首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
MODIS气溶胶光学厚度在临安大气颗粒物监测中的应用   总被引:5,自引:0,他引:5  
基于大气辐射传输理论的研究表明,AOD(气溶胶光学厚度)与地面PM(颗粒物)浓度(以ρ计)呈正相关. 利用2006—2010年MODIS晴空AOD数据产品与临安区域大气本底站监测的ρ(PM10)进行相关分析发现,二者的R(相关系数)为0.431,直接相关程度较低. 根据AOD和气象能见度间的关系,获得了不同季节临安地区的气溶胶平均垂直标高,利用该垂直标高和RH(相对湿度)分别订正AOD和ρ(PM10)后,二者的相关性(R为0.576) 明显提高.冬季AOD和ρ(PM10)的相关性最好,R为0.765;夏、春季次之,R分别为0.643和0.608;秋季最低,为0.442. 经过对5年资料的对比分析,证实了MODIS气溶胶光学厚度经垂直标高和RH订正后,可用于临安地区地面空气污染的监测.   相似文献   

2.
为探索卫星遥感监测大气ρ(PM2.5)业务化方法,以北京为例,利用2013年MODIS卫星资料和北京35个地面自动监测站(下称自动站)的实时观测数据,以目前国内外应用最广泛的3种卫星反演大气气溶胶的方法——AOD(气溶胶光学厚度)、Kdrya,0(气溶胶干消光系数)和Ra(气溶胶表观反照率)反演地面ρ(PM2.5)的方法(分别称为AOD法、Kdrya,0法和Ra法)为基础,结合地面ρ(PM2.5)实测数据,建立了气溶胶反演参数与ρ(PM2.5)统计关系,进一步测算了全市区域ρ(PM2.5)的分布情况.结果表明:3种方法都具有较高的反演精度,其获取的全年ρ(PM2.5)与地面实测数据的相关系数分别达到0.80、0.81和0.85,其中Ra法结果精度最高.从季节来看,Ra法在除夏季外的其他季节与地面监测数据相关系数都在0.70以上,优于其他2种方法.建议在春、秋、冬三季以Ra法,夏季以AOD法或Kdrya,0法为基础进行北京PM2.5业务化遥感监测.基于Ra法探讨了在2013年11月20—23日区域性大气重污染过程中北京PM2.5区域分布特征和变化过程,卫星反演结果相对误差低于20%,直观地反映了区域大气颗粒物污染的时空分布规律.研究显示,三者都可以用来反演北京地区ρ(PM2.5),其中Ra法最简便易行,尤其适用于业务化遥感监测.   相似文献   

3.
为了反演高分辨率的PM2.5近地面浓度,利用WRF(中尺度气象模型)模拟的大气相对湿度、风速、边界层高度等气象因子对AOD(气溶胶光学厚度)分别进行订正,以逐步提高AOD与近地面ρ(PM2.5)间的相关性;分析不同反演模型的统计学特征,优选反演模型,并利用最优模型反演中国中东部地区2014年年均ρ(PM2.5)的空间分布特征.结果表明:AOD经相对湿度订正后,其与近地面ρ(PM2.5)的相关性显著提高,相关系数达到0.77;同时引入相对湿度、风速2个气象因子,AOD与近地面ρ(PM2.5)的相关系数升至0.79(n=145,P<0.01);同时引入相对湿度、风速和边界层高度3个气象因子,AOD与近地面ρ(PM2.5)的相关系数进一步升至0.80(n=145,P<0.01).模型反演表明,研究区域内ρ(PM2.5)年均值大于35 μg/m3的面积高达334.49×104 km2,占研究区域面积的83.2%,并且高污染地区与人口密度高度重合.分析表明,北京、天津、河北、山东及河南等典型重污染省、直辖市分别有96.30%、100%、78.16%、98.86%、100%面积的ρ(PM2.5)超标,分别约有99.97%、100%、96.41%、98.88%、100%人口生活在空气质量超标地区.   相似文献   

