背景区及其灰霾污染日、非灰霾污染日的AOD440平均值为0.60~0.86,以细粒子气溶胶为主,气溶胶散射能力强,吸收能力弱;②细粒子气溶胶增加在淮河流域农田背景区灰霾污染中占主导作用,灰霾污染发生时,AOD440平均值增大0.26,散射能力增强,吸收能力减弱,污染的气溶胶类型占比增加17.79%;③2015—2019年,淮河流域农田背景区及其灰霾污染日、非灰霾污染日的气溶胶光学厚度、细模态粒子体积浓度整体呈减小趋势,气溶胶散射能力逐年增强,吸收能力逐年减弱;④淮河流域农田背景区及其灰霾污染日,随着污染等级的增加,气溶胶光学厚度和污染的气溶胶类型占比增大,重度污染时颗粒物向大粒径方向移动,但仍为细粒子;⑤受气溶胶来源、吸湿增长和高温的影响,春夏季气溶胶光学厚度和单次散射反照率较高,秋冬季主要由雾霾污染造成,细粒子比例高,气溶胶光学厚度和单次散射反照率较低.  相似文献   

13.
采用美国国家航空航天局的云-气溶胶激光雷达红外开拓者卫星搭载的正交极化云-气溶胶激光雷达数据产品,包括消光系数、光学厚度、总后向散射系数、体积退偏比和色比,结合地面监测的颗粒物质量浓度,分析上海大气相对湿度小于80%霾发生期间气溶胶光学属性的垂直分布特征和颗粒物质量浓度变化,并与非霾期间进行比较.结果表明:霾期间532 nm和1064 nm消光系数在垂直高度上(海拔:0~10 km)均大于非霾期间,且大多数霾期间颗粒物在整层大气的光学厚度大于非霾期间.在近地面,霾期间大气颗粒物散射能力大于非霾期间.各垂直高度层,霾与非霾期间小粒径和规则气溶胶占主导地位.霾期间近地面大粒径颗粒物在霾期间所占比例大于非霾期间;2.0~4.0 km高度层,霾和非霾期间细颗粒所占比例接近;4.0~10.0 km高度层,霾期间细颗粒气溶胶所占比例大于非霾期间.PM1、PM2.5和PM10质量浓度在霾期间均大于非霾期间,且霾期间细颗粒物所占比例明显增加.颗粒物质量浓度和比值PM1/PM2.5和PM2.5/PM10分别随霾污染程度的加重而升高.冬季颗粒物质量浓度最高,主要来自细颗粒物的贡献;而春季PM10质量浓度高于其它季节.  相似文献   

14.
姚媛  贺欣  朱君 《环境科学学报》2020,40(6):1976-1986
利用地基CE-318太阳光度计反演数据、中分辨率成像光谱仪(Moderate-resolution Imaging Spectroradiometer,MODIS)、云-气溶胶激光雷达、红外路径探测卫星(Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation,CALIPSO)遥感产品及拉格朗日混合单粒子轨迹模型(Hybrid Single Particle Lagrangian Integrated Trajectory Model,HYSPLIT),研究了中国西南云贵高原昆明站点混合型气溶胶日(2012年3月31日)、生物质燃烧气溶胶日(2012年4月4日)、城市工业气溶胶污染日(2013年8月15日)中气溶胶光学特性、辐射特性的差异及气溶胶三维分布和可能来源.结果表明,相比于其它两种类型气溶胶污染日,生物质燃烧气溶胶污染日气溶胶光学厚度(AOD)最高,达到1.18;吸收波长指数(AAE)值最大,为1.61;消光波长指数(EAE)值最大,为1.55,细模态气溶胶粒子占比更多,细模态体积浓度峰值达到0.15 μm3·μm-2;生物质燃烧气溶胶污染日气溶胶直接辐射强迫(ARF)绝对值均为3个污染日中最高(地表ARF为-149 W·m-2,大气顶ARF为-40 W·m-2,大气ARF为109 W·m-2),气溶胶对地表的降温效应达到最大,对大气的加热作用最明显.气溶胶直接辐射强迫效率(ARFE)结果显示,生物质燃烧气溶胶相比于城市工业气溶胶对大气顶的降温作用较小,对大气的加热作用更强.气溶胶混合污染日后向轨迹来源于当日有大量生物质燃烧的中南半岛区域和以城市工业气溶胶为主的中国华南及四川盆地区域,生物质燃烧污染日气流则来自中南半岛地区,上述地区同时也为MODIS AOD高值区;城市工业污染日的气流来自位于昆明局地和四川盆地的AOD高值区.气溶胶混合污染日昆明站点附近气溶胶主要位于海拔2300 m(来源于东北部的城市工业气溶胶)和4600 m(来自缅甸的生物质燃烧气溶胶)高度处;生物质燃烧污染日气溶胶浓度随高度增加而降低,3000、3500、4100 m 3个主要峰值高度处的气溶胶都来至于缅甸地区;城市工业气溶胶污染日峰值高度处气溶胶主要来自局地东北部区域,且气溶胶浓度随高度增加先增加后减小.  相似文献   

