首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
混合气体爆炸的必要条件之一,是必须具有一定的浓度。为防止燃烧爆炸事故的发生,弄清混合气体爆炸浓度条件是极其重要的。用三角坐标来分析混合气体爆炸浓度条件,显得明了、直观,具有实用价值。一、三角坐标的意义和性质欲用三角坐标来分析混合气体爆炸浓度条件,有必要先谈谈三角坐标的意义和性  相似文献   

2.
本文对合肥"10·28"特大爆炸事故进行了分析,确定了本次爆炸事故的爆炸位置和类型,分析了爆炸混合气体来源及本次爆炸的特点.提出了今后为防止类似爆炸事故的发生,在设计规范标准、设计布置、施工和日常管理中应注意的问题.  相似文献   

3.
为了预防化工场所合成氨工艺中混合气体爆炸事故,利用爆炸极限测试仪和CHEMKIN软件,研究了 NH3和CH4混合气体的爆炸极限和动力学过程.通过分析NH3和CH4混合气体的爆炸极限和爆炸传播火焰特征,以及爆炸过程中温度、压力和关键自由基·H和·OH的变化规律,探讨了不同体积分数的NH3对CH4爆炸极限的影响.结果表明:NH3的存在使混合气体的爆炸下限上升,在某种程度上抑制了 CH4爆炸,且体积分数越大,抑制作用越明显;爆炸下限时的火焰经历了半圆形向指尖形的转变,NH3体积分数越大,爆炸火焰颜色越亮;NH3主要通过影响CH4爆炸链式反应的关键自由基·H和·OH来抑制CH4爆炸.所得结论为有效预防NH3/CH4混合爆炸事故提供了理论依据.  相似文献   

4.
低瓦斯矿井瓦斯爆炸事故的主要原因及防治对策   总被引:5,自引:0,他引:5  
从理论和实际两方面分析了近期发生在一些低瓦斯矿井的瓦斯爆炸事故,结合对福建煤矿曾经发生的瓦斯爆炸事故的分析和研讨,认为发生瓦斯爆炸事故的主要原因有:对瓦斯防治重视不够、未能准确地确定瓦斯的爆炸下限浓度及瓦斯混合气体在强点火能下会降低瓦斯爆炸浓度下限等主观上的原因,还有因采深加大致使瓦斯涌出量增加、瓦斯监测系统不到位等客观上的原因。着重从大量的试验证明了在强点火能下瓦斯混合气体爆炸浓度下限大幅降低的事实,并提出了相关的防治对策。研究成果对瓦斯防治具有重要的实际意义。  相似文献   

5.
本文通过对化学危险品场所可燃性混合气体爆炸机理的探讨,从化学危险品可燃性混合气体爆炸的必要条件和爆炸极限的确定入手,分析了可燃性混合气体爆炸的原因,提出预防措施。通过分析和研究各项措施,确定出较好的预防和抑制方法,确保化学危险品场所的安全生产。  相似文献   

6.
氢氧混合气体爆炸临界条件实验研究   总被引:2,自引:1,他引:1  
可燃气体的燃烧、爆炸是工业生产中常见的灾害性事故,危害极大.通过爆轰管实验装置,采用疏密分布的压力传感器测量氢氧混合气体的爆轰特性,并依据压力和波速在燃烧转爆轰瞬间发生突跃,判断混合气体爆炸的临界条件.实验结果表明,爆炸压力随氢气初始浓度呈∩形变化,50%氢气体积分数为爆炸最佳浓度值;在常温常压下,氢氧混合物爆炸的临界氢气体积分数是15%和90%;化学计量比的氢氧混合气体发生爆炸的临界初始压力为0.01 MPa;氮-氢-氧三元混合气体爆炸的临界氮气体积分数为60%.  相似文献   

7.
一起压力容器爆炸事故的剖析   总被引:1,自引:0,他引:1  
本文简要描述了一起压力容器爆炸事故的经过和严重后果,并从技术角度对爆炸的原因、爆炸时的压力及爆炸断裂拉力走向进行了理论分析和计算,提出了预防类似事故的对策,对预防压力容器爆炸事故以及调查、分析压力容器爆炸事故原因具有一定的指导意义。  相似文献   