4.
京津冀地区大气PM2.5污染严重.为揭示区域PM2.5时空分布规律,使用2013-2014年河北省地面站点PM2.5监测数据、MODIS AOD(气溶胶光学厚度)遥感数据、地面气象站点数据和土地利用调查数据,基于线性混合效应模型(LME),建立了ρ(PM2.5)时空变化与AOD因子、气象因子、土地利用因子之间的关系模型.采用十折交叉验证法对模型精度进行检验,并利用计算得到的校正因子[全部实测的ρ(PM2.5)年均值除以参与建模的所有实测ρ(PM2.5)年均值]纠正因AOD非随机性缺值导致的抽样偏差.结果表明:①河北省区域模拟精度R2(决定系数)为0.85,经交叉验证后R2为0.77,RMSE(均方根误差)和RPE(相对预测误差)分别为18.28 μg/m3和28.68%.②ρ(PM2.5)年均值模拟结果的校正因子范围为1.24~2.05,校正后的研究区ρ(PM2.5)年均值为89.84 μg/m3,与实际监测数据相近.③ρ(PM2.5)空间分布呈平原高、山区低,平原地区西南高、东北低的趋势.④ρ(PM2.5)与AOD、温度、相对湿度呈正相关,与风速、大气能见度呈负相关.研究显示,线性混合效应模型能有效对ρ(PM2.5)进行时空变化模拟,并实现对非地面监测地区ρ(PM2.5)时空变化的预测,恰当的预测因子组合和模型校正有助于模型预测精度的提升.   相似文献   

5.
基于AGRI数据反演区域PM2.5浓度.利用6S辐射传输模式,分析气溶胶光学厚度AOD与能见度相关性,建立AOD、气溶胶标高和能见度模型;通过对大气柱AOD垂直订正,构建AOD与近地面PM2.5浓度关系的物理模型;同时引入了地面相对湿度数据.结果表明,FY-4A遥感的PM2.5浓度与地面空气质量监测站的PM2.5浓度变化趋势一致,算法计算效率较高.利用AGRI估算近地面PM2.5与地面观测网对比分析,其结果不亚于于MODIS以及VIIRS的对比结果,AGRI估算的均方根误差和相对误差较小.从季节分析,冬季近地面颗粒物浓度是影响整层大气柱AOD值的主要因素,AGRI反演结果精度较好,夏季相关系数相对于其他三个季节偏低.总体而言,采用FY-4A/AGRI反演颗粒物浓度精度可靠,有利于实现区域气溶胶全天候实时监测.  相似文献   

6.
天津冬季雾霾天气下颗粒物质量浓度分布与光学特性   总被引:1,自引:0,他引:1  
年1—2月连续在线观测天津ρ(PM2.5)、ρ(PM10)、大气能见度、σsp(气溶胶散射系数)、σap(气溶胶吸收系数)和AOD(大气光学厚度),结合气象资料,分析天津城区雾霾天气下的颗粒物质量浓度分布与光学特性. 结果表明:在为期52d的观测期间,发生雾日8d、轻雾日1d、霾日29d,雾霾日占观测时长的73%;霾日ρ(PM2.5)/ρ(PM10)为0.65,SSA(单次散射反照率)为0.95,MSE(气溶胶质量散射系数)为3.30m2/g,均高于非雾霾日,表明雾霾日下细粒子的散射作用是大气消光的主要贡献者;雾霾日的σsp和σap均高于非雾霾日,随着霾等级增强,σsp和σap逐渐增大,重度霾天气的σsp和σap与中度霾天气相当,分析高RH可能是造成能见度进一步降低的主要因素;雾霾天气下AOD500nm和波长指数均显著高于非雾霾天气,表明雾霾天气下气溶胶浓度远高于非雾霾天气,并且细粒子占主导地位.   相似文献   

7.
天津市PM10, PM2.5和PM1连续在线观测分析   总被引:9,自引:2,他引:7       下载免费PDF全文
利用2010年9月1日─11月30日在中国气象局天津大气边界层观测站采集的ρ(PM10),ρ(PM2.5)和ρ(PM1)数据,分析了观测期间可吸入颗粒物的统计特征,结合同期气象观测资料,分析了典型天气条件下ρ(PM10),ρ(PM2.5)和ρ(PM1)的日变化特征及与风速、风向的关系. 结果表明:观测期间,ρ(PM10)日均值有超过1/2的天数超过《国家环境空气质量标准》(GB 3095─1996)二级标准限值;ρ(PM2.5)有63 d超过美国国家环境保护局(US EPA)1997标准限值,超标率高达76.8%;不同天气条件下,ρ(PM10),ρ(PM2.5)和ρ(PM1)日变化特征明显,三者一般在大雾或扬沙/浮尘天气条件下出现高值,有降水过程时出现低值;可吸入颗粒物以粗粒子(PM2.5~10)和PM1为主,PM2.5~10,PM1~2.5和PM1主要分布在风速小于3 m/s,风向为225°~280°和70°~110°范围内;风速大于3 m/s时,ρ(PM2.5~10)和ρ(PM1~2.5)有所增加. ρ(PM10),ρ(PM2.5)和ρ(PM1)未出现周末效应,但存在明显的周内变化.   相似文献   