15.
高分四号卫星是我国发射的新型高分辨率对地观测静止轨道卫星,在大气环境遥感监测方面有着广阔的前景。本文针对高分四号卫星的数据特点,以当前较为成熟的暗目标法为基础,利用浓密植被在红光和蓝光波段的线性关系,去除地表贡献,实现气溶胶光学厚度的反演,构建了应用于高分四号卫星数据的陆地气溶胶反演算法。在此基础上,利用2016年5月10日和20日过境"京津冀"地区的高分四号时间进行了反演试验,并利用地面CE318的观测结果进行了验证。结果表明,本算法能较好的反映气溶胶的空间分布,与地面结果有较高的相关性,但整体高于地面观测值。  相似文献   

16.
利用环境一号卫星(HJ-1)CCD数据高时间分辨率、空间分辨率和宽覆盖的特点,进行城市地区气溶胶光学厚度定量反演研究。提出使用环境卫星数据自带的逐像元卫星观测角度文件及相应参数进行逐像元太阳天顶角、太阳方位角推算,生成四波段合成角度数据。结合改进后的暗目标算法,以及基于逐像元角度数据的6S查找表,对南宁市2014年1月14日、15日、16日HJ-1CCD数据进行气溶胶光学厚度反演。反演结果与ARONET地基观测数据进行验证,表明该算法有较高反演精度,相关系数为0.865,同时与MODIS气溶胶反演结果进行比较。结果表明,经过HJ-1CCD数据反演的气溶胶光学厚度可作为气溶胶时空分布的实时监测手段。  相似文献   

17.
重庆市城区大气气溶胶光学厚度的在线测量及特征研究   总被引:3,自引:1,他引:2  
利用CE-318型太阳光度计(CE-318)测定了重庆市城区2010年3月至2011年2月期间的太阳直接辐射量,反演了该地区大气气溶胶光学厚度(Aerosol optical depth,AOD),并对结果进行了分析.结果表明:重庆市城区上空大气AOD随波长增加而减小,Angstrom波长指数α=1.13±0.08,大气混浊指数β=0.57±0.14.受人为源排放的影响,空气较为混浊,且上空主要分布着城市-工业型气溶胶.AOD日变幅随波长增加而减小,且AOD在短波段变化比长波段变化更为明显.重庆市城区上空AOD(λ=500 nm)日变化大致分为5种类型:平缓型、上升型、下降型、凸型和凹型,其中,平缓型出现频率最低,凸型和上升型是主要变化类型.四季中AOD日变化特征在夏秋季较一致,冬春季较一致.AOD(λ=500 nm)全年主要呈现"V"字形特征,年均值为1.25±0.29,最低值出现在夏季,最高值出现在冬季;α全年变化范围在0.90~1.23,同AOD整体上呈负相关趋势,最低值出现在春季,最高值出现在夏季,且四季α值较大,表征气溶胶主控模态为细粒子,受人为源的排放影响较大.  相似文献   

