首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OBJECTIVE: The aim of this study was to investigate head injuries, injury risks, and corresponding tolerance levels of children in car-to--child pedestrian collisions. METHODS: An in-depth accident analysis was carried out based on 23 accident cases involving child pedestrians. These cases were collected with detailed information about pedestrians, cars, and road environments. All 23 accidents were reconstructed using the MADYMO program with mathematical models of passenger cars and child pedestrians developed at Chalmers University of Technology. The contact properties of the car models were derived from the European New Car Assessment Program (EuroNCAP) subsystem tests. RESULTS: The accident analysis demonstrated that the head was the most frequently and severely injured body part of child pedestrians. Most accidents occurred at impact speeds lower than 40 km/h and 98% of the child pedestrians were impacted from the lateral direction. The initial postures of children at the moment of impact were identified. Nearly half (47%) of the children were running, which was remarkable compared with the situation of adult pedestrians. From accident reconstructions it was found that head impact conditions and injury severities were dependent on the shape and stiffness of the car front, impact velocity, and stature of the child pedestrian. Head injury criteria and corresponding tolerance levels were analyzed and discussed by correlating the calculated injury parameters with the injury outcomes in the accidents. CONCLUSIONS: Reducing head injuries should be set as a priority in the protection of child pedestrians. HIC is an important injury criterion for predicting the risks of head injuries in child pedestrian accidents. The tolerance level of head injuries can have a considerable variation due to individual differences of the child pedestrians. By setting a suitable speed limit and improving the design of car front, the head injury severities of child pedestrians can be reduced.  相似文献   

2.
Objective: This study aimed at investigating the effects of vehicle impact velocity, vehicle front-end shape, and pedestrian size on injury risk to pedestrians in collisions with passenger vehicles with various frontal shapes. Method: A series of parametric studies was carried out using 2 total human model for safety (THUMS) pedestrian models (177 and 165?cm) and 4 vehicle finite element (FE) models with different front-end shapes (medium-size sedan, minicar, one-box vehicle, and sport utility vehicle [SUV]). The effects of the impact velocity on pedestrian injury risk were analyzed at velocities of 20, 30, 40, and 50?km/h. The dynamic response of the pedestrian was investigated, and the injury risk to the head, chest, pelvis, and lower extremities was compared in terms of the injury parameters head injury criteria (HIC), chest deflection, and von Mises stress distribution of the rib cage, pelvis force, and bending moment diagram of the lower extremities. Result: Vehicle impact velocity has the most significant influence on injury severity for adult pedestrians. All injury parameters can be reduced in severity by decreasing vehicle impact velocities. The head and lower extremities are at greater risk of injury in medium-size sedan and SUV collisions. The chest injury risk was particularly high in one-box vehicle impacts. The fracture risk of the pelvis was also high in one-box vehicle and SUV collisions. In minicar collisions, the injury risk was the smallest if the head did not make contact with the A-pillar. Conclusion: The vehicle impact velocity and vehicle front-end shape are 2 dominant factors that influence the pedestrian kinematics and injury severity. A significant reduction of all injuries can be achieved for all vehicle types when the vehicle impact velocity is less than 30?km/h. Vehicle designs consisting of a short front-end and a wide windshield area can protect pedestrians from fatalities. The results also could be valuable in the design of a pedestrian-friendly vehicle front-end shape. [Supplementary materials are available for this article. Go to the publisher's online edition of Traffic Injury Prevention for the following free supplemental resource: Head impact conditions and injury parameters in four-type vehicle collisions and validation result of the finite element model of one-box vehicle and minicar. ].  相似文献   

3.
The objective was to assess head injury risks and kinematics of adult pedestrians and bicyclists in primary impact to the passenger cars and secondary impact to the ground using real world accident data and computer reconstructions of the accidents. For this purpose, a subsample of 402 pedestrians and 940 bicyclists from the GIDAS database, Germany, was used for the statistical analysis, from which 22 pedestrian and 18 bicyclist accidents were further selected for reconstruction. PC-Crash was used to calculate impact conditions, such as vehicle impact velocity, vehicle kinematic sequence, and thrown distance. These conditions were employed to identify the initial conditions in reconstruction in MADYMO program. A comparable analysis was conducted based on the results from accident analysis and computer reconstructions for the impact configurations and the resulting injury patterns of pedestrians and bicyclists in view of head injury risks. Differences in HIC, head-relative impact velocity, linear acceleration, maximum angular velocity and acceleration, contact force, thrown distance, Wrap Around Distance (WAD), and head contact time were evaluated. Injury risk curves were generated by using a logistic regression model for vehicle impact velocity. The results indicate that bicyclists suffered less severe injuries compared with severity of pedestrian injuries. In the selected samples, the AIS 2+ and AIS 3+ head injury risks for pedestrians are 50% probability at impact speed of 38.87 km/h and 54.39 km/h respectively, while for bicyclists at 53.66 km/h and 58.89 km/h respectively. The findings of high injury risks suggested that in the area with high frequency car-pedestrian accidents, the vehicle speed limit should be 40 km/h, while in the area with high frequency car-cyclist accidents the vehicle speed limit should be 50 km/h.  相似文献   

4.
Objectives: The aim of this article is to report on the possible relationships between tramway front-end geometry and pedestrian injury risk over a wide range of possible tramway shapes.