8.
苏州市气溶胶消光特性及其对灰霾特征的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究气溶胶消光特性对城市灰霾特征及形成的影响机制,采用2010年1月─2013年12月4 a的苏州市逐时散射系数、能见度、颗粒物质量浓度以及风速、风向、气温、气压、相对湿度等数据,对该市气溶胶散射系数、消光特性及影响因子进行了研究. 结果表明:苏州市气溶胶散射系数为(301.1±251.3)Mm-1,日变化呈双峰型,早高峰出现在07:00─08:00,晚高峰出现在20:00─21:00;其年内变化呈夏季低、冬季高. 气溶胶散射系数与ρ(PM2.5)的相关系数为0.77,高于与ρ(PM1)和ρ(PM10)的相关性,PM2.5散射效率为6.08 m2/g. 气溶胶散射系数受风速、风向等气象要素的影响:风速<4 m/s时,气溶胶散射系数下降迅速;风速在4~6 m/s时,气溶胶散射系数随风速下降缓慢. 苏州市气溶胶单次散射反照率平均值为0.84,散射消光比平均值为0.79,说明该地区气溶胶消光以散射性气溶胶为主. 气溶胶散射消光、气溶胶吸收消光、空气分子散射消光、NO2吸收消光分别占大气消光的82.33%、13.63%、2.72%和1.32%. 研究表明,对气溶胶散射消光贡献最大的非吸收性PM2.5是苏州市能见度下降、灰霾增加的最重要原因.   相似文献   

9.
袁丽梅  马芳芳  卞泽  秦凯 《环境科学》2023,44(11):5964-5974
整合2014~2017年全国PM1监测站点数据,基于时间序列统计方法和空间系统聚类方法揭示了PM1浓度的时空分布特征与演变规律.并结合MODIS遥感卫星气溶胶光学厚度(AOD)数据,分析了PM1-AOD相关性的时空特征.结果显示,2014~2017年中国年均PM1浓度逐年下降,四季PM1浓度呈现“冬高夏低”的变化特征,月均PM1浓度呈“U”型变化特征,在节假日前后PM1浓度呈现“M”型变化特征,在一周中星期一和星期五PM1浓度为高值点,星期日为低值点.基于空间系统聚类法将全国年均PM1浓度分为7类区,全国PM1浓度整体呈现“东高西低,北高南低”的空间分布格局,年均ρ(PM1)值在华中地区最高(54.59μg·m-3),新青藏地区年均最低(11.37μg·m-3).PM1-AOD关系整...  相似文献   

10.
毛敏娟  杨续超 《环境科学研究》2015,28(12):1823-1832
利用遥感夜间灯光数据,结合地面观测资料,以浙江省为例,研究了城市发展与气候条件、大气污染物质量浓度及霾天气之间的关系. 结果表明:当前粗放型城市发展引起的干岛、热岛、低湿、低能见度等气候效应,使1980—2010年杭州年均气温的线性增长率达到0.70 ℃/10 a、风速下降率为0.11 m/(s·10 a)、能见度下降率为1.40 km/10 a,分别高于临安的0.41 ℃/10 a、0.06 m/(s·10 a)、0.92 km/10 a. 城市发展改变大气污染物组成,对于城市化水平较高的杭州,大气中ρ(PM2.5)/ρ(PM10)的月均值介于0.52~0.69之间,明显高于临安的0.45~0.59,NO2、SO2等二次气溶胶前体物的质量浓度也明显高于临安. 浙江省大气中ρ(NO2)较ρ(SO2)高,其中临安大气中ρ(NO2)年均值较ρ(SO2)高出5.8 μg/m3,杭州的则高出21.0 μg/m3,同时杭州大气中ρ(NO2)与ρ(SO2)年均值的比值(1.70)也高于临安(1.57). 城市发展引起的气候效应及大气污染物组成变化可以解释浙江省霾日数与夜间灯光在空间分布和年代际长期变化趋势上的高度一致性. 在空间上,城市发展快、夜间灯光密集的浙北、浙江沿海、金衢盆地也是霾天气高发地区,而1960—2010年年霾日数出现的2个大跃变与改革开放及2000年后城市快速发展阶段相吻合,年霾日数与夜间灯光总灰度值之间的相关系数达到0.99. 研究显示,粗放型城市化发展是当前浙江省霾污染加剧的根本原因.   相似文献   