18.
地基遥感监测杭州地区气溶胶光学特性及大气环境变化   总被引:2,自引:1,他引:1  
利用2006年4月—2007年4月杭州地区4个监测点 CE-318太阳分光光度计的实测数据, 精确反演了杭州地区实测日期气溶胶的光学特性,并分析了其时空分布特征.结果表明:随着大气气溶胶混浊度系数(β)的增加,波长指数(α)减小.大气气溶胶光学厚度(AOD)与β存在较好的线性相关(相关系数达0.90),且较为一致地反映了该地区春季大气污染严重,夏季相对清洁,晚秋初冬为过渡反弹期的季节变化特点;但在空间上二者又表现出不同的细节特征,主要是与气象参数和下垫面特征紧密相关.分析近地面ρ(PM10)的实测数据可知, AOD与ρ(PM10)的日均值具有很好的相关性,相关系数为 0.74,明显高于二者小时均值的相关系数.   相似文献   

19.
杭州市大气气溶胶光学厚度研究   总被引:1,自引:0,他引:1       下载免费PDF全文
利用2011~2012年杭州国家基准气候站内太阳光度计(CE-318)观测资料,分析杭州市气溶胶光学厚度(AOD)和Angstrom波长指数(α)的变化特征.结果表明,2011~2012年杭州市AOD500nm年平均值为0.86?0.47,α440~870nm年平均值为1.25?0.23.AOD季节变化特征不明显,主要与该地区天气形势以及内外源影响密切相关.α季节变化差异也不大,受北方带来的沙尘气溶胶影响,春季α略偏低.AOD呈现单峰型日变化特征,峰值出现在15:00,谷值出现在06:00,午后AOD明显升高主要与强烈的太阳辐射引起光化学反应产生的二次气溶胶以及近地层气溶胶在湍流输送作用下向城市上空扩散有关.从频率分布来看,AOD和α频率分布均呈现明显的单峰特征,并且较好的符合对数正态分布.α在高值区间1.1~1.7出现频率为77.8%,表明杭州市以平均半径较小的气溶胶粒子为主,属于城市-工业型气溶胶类型.杭州市AOD的高值(1.0)主要表现为粗模态气溶胶以及细模态气溶胶的吸湿增长.  相似文献   

20.
以海西区沿海城市为研究对象,重点分析了厦门地区2017年春季大气颗粒物污染过程中边界层要素演变及颗粒物水平和垂直分布特征,并利用地面观测数据、气溶胶激光雷达、卫星遥感分析等多源观测资料,探讨了3月1—2日颗粒物污染过程.研究表明,海西区颗粒物污染过程中,暖区条件下静稳小风和高温高湿条件有利于局地细颗粒物的吸湿增长,细颗粒物占比较高,而在受冷锋南下影响下东北大风和高湿条件下,粗颗粒占比较高;海西区沿海各城市的细颗粒污染趋势基本一致,而粗颗粒污染峰值在沿海城市由北向南依次出现,表现出显著的向南传输的特征;海西区细颗粒污染主要集中在近地面层,受人为源排放累积影响,粗颗粒则是由外源输入,并沉降至近地面附近;冷空气南下过程中,在由锋前暖区的静稳条件向冷锋过境转变时,气溶胶污染由局地累积向区域传输转变,颗粒物尺度也从细颗粒物转变为粗颗粒物.海西区空气总体较为清洁,在污染相对较小条件下,颗粒物污染是通过多来源、多尺度的污染物造成的,是受细颗粒局地源产生和输送及外源粗颗粒物的输入和沉降共同影响的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号