Methods: To study the effect of tramway front-end shape on pedestrian injury metrics, accidents were simulated using a custom parameterized model of tramway front-end and pedestrian models available with the MADYMO multibody solver. The approach was automated, allowing the systematic exploration of tramway shapes in conjunction with 4 pedestrian sizes (e.g., 50th percentile male or M50).

Results: A total of 8,840 simulations were run, showing that the injury risk is more important for the head than for other body regions (thorax and lower extremities). The head of the M50 impacted the windshield of the tramway in most of the configurations. Two antagonist mechanisms affecting impact velocity of the head and corresponding head injury criterion (HIC) values were observed. The first is a trunk rotation resulting from an engagement of the lower body that can contribute to an increase in head velocity in the direction of the tram. The second is the loading of the shoulder, which can accelerate the upper trunk and head away from the windshield, resulting in lower impact velocities. Groups of design were defined based on 2 main parameters (windshield height and offset), some of which seem more beneficial than others for tramway design. The pedestrian size and tramway velocity (30 vs. 20?km/h) also affected the results.

Conclusions: When considering only the front-end shape, the best strategy to limit the risk of head injury due to contact with the stiff windshield seems to be to promote the mechanism involving shoulder loading. Because body regions engaged vary with the pedestrian size, none of the groups of designs performed equally well for all pedestrian sizes. The best compromise is achieved with a combination of a large windscreen offset and a high windscreen. Conversely, particularly unfavorable configurations are observed for low windshield heights, especially with a large offset. Beyond the front-end shape, considering the stiffness of the current windshields and the high injury risks predicted for 30?km/h, the stiffness of the windshield should be considered in the future for further gains in pedestrian safety.  相似文献   

5.
For the evaluation of pedestrian protection, the European Enhanced Vehicle-Safety Committee Working Group 17 report is now commonly used. In the evaluation of head injuries, the report takes into account only the hood area of the vehicle. But recent pedestrian accident data has shown the injury source for head injury changing to the windshield and A-pillar from the hood. The head contact points are considered to fall on a parallel to the front shape of the vehicle along the lateral direction, but the rigidity of the outer side construction is different from the center area. The purpose of this study is to consider the reason for the change in injury source for recent vehicle models. The head contact points and contact conditions, speed and angle, are thought to be influenced not only by the vehicle's geometry, but also its construction (rigidity). In this study, vehicle-pedestrian impact simulations were calculated with a finite element model for several hitting positions, including the outer side areas. Full dummy sled tests were conducted to confirm the simulation results. These results show that, for impacts at the outer sides of the vehicle, the head contact points are more rearward than at the vehicle center. In addition, the speed and angle of the head contact were found to be influenced by the pedestrian height.  相似文献   

6.
A rapid development of both pedestrian passive and active safety, such as pedestrian bonnets/airbags and autonomous braking, is in progress. The aim of this study was to investigate the potential pedestrian head injury reduction from hypothetical passive and active countermeasures compared to an integrated system. The German In-Depth Accident Study (GIDAS) database was queried from 1999 to 2008 for severely (AIS3+) head injured pedestrians when struck by car or van fronts. This, resulted in 54 cases where information was sufficient. The passive countermeasure was designed to mitigate head injuries caused by the bonnet area, A-pillars, and the remaining windscreen area up to 2.1 m wrap around distance (WAD). The active countermeasure was an autonomous braking system, which was activated one second prior to impact if the pedestrian was visible to a forward-looking sensor. The integrated system was a direct combination of the passive and active countermeasures. Case by case the effect from each of the active, passive and integrated systems was estimated. For the integrated system, the influence of the active system on the passive system performance was explicitly modeled in each case. The integrated system resulted in 50% (95% confidence interval: 30-70%) greater effectiveness than the active countermeasure in reducing the number of pedestrians sustaining severe (AIS3+) head injuries, and 90% (95% CI: 50-150%) greater effectiveness than the passive countermeasure. Integrated systems of passive and active pedestrian countermeasures offer a considerably increased potential for head injury reduction compared to either of the two systems alone.  相似文献   

7.
In vehicle–pedestrian collisions, lower extremities of pedestrians are frequently injured by vehicle front structures. In this study, a finite element (FE) model of THUMS (total human model for safety) was modified in order to assess injuries to a pedestrian lower extremity. Dynamic impact responses of the knee joint of the FE model were validated on the basis of data from the literature. Since in real-world accidents, the vehicle bumper can impact the lower extremities in various situations, the relations between lower extremity injury risk and impact conditions, such as between impact location, angle, and impactor stiffness, were analyzed. The FE simulation demonstrated that the motion of the lower extremity may be classified into a contact effect of the impactor and an inertia effect from a thigh or leg. In the contact phase, the stress of the bone is high in the area contacted by the impactor, which can cause fracture. Thus, in this phase the impactor stiffness affects the fracture risk of bone. In the inertia phase, the behavior of the lower extremity depends on the impact locations and angles, and the knee ligament forces become high according to the lower extremity behavior. The force of the collateral ligament is high compared with other knee ligaments, due to knee valgus motions in vehicle-pedestrian collisions.  相似文献   

8.
Abstract

Objective: Traffic fatalities among motorcycle users are intolerably high in Thailand. They account for 73% of the total number of road fatalities. Children are also among these victims. To improve countