首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 218 毫秒
1.
采用美国国家航空航天局(NASA)的CALIPSO星载激光雷达L1监测数据,通过分析532 nm总后向系数、体积退偏比和色比,对重庆地区对流层中低空霾的气溶胶散射强度、粒子规则性和相对大小的垂直分布及其季节变化进行了研究。结果表明:对于4 km以下的对流层中低空霾,大气气溶胶的散射能力大致随着高度增加而减弱,其中1~2 km的气溶胶散射能力最强,0~2 km规则、大颗粒气溶胶所占比例最大,3~4 km不规则、细颗粒气溶胶所占比例最大。春季重庆地区的不规则、大颗粒气溶胶所占比例大,夏季以规则气溶胶为主,气溶胶散射能力较弱,秋季的规则、细粒子气溶胶相对较多,冬季则以细颗粒气溶胶为主,气溶胶散射能力较强。分析2008年4月8日个例发现,气溶胶粒子大量聚集在1.6~3.4 km范围内,2~3 km的大气气溶胶散射能力最强,0~2 km以规则、大颗粒气溶胶占主导,2~4km的不规则、细颗粒气溶胶所占比例最大。  相似文献   

2.
上海不同污染等级下气溶胶光学特性垂直分布特征   总被引:2,自引:0,他引:2  
气溶胶光学特性是可吸入颗粒物的重要表征指标之一,而针对不同空气污染等级的气溶胶光学特性的垂直分布特征当前研究较少.本文利用上海地区(30°E,120°N~33°E,123°N)2006年6月至2011年12月的星载云-气溶胶激光雷达(Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations,CALIOPSO)资料分析不同季节气溶胶光学特性垂直分布的基础上,深入探讨了不同空气污染等级下的气溶胶垂直(0~6km)分布特征.结果表明:上海地区气溶胶粒子多聚集在0~2 km的高度上且具有明显的季节特征,冬春季节气溶胶粒子后向散射系数集中于0.005以上,颗粒物散射能力较大,其中冬季偏振比范围为0.15~0.25,色比范围为0.57~0.77,主要为不规则的小颗粒;夏季气溶胶粒子的偏振比(0.03~0.09)较小,气溶胶颗粒物较为规则;秋季各种形态的颗粒混合程度较高,其偏振比的范围为0.12~0.23,色比范围为0.58~0.90;不同污染等级下的气溶胶光学特性在垂直分布上具有明显的差异,在重污染时期散射能力大不规则颗粒物增多,垂直差异不明显,污染高度较高;轻度污染以规则颗粒物为主,颗粒物散射能力较小,表现出低层以粗颗粒为主,高层以细颗粒物为主的特征;轻微污染和无污染的气溶胶垂直分布类似,颗粒物散射能力较小.  相似文献   

3.
采用美国国家航空航天局的云-气溶胶激光雷达红外开拓者卫星搭载的正交极化云-气溶胶激光雷达数据产品,包括消光系数、光学厚度、总后向散射系数、体积退偏比和色比,结合地面监测的颗粒物质量浓度,分析上海大气相对湿度小于80%霾发生期间气溶胶光学属性的垂直分布特征和颗粒物质量浓度变化,并与非霾期间进行比较.结果表明:霾期间532 nm和1064 nm消光系数在垂直高度上(海拔:0~10 km)均大于非霾期间,且大多数霾期间颗粒物在整层大气的光学厚度大于非霾期间.在近地面,霾期间大气颗粒物散射能力大于非霾期间.各垂直高度层,霾与非霾期间小粒径和规则气溶胶占主导地位.霾期间近地面大粒径颗粒物在霾期间所占比例大于非霾期间;2.0~4.0 km高度层,霾和非霾期间细颗粒所占比例接近;4.0~10.0 km高度层,霾期间细颗粒气溶胶所占比例大于非霾期间.PM1、PM2.5和PM10质量浓度在霾期间均大于非霾期间,且霾期间细颗粒物所占比例明显增加.颗粒物质量浓度和比值PM1/PM2.5和PM2.5/PM10分别随霾污染程度的加重而升高.冬季颗粒物质量浓度最高,主要来自细颗粒物的贡献;而春季PM10质量浓度高于其它季节.  相似文献   