11.
为了解春节期间烟花爆竹燃放对北京大气污染物和PM2.5中水溶性无机离子贡献的影响,采用浓度特征对比、相关性分析等方法,对2011年2月1日-3月1日期间的PM10、气态污染物、PM2.5中水溶性无机离子浓度等在线数据进行了分析.结果表明:烟花爆竹的燃放会在短时间内加重PM10颗粒物污染,集中燃放期(含除夕、春节、正月初五、元宵节)ρ(PM10)和φ(SO2)(分别为232μg/m3和40.2×10-9)是非集中燃放期(63μg/m3和16.0×10-9)的3.7和2.5倍,燃放烟花爆竹对ρ(PM10)和φ(SO2)的小时贡献率分别达到56.8%和35.6%;但对φ(CO)、φ(NO)、φ(NO2)无显著影响.而观测期间由其他因素导致的污染期ρ(PM10)和各气态污染物小时体积分数有所增加,分别是非集中燃放期的3.0~8.3倍.燃放烟花爆竹对PM2.5中ρ(Mg2+)、ρ(K+)、ρ(Cl-)的影响最大,分别为非集中燃放期的65.0、31.6、6.9倍,贡献率分别为88.6%、87.2%、65.8%. ρ(Mg2+)、ρ(K+)与ρ(Cl-)在集中燃放期表现出较高的相关性(R>0.9).污染期ρ(SO42-)、ρ(NO3-)、ρ(NH4+)明显升高,分别为非集中燃放期的3.8、16.4、8.3倍,同时高于集中燃放期(分别为2.7、2.5、2.1倍).集中燃放期PM2.5中主要以NH4HSO4、NH4NO3、KNO3、KCl、NH4Cl、MgCl2等形式存在.集中燃放期硫氧化物转化率(SOR)高于非集中燃放期和污染期,而氮氧化物转化率(NOR)则是污染期最高.研究显示,燃放烟花爆竹对ρ(PM10)及PM2.5中ρ(Mg2+)、ρ(K+)、ρ(Cl-)影响最大,污染期各离子浓度均有大幅升高,NOR在污染期的高值是导致ρ(NO3-)升高的重要原因.   相似文献   

12.
福建省沿海地区春季一次近地层O3超标成因分析   总被引:1,自引:0,他引:1       下载免费PDF全文
福建省沿海地区春季ρ(O3)较高且超标天数较多,为研究春季ρ(O3)超标的天气学成因,选取2017年4月26日-5月1日O3污染过程,利用统计对比和聚类分析方法,将全过程分成污染前、污染维持和污染后3个阶段,再将污染维持阶段分为4个区,利用ρ(O3)和ρ(PM2.5)小时均值资料,结合天气形势和气象要素场变化,分析此次O3污染的主要特点.结果表明:①此次O3污染与天气形势关系密切,在冷高压(4月28-29日)控制下,光化学反应条件有利,太阳辐射强、日照时间超过11 h,08:00起ρ(O3)上升速率为15~20 μg/(m3·h),ρ(O3)最大8 h滑动平均值[简称"ρ(O3)-max-8 h"]超过GB 3095-2012《环境空气质量标准》二级标准限值,但大气扩散条件好,ρ(PM2.5)日均值未超过一级标准限值,ρ(O3)超标原因为光化学反应所致,并且ρ(O3)分布有明显的日变化规律.②在锋前暖区(4月26日08:00-16:00)及变性冷高压(4月30日-5月1日)控制下,光化学反应剧烈,08:00起ρ(O3)上升速率为25~35 μg/(m3·h),天气静稳且大气扩散条件差,本地生成的O3在近地层累积效应明显,4月30日ρ(O3)小时均值和ρ(O3)-max-8 h达到过程峰值,ρ(PM2.5)日均值超过GB 3095-2012二级标准限值,ρ(O3)-max-8 h超过三级标准限值,空气质量达中度污染,ρ(O3)超标原因为光化学反应加本地累积所致,并且ρ(O3)分布也有明显的日变化规律.③受强冷空气影响,4月26日20:00-24:00福建省沿海地区的6个城市ρ(O3)不降反升,22:00-24:00 ρ(O3)8 h滑动平均值陆续达到一天中的最高值;4月27日ρ(O3)维持在70~140 μg/m3之间,ρ(O3)分布没有明显的日变化规律.研究显示,导致福建省沿海地区春季O3污染天气的成因是多种因素共同作用的结果.   相似文献   