8.
本文简要描述了一起压力容器爆炸事故的经过和严重后果,并从技术角度对爆炸的原因、爆炸时的压力及爆炸断裂拉力走向进行了理论分析和计算,提出了预防类似事故的对策,对预防压力容器爆炸事故以及调查,分析压力容器爆炸事故原因具有一定的指导意义.  相似文献   

9.
1981年10月10日,南京市东郊社办五金厂发生了一起氧气瓶爆炸事故,厂房炸塌,多人受伤。 事故发生后,南京市劳动局请有关方面专家对氧气瓶中充装的气体进行了相色谱分析,结果表明,氧中含氢为14.92%,混合气体中可燃气的百分比已超过了爆炸下限(氧气中氢含量4.65—93.7%即形成爆鸣性气体)。当焊工在关闭焊枪时,氢氧混合气体流速降低,火焰迅速顺着皮管进入气瓶引起激烈燃烧,使气瓶内压力突然升高,导致气瓶爆炸。 鉴于这次事故发生的根本原因是气体制造厂的气体不纯。事后,南京市劳动局和公安局组织了气瓶安全检查小组对全市气体制造厂进行了检查,…  相似文献   

10.
爆炸事故原因调查的研究   总被引:4,自引:9,他引:4  
爆炸事故原因调查可以提供一些有用的信息 ,以避免同类事故的发生。笔者介绍了调查爆炸事故原因所需的材料 ,提出了爆炸事故调查相关的主要内容以及爆炸现场勘查的组织指挥 ,并以一个爆炸事故的调查作为实例进行了讨论。  相似文献   

11.
通过实验研究了可燃气体(液体蒸气)的爆炸极限规律,从全新的角度分析了各种浓度可燃气体(液体蒸气)的最大允许氧含量的规律,并运用数值分析原理拟合出其规律函数,可从理论上求得各种浓度可燃气体(液体蒸气)的最大允许氧含量值。通过爆炸极限和最大允许氧含量规律的对比研究,分析了两者相辅相成的重要关系,指出两者从不同角度界定了可燃气体(液体蒸气)的爆炸范围,是衡量可燃气体(液体蒸气)爆炸危险性的两个重要参数。  相似文献   

12.
气体、粉尘爆炸灾害及其安全技术   总被引:9,自引:14,他引:9  
对可燃性气体、蒸汽、粉尘的爆炸特性及其抑爆、隔爆安全技术进行了系统的研究 ,并对常见的可燃性气体、蒸汽和粉尘的各种爆炸特性参数和气体抑爆安全技术参数进行了实验测定。根据实验测定结果得到的结论对这种可燃性物质的安全应用具有重要的参考价值  相似文献   

13.
可燃气体(液体蒸气)爆炸测试装置的改进研究   总被引:3,自引:2,他引:1  
以可燃气体(液体蒸气)爆炸测试装置改进为主线,综述国内外各种测试装置的优缺点。对不同装置、测试方法以及测试原理进行比较分析,研讨可燃气体爆炸的特点和爆炸参数测试方法以及对现有测试装置的改进方案。即对20 L爆炸测试装置的配气系统和控制系统进行了合理改进,使引射混合配气与循环混合配气相结合,使可燃气体(液体蒸气)与空气混合更均匀,控制操作更简便,还指出了今后研究工作中应注意的一些问题和研究重点。  相似文献   

14.
为准确掌握和预测多元可燃气体的爆炸极限,开展2种多元可燃气体爆炸极限的理论预测模型研究。第1种模型针对“多种可燃气体+多种惰性气体”在空气中或氧气中混合,基于求解可燃气体绝热火焰温度的总比热特性方法以及化学平衡反应中的贫燃料(富氧)反应,提出该多元可燃气体的爆炸下限预测模型;第2种模型针对“可燃气体+惰性气体+氧气”混合,基于热平衡方程及混合气体的各组分浓度、淬灭电势及燃烧潜热,提出该多元可燃气体的爆炸极限预测模型。结果表明:在预测多元可燃气体的爆炸极限时,第1种模型具有较广泛的应用性,且表现出较高的准确度;第2种模型具有使用简单的特点,且扩展了LCR(勒夏特列原理)的应用范围。  相似文献   

15.
矿井火区可燃性混合气体爆炸危险性的判断 ,目前常用单纯的瓦斯爆炸三角形判别法。此法对实际的判断往往未综合考虑火区温度的影响。为此 ,笔者论述了矿井火区多种可燃性气体同时存在时 ,其混合气体爆炸三角形各参数的工程计算方法 :爆炸界限可用 Le Chatelier法 ,但需根据火区实测温度进行修正 ;爆炸时的临界氧浓度 ,则需用另一种三角形图示法予以确定。由此画出的混合气体爆炸三角形分析图 ,可用于矿井火区 ,尤其是矿井大面积火区的密闭和启封过程中 ,作为可燃性混合气体爆炸危险性的综合判断及其防爆措施的制定 ,都具有实用价值和指导意义  相似文献   

16.
On November 22, 2006 the largest explosion in the history of Massachusetts occurred in Danvers, MA at approximately 2:46 am. This paper presents a detailed analysis into the potential causes and lessons learned from the Danvers explosion. Other investigative groups concluded that the cause of the explosion was an overheated production tank. However, the analyses presented here demonstrate that their proposed scenario could not have occurred and that other potential causes are more likely.Using the computational fluid dynamics tool FLACS, it was possible to investigate the chain of events leading to the explosion, including: (1) evaluating various leak scenarios by modeling the dispersion and mixing of gases and vapors within the facility, (2) evaluating potential ignition sources within the facility of the flammable fuel–air mixture, and (3) evaluating the explosion itself by comparing the resulting overpressures of the exploding fuel–air cloud with the structural response of the facility and the observed near-field and far-field blast damage. These results, along with key witness statements and other analyses, provide valuable insight into the likely cause of this incident. Based on the results of our detailed analysis, lessons learned regarding the investigative procedure and methods for mitigating this and future explosions are discussed.  相似文献   

17.
易燃性气体爆炸是城市排水系统时有发生的一类有限空间事故,而人们通常更多的只关注有限空间中毒窒息事故,对该类事故关注度不够。通过分析城市排水系统涉及的有限空间和易于产生的爆炸性气体种类与危害性,阐述了防范该类事故的必要性和意义。同时,通过将沼气发酵机理与城市排水系统有限空间易于具备的条件进行对比,说明了城市排水系统有限空间爆炸性气体产生的过程与机理以及爆炸产生的危害。最后针对城市排水的特点与爆炸性气体的产生过程与机理,提出了相应的防治对策,为有效控制和减少该类事故的发生提供了技术支持。  相似文献   

18.
Explosions of hybrid mixtures, i.e. mixtures containing more than one combustible phase, are not well understood. Most studies in this area involve mixtures of common dusts and gases, such as coal and methane, or polyethylene and ethylene. The present work focuses on explosions of carbon black particles, i.e. almost pure carbon with a very low content of volatiles: this makes the process of explosion less intense. However, addition of some quantities of combustible gases (here: propane) may sustain combustion processes. Another important issue is the fact that the carbon black particles are smaller in size than most dusts encountered in the process industry. The experiments were carried out in a 20-L explosion vessel and the analysis of the results focuses on the maximum explosion pressures and the maximum rates of pressure rise as a function of carbon black and propane concentrations. In addition, some samples of unburnt dust were collected and analysed with a scanning electron microscope and with thermo-gravimetric analysis.  相似文献   

19.
为探索受限空间中瓦斯爆炸及氢气对爆炸过程的影响,采用GRI-Mech 3.0甲烷燃烧机理,建立受限空间中瓦斯爆炸的数学模型,应用CHEMKIN软件,对受限空间内瓦斯爆炸过程及氢气对反应物浓度、活化中心浓度、主要致灾性气体浓度的影响进行模拟分析。通过对反应机理的敏感性分析,找出影响瓦斯爆炸及爆炸后主要致灾性气体生成的关键反应步。结果表明:混合气中分别充入0.5%,2%,3.5%氢气时,爆炸时间分别提前0.005 7,0.010 5,0.011 1 s;爆炸后压力分别提高2.53,4.05,7.60 kPa;爆炸后温度分别提高20,60,100 K。由此可见,随着混合气中氢气含量的增加,瓦斯引爆时间越来越短,其爆炸强度也随之增大,且氢气在一定程度上对有害气体CO,CO2,NO,NO2的生成有很大影响。  相似文献   

20.
针对爆炸容器工作时 ,产生的爆炸冲击波、破片、有害气体、振动及噪声等危害因素 ,简述了国内外使用爆炸容器时 ,采取的一些相关安全技术措施 ;提出了将结构健康监测技术应用于爆炸容器寿命安全评估的构想  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号