4.
西安泾河夏季黑碳气溶胶及其吸收特性的观测研究   总被引:4,自引:0,他引:4       下载免费PDF全文
为研究西安泾河夏季黑碳气溶胶及其吸收特性,利用2011年夏季西安远郊泾河大气成分站观测的黑碳气溶胶浓度、颗粒物质量浓度、探空资料、地面气象资料,计算边界层顶高度、气溶胶吸收系数、大气消光系数,导出单次散射反照率,并对其进行分析讨论.结果表明:西安夏季黑碳气溶胶浓度为6.07μg/m3;黑碳气溶胶占颗粒物质量浓度PM1.0比值为21.9%,黑碳气溶胶与颗粒物质量浓度PM1.0、PM2.5、PM10相关系数分别为0.69、0.85、0.91;黑碳气溶胶浓度受城市边界层顶高度影响,风向、风速对泾河黑碳气溶胶的堆积输送有不同作用;气溶胶吸收系数和大气消光系数日变化显著,气溶胶吸收系数占大气消光系数比值范围在12%~30%;季单次散射反照率平均值为0.76,变化范围在0.70~0.84.  相似文献   

5.
环上海地区干霾气溶胶垂直分布的季节变化特征   总被引:11,自引:5,他引:6  
采用2007年1月~2010年11月美国国家航空航天局(NASA)的CALIPSO星载激光雷达L1产品,通过532 nm总后向散射系数、体积退偏比和色比,分析了环上海地区干霾期间气溶胶光学和微物理属性的垂直分布特征.结果表明,干霾时各高度层中,0~2.0 km高度层的大气散射能力最强,且主要是规则气溶胶;2.0~8.0 km范围内各高度层大气散射强度、气溶胶规则性较接近;8.0~10.0 km高度层的大气散射能力最弱,且不规则气溶胶所占比例在各高度层中最大;细粒子气溶胶在各高度层均占主导地位,其中2.0~8.0 km范围内各高度层的细粒子气溶胶所占比例较大.春季大颗粒、不规则气溶胶所占比例大;夏季细粒子、规则气溶胶所占比例大.分析2007年5月7日个例发现,气溶胶粒子主要聚集在0~1.5 km范围内,在4.0~5.5 km范围内局部聚集;通过HYSPLIT轨迹模式分析表明,除本地排放的气溶胶粒子外,源于蒙古、中国西北和北部远程输送的沙尘也对霾产生了影响.  相似文献   

6.
2018年中国长江三角洲地区气溶胶的垂直分布特征   总被引:1,自引:1,他引:0  
沈吉  曹念文 《环境科学》2019,40(11):4743-4754
利用主动式遥感卫星云-气溶胶激光雷达和红外探测者卫星观测(CALIPSO)提供的激光雷达资料,重点分析了2017-12~2018-11中国长江三角洲地区对流层大气中532 nm气溶胶消光系数,气溶胶退偏比,气溶胶色比以及各类型气溶胶的时空变化特征.对气溶胶的光学参数随高度变化的研究表明,与对流层高空相比,一般在对流层低空中气溶胶消光能力更强,气溶胶粒子更规则,气溶胶粒径更小.对气溶胶的光学参数随季节变化的研究表明,与冬春季相比,一般夏秋季在对流层高空中气溶胶消光能力更强,在2 km以下气溶胶粒子更规则,在对流层高空中气溶胶粒径的范围更大.长江三角洲地区全年中污染沙尘气溶胶出现的频率最高,为37. 481 6%,夏秋季烟尘、污染大陆与洁净海洋气溶胶出现的频率比冬春季高,而夏秋季沙漠沙尘气溶胶出现的频率相对较低.  相似文献   

7.
北极夏季大气气溶胶单颗粒研究   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究北极地区大气气溶胶颗粒的物理化学特性,于2013年8月8~12日环Svalbard岛收集大气气溶胶样品,利用带能谱的透射电子显微镜(TEM-EDS)共分析2530个单颗粒,并获得颗粒物的形貌特征和化学组成.结果表明,北极地区颗粒物主要表现为5种类型,分别为海盐颗粒、富S颗粒、富Fe颗粒、含碳颗粒和矿物颗粒.后向气流轨迹显示,采样期间大气污染物主要来自于北极点周边的海洋上空和附近格陵兰岛地区.来自海洋上空的大气中主要包含海盐颗粒,所占数量比例为54.7%;经过陆地的大气样品中95.4%为矿物颗粒.利用时间密度因子法估算出北极地区PM2.5质量浓度范围为0.55~0.72mg/m3.  相似文献   

8.
华北地区霾期间对流层中低层气溶胶垂直分布   总被引:3,自引:1,他引:2  
基于美国宇航局(NASA)的CALIPSO星载激光雷达监测数据,通过分析总后向散射系数、体积退偏比和色比,对华北地区2007年1月1日至2008年12月31日期间出现灰霾时对流层中低层气溶胶光学和微物理特性的垂直分布进行了研究.结果表明:灰霾期间对于4 km以下的对流层中低层大气总体来说,非球形气溶胶出现频率略高于球形气溶胶,小粒径气溶胶出现频率高于大粒径气溶胶.在4 km以下的大气中,气溶胶出现频率在1 ~2 km高度范围内最高,在2~3 km高度范围内最低;球形气溶胶在2~3 km高度范围内出现频率最高,非球形气溶胶出现频率在1 ~2 km高度范围内最高;大粒径气溶胶在l~2 km高度范围内出现频率最高,小粒径气溶胶在0~1 km高度范围内出现频率最高.  相似文献   

9.
北京雾霾天气期间气溶胶光学特性   总被引:28,自引:11,他引:17  
为了解北京地区雾霾天气条件下大气气溶胶的光学特性,利用2002~2008年AERONET资料分析了雾霾天气期间气溶胶光学厚度、Angstrom波长指数、粒子尺度谱分布和单次散射反照率等气溶胶光学特性参数.结果表明,北京地区雾霾天气期间气溶胶光学厚度表现出较高值,且随波长增大而减小,440 nm时平均气溶胶光学厚度达到1.34.Angstrom波长指数在雾霾天气时也表现出较高值,平均值达到1.11;其中高于0.9的波长指数出现频率达到94%,说明北京雾霾天气期间气溶胶粒子主要以细粒子为主.气溶胶体积尺度谱分布表现出双峰型结构,细模态的平均峰值半径随光学厚度增大而增大,而粗模态的平均峰值半径却随光学厚度增大表现出减小趋势;气溶胶粒子尺度谱中的主模态峰与光学厚度有关.雾霾天气期间平均单次散射反照率达到0.89,且随光学厚度增大表现出依次增大趋势,但对波长变化表现不敏感.  相似文献   

10.
石家庄春季大气气溶胶的散射特征   总被引:3,自引:0,他引:3       下载免费PDF全文
利用2010年5月积分浊度仪、PCASP-X2和能见度仪的观测资料,分析了石家庄大气气溶胶的散射特征及其与气溶胶粒子浓度、能见度、气象条件的关系.结果表明,观测期间,450,550,700nm 3个波段的气溶胶散射系数平均值±标准差分别为(257±293),(199±237)和(143±173)Mm-1,散射系数的变化很大,但气溶胶微物理特征相对比较稳定.散射系数日变化呈3峰分布,峰值出现在8:00、13:00和0:00.以550nm波长为例,气溶胶散射系数的变化范围为144~308Mm-1,夜间散射系数大于白天,非晴天散射系数平均值(524.9Mm-1)是晴天散射系数(112.3Mm-1)的4.7倍.气溶胶3个波段后向散射比均大于0.15,说明石家庄细粒子污染比较严重.散射系数和体积浓度成正比,但由于局地气象条件和污染源的影响,有气溶胶体积浓度变大,散射系数变化不大的情况出现.气溶胶散射系数和能见度呈负相关;根据Koschmieder公式计算得到的能见度,能较好反映实际观测情况.当大气相对湿度较高时,气溶胶散射系数随湿度增大呈现两种不同的变化趋势,即一部分气溶胶的散射系数有明显的增大,而另一部分则随着相对湿度的增加并未增大,反而比干气溶胶散射系数要小.局地风场也会影响气溶胶散射特性.  相似文献   