13.
石家庄市采暖前后大气颗粒物及其碳组分特征   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究石家庄市大气颗粒物、碳组分特征和污染来源,采集2016年11月1日—12月31日石家庄市大气颗粒物(PM10、PM2.5和PM1)样品,分析采暖前后PM10、PM2.5和PM1及其中OC(有机碳)、EC(元素碳)和WSOC(水溶性有机碳)浓度水平,计算颗粒物与碳组分间相关性,进行OC/EC(质量浓度之比,下同)特征比值法和8个碳组分(OC1、OC2、OC3、OC4、OPC、EC1、EC2和EC3)研究.结果表明:①采暖后ρ(PM10)和ρ(PM2.5)比采暖前分别增加了26.4%和32.1%,而采暖后ρ(PM1)比采暖前降低了12.2%.采样期间ρ(PM10)与ρ(PM2.5)显著相关,而ρ(PM1)分别与ρ(PM2.5)和ρ(PM10)相关性差.采暖后散煤燃烧造成ρ(PM10)和ρ(PM2.5)增加,区域机动车限行和工业限产/停产导致ρ(PM1)降低.②Pearson相关系数计算可知,ρ(OC)与ρ(EC)强相关;ρ(PM10)和ρ(PM2.5)分别与ρ(OC)和ρ(WSOC)强相关,而ρ(PM1)分别与ρ(OC)和ρ(WSOC)中等相关;ρ(PM10)和ρ(PM2.5)分别与ρ(EC)弱相关,ρ(PM1)与ρ(EC)中等相关.③采暖后PM10、PM2.5和PM1中ρ(OC)比采暖前分别增加了215.1%、97.2%和18.5%;采暖后PM10和PM2.5中ρ(EC)比采暖前分别增加了65.2%和5.3%,而采暖后PM1中ρ(EC)比采暖前降低了10.9%.集中供热和散煤燃烧排放了大量OC;PM10和PM2.5中EC主要来源于散煤燃烧,PM1中EC主要来源于工业排放和机动车尾气.④采暖前PM10、PM2.5和PM1中OC/EC平均值分别为4.5、4.5和4.3;采暖后PM10和PM2.5中OC/EC平均值分别为9.8和9.7,而PM1中OC/EC平均值为7.4.采暖前后SOC/OC(质量浓度之比,下同)平均值的范围为0.36~0.65,石家庄市冬季大气中SOC污染严重;⑤8个碳组分分析发现,石家庄市机动车限行导致PM1中ρ(EC1)降低,而采暖后集中供暖和散煤燃烧的增加,导致ρ(OC2)明显增加.研究显示,大气颗粒物中碳组分采暖前主要来源于机动车尾气,而采暖后主要来源于燃煤燃烧,尤其是散煤燃烧.   相似文献   

14.
卫星反演的气溶胶光学厚度(AOD)具有广泛的空间覆盖度和相对较高的时空分辨率. 基于AOD与PM2.5的相关关系来估算PM2.5浓度已成为监测近地面PM2.5的有效途径,其估算结果较可靠,能够为治理PM2.5污染提供数据基础和科学依据. 从反演AOD数据集和PM2.5浓度估算模型2个方面进行梳理归纳,从卫星轨道运行类型角度分析各类传感器的产品特征,并对缺失AOD的插补方法进行分类评价;对PM2.5浓度的估算模型进行比较分析,指出不同模型的优缺点和适应性. 结果表明:①各类卫星传感器均具有特定功能及优缺点,其中地球同步轨道(GEO)卫星的快速发展,使其在估算PM2.5浓度的应用上越来越广泛. ②插补后的AOD比AOD初始产品具有更连续的时空分布和更高的准确性,基于模型的多变量估算不仅可以实现数据的全面覆盖,还可以获得更好的估算精度. ③组合模型成为估算PM2.5浓度的重要方法,机器学习模型的加入能够有效提高PM2.5浓度的估算精度. 研究显示,利用AOD估算近地面PM2.5浓度不仅弥补了地面PM2.5监测的空间不连续性,更有助于解析PM2.5浓度的时空分布特征及污染来源.   相似文献   

15.
广州市交通干线附近细颗粒污染特征   总被引:3,自引:2,他引:1  
利用中山大学大气环境监测平台数据,对广州市交通干线附近的ρ(PM2.5)和ρ(PM1)进行了统计学分析,以研究交通干线附近细颗粒污染特征及变化规律. 结果表明:2008—2012年广州市PM2.5超标严重,但ρ(PM2.5)有所下降. 受季节性污染源及气象因素影响,广州市夏季ρ(PM2.5)平均值为42μg/m3,明显低于春、秋、冬三季. ρ(PM2.5)在工作日与周末差异明显,周末明显高于工作日,而ρ(PM1)在工作日与周末差异不明显. ρ(PM2.5)与ρ(PM1)日变化趋势基本一致,整体上呈白天低、夜晚高,上午低、下午高的特征. ρ(PM2.5)日变化呈单峰,19:00左右达到最大值(53μg/m3);而ρ(PM1)呈双峰变化,在20:00左右达到高峰值(43μg/m3),上午09:00左右也有一小峰值(37μg/m3). ρ(PM2.5)和ρ(PM1)的相关性较好,R(相关系数)为0.94,PM1是PM2.5的主要构成颗粒,所占比重平均值为0.65. ρ(PM2.5)和ρ(PM1)均与交通流量存在相关性,在白天和夜晚变化趋势相一致,但交通流量白天与ρ(PM2.5)更为密切,夜晚则与ρ(PM1)更为密切.   相似文献   

16.
乌鲁木齐市是“丝绸之路经济带”关键节点城市,为了解乌鲁木齐市2015—2018年空气污染状况,利用2015年1月1日—2018年12月23日乌鲁木齐市7个国控空气质量监测站的ρ(PM2.5)、ρ(PM10)监测数据,基于ArcGIS空间分析平台,分析乌鲁木齐市PM2.5、PM10的时空分布特征.结果表明:ρ(PM2.5)从2015年(66.60 μg/m3)到2016年(76.93 μg/m3)呈上升趋势,在2016—2018年呈单一下降趋势;ρ(PM10)从2015年(132.74 μg/m3)到2016年(125.93 μg/m3)呈下降趋势,在2016—2018年呈单一上升趋势.2015—2018年工业活动集中的乌鲁木齐市边缘各区的ρ(PM2.5)、ρ(PM10)平均值比城市中心(商业区、居民区)分别高11.28、7.17 μg/m3,说明工业集中地区的大气环境质量受污染影响明显.此外,2015—2018年乌鲁木齐市大气污染呈季节性和北高南低的区域性分布特征.气象因子分析表明,ρ(PM2.5)、ρ(PM10)均与相对湿度呈正相关,与降雨量、风速等气象因素呈负相关.2015—2018年,乌鲁木齐市大气中ρ(PM2.5)/ρ(PM10)呈先增后降的趋势,冬季以PM2.5污染为主,其他季节以PM10污染为主.研究显示,2015—2018年乌鲁木齐市空气污染状况变化与地形、气象条件、城市化建设均有一定的关系.   相似文献   

17.
为研究新型冠状病毒肺炎(COVID-19)疫情防控政策实施对上海市大气污染物质量浓度的影响,利用上海市内环某高层顶楼微环境平台观测了政策实施前10 d(2020-01-14—23)和实施后20 d(2020-01-24—02-12)的PM2.5和PM10质量浓度及气象要素(温度、相对湿度、风向、风速、大气压及降雨),结合2019年同期观测数据和杨浦四漂空气质量监测点的气态污染物逐时数据,采用描述性统计、合成分析、拉格朗日粒子扩散模式和Spearman相关系数方法,分析了政策实施前、后大气污染物特征及其影响因素。结果表明:1)污染物浓度变化方面。政策实施后,ρ(PM2.5)和ρ(PM10)和ρ(NO2)均明显降低,ρ(PM2.5)和ρ(PM10)分别由61.4,102.4 μg/m3降至38.1,63.5 μg/m3,降幅均为38.0%,ρ(NO2)由57.3 μg/m3降至27.0 μg/m3,降幅达到52.9%,而ρ(O3)由47.6 μg/m3增至69.5 μg/m3。ρ(PM2.5)和ρ(PM10)日变化特征由实施前的双峰双谷型变为单谷型。2)气象因素影响方面。上海地区南风异常减弱了冬季风强度,对流层中层正距平异常抑制了对流活动的发展,易导致大气污染物在近地面的汇聚。ρ(PM2.5)和ρ(PM10)与相对湿度呈负相关,风速对ρ(PM2.5)和ρ(PM10)的影响与风向有关。3)外源输入影响方面。长三角城市群及山东省、河南省等周边区域对上海市ρ(PM2.5)和ρ(PM10)贡献显著。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号