11.
The vertical distribution of aerosols was directly observed under various atmospheric conditions in the free troposphere using surface micro-pulse lidar (MPL4) at the Zhangye Station (39.08°N, 100.27°E) in western China in the spring of 2008. The study shows that the aerosol distribution over Zhangye can be vertically classified into upper, middle and lower layers with altitudes of 4.5 to 9 km, 2.5 to 4.5 km, and less than 2.5 km, respectively. The aerosol in the upper layer originated from the external sources at higher altitude regions, from far desert regions upwind of Zhangye or transported from higher atmospheric layers by free convection, and the altitude of this aerosol layer decreased with time; the aerosols in the middle and lower layers originated from both external and local sources. The aerosol extinction coefficients in the upper and lower layers decreased with altitude, whereas the coefficient in the middle layer changed only slightly, which suggests that aerosol mixing occurs in the middle layer. The distribution of aerosols with altitude has three features: a single peak that forms under stable atmospheric conditions, an exponential decrease with altitude that occurs under unstable atmospheric conditions, and slight change in the mixed layer. Due to the impact of the top of the atmospheric boundary layer, the diurnal variation in the aerosol extinction coefficient has a single peak, which is higher in the afternoon and lower in the morning.  相似文献   

12.
The role of atmospheric aerosol composition in climate change   总被引:1,自引:0,他引:1  
The chemical composition of atmospheric aerosols has been investigated. Contributions ofsulfate and soot in aerosols to the atmospheric extinction are studied. Discussions are made on the problems of aerosol emitted from volcano, forest fires in northern China, 1987 and oil field fires in Kuwait, 1991. It is indicated that the changes in concentration, particle size, and chemical composition of aerosol after those events could have impacts on the climate change either regionally or globally and that the impact of aerosol particles on climate change could compensate for some temperature increase caused by greenhouse gases and the increase of surface intensity of ultraviolet radiation due to ozone layer depletion.  相似文献   

13.
分析了上海市嘉定区不同粒径大气颗粒物(0.49、0.49~0.95、0.95~1.50、1.50~3.00、3.00~7.20、7.20μm)中OC和EC质量浓度的粒径分布特征;讨论了不同粒径大气颗粒物中二次有机碳EC示踪法中(OC/EC)pri的选定方法,用改进后的EC示踪法估算出上海市嘉定区大气颗粒物中的二次有机碳(SOC)质量浓度的粒径分布;通过OC和EC的相关性定性分析了上海市嘉定区大气颗粒物的主要来源.上海市嘉定区大气颗粒物中OC和SOC的质量浓度呈双峰分布,峰值出现在0.49μm与3.00μm的粒径段,EC出现双峰或三峰分布,与OC相比,更集中在0.49μm的粒径段.细颗粒(3.00μm)中OC和EC分别占总OC和EC质量浓度的59.8%~80.0%和58.1%~82.4%,OC和EC的质量浓度主要集中在3.00μm的颗粒物中.不同粒径颗粒物中SOC占相应粒径段内OC浓度的15.7%~79.1%,其中细颗粒物(3.00μm)和粗颗粒物(3.00μm)中SOC质量浓度占相应粒径段中OC的41.4%和43.5%.OC、EC和SOC的粒径分布显现出明显的时间依存性.OC和EC的相关性分析表明,上海嘉定区大气颗粒物的污染源主要以轻型汽油车尾气为主.  相似文献   

14.
气溶胶的复折射指数是直接影响其散射特性和吸收特性的基本物理量之一.为深入研究城市大气气溶胶的复折射指数特征,引入一种具有高时间分辨率优点的反演方法来反演气溶胶复折射指数.依据辐射传输理论,将天津大气边界层观测站观测到的高精度散射系数、吸收系数和数浓度谱分布数据利用查表法代入Mie理论气溶胶粒子群消光计算公式,对大气气溶胶复折射指数进行反演.结果表明:①天津城区2011年4月观测地点0.55 μm波长处的气溶胶复折射指数实部平均值为1.64,虚部平均值为0.015.②气溶胶复折射指数实部和虚部均有明显日变化规律,实部和虚部均与相对湿度呈正相关,与风速呈负相关.③利用反演得到的复折射指数对不同粒径大气气溶胶的消光特性进行计算发现,对散射特性而言,>0.25~1.00 μm粒子对散射系数的贡献率达86%;对吸收特性而言,>0.25~2.50 μm粒子对吸收系数的贡献率为53%,>2.50~32.00 μm粒子对吸收系数的贡献率为47%.研究显示,>0.25~1.00和>1.00~32.00 μm的粒子对吸收系数的贡献率均较高,但对散射系数而言,>0.25~1.00 μm的粒子贡献率较高,因此综合考虑气溶胶散射系数、吸收系数和消光系数,控制>0.25~1.00 μm的气溶胶粒子数浓度可有效改善大气能见度.   相似文献   

15.
一次强沙尘输送过程中气溶胶垂直分布特征研究   总被引:21,自引:2,他引:19       下载免费PDF全文
采用CALIPSO卫星的星载激光雷达资料,分析了2007年3月28日~4月2日由西向东途经新疆、青海、甘肃、内蒙古、宁夏、陕西、山西、河北、北京、山东、江苏、上海、台湾等省、市、自治区的一次远程强沙尘污染传输过程,对后向散射系数、退偏比、色比等光学特性参数进行了研究.结果表明,这次过程中,较大的沙尘颗粒大多出现在近地面附近,而相对小的沙尘颗粒在对流层中高层垂直剖面上分布比较均匀.CALIPSO卫星资料能够较好地反映强沙尘远程传输过程中沙尘气溶胶光学特性的垂直分布特征及其粒子大小、不规则性随高度的变化特征.  相似文献   

16.
香港大气气溶胶组成与特征   总被引:4,自引:0,他引:4  
选用香港空气质量监测网中11个监测站1990~1994年间TSP(总悬浮粒子)和RSP(可吸入悬浮粒子)的监测数据,分析香港大气气溶胶的化学组成与时空变化。香港大气气溶胶的浓度较低,其浓度的季节变化主要受气候变化的影响。C是大气气溶胶中最重要的化学成分,它支配着气溶胶的季节和空间变化。SO2-4、NH+4和NO-3的浓度很低,空间分布很均匀,其季节变化主要受东亚季风控制。海洋气溶胶主要以较大的颗粒形式存在,它的来源稳定且空间分布较均匀。扬尘浓度主要受降雨和湿度的影响。V和Ni浓度的季节变化与燃料油消耗量的季节变化相同,其空间的变化反映了当地工业窑炉排放对香港气溶胶的影响  相似文献   

17.
Particle density is an important physical property of atmospheric particles.The information on high time-resolution size-resolved particle density is essential for understanding the atmospheric physical and chemical aging processes of aerosols particles.In the present study,a centrifugal particle mass analyzer(CPMA) combined with a differential mobility analyzer(DMA) was deployed to determine the size-resolved effective density of 50 to 350 nm particles at a rural site of Beijing during summer 2016.The measured particle effective densities decreased with increasing particle sizes and ranged from 1.43 to 1.55 g/cm~3,on average.The effective particle density distributions were dominated by a mode peaked at around 1.5 g/cm~3 for 50 to350 nm particles.Extra modes with peaks at 1.0,0.8,and 0.6 g/cm3 for 150,240,and 350 nm particles,which might be freshly emitted soot particles,were observed during intensive primary emissions episodes.The particle effective densities showed a diurnal variation pattern,with higher values during daytime.A case study showed that the effective density of Aitken mode particles during the new particle formation(NPF) event decreased considerably,indicating the significant contribution of organics to new particle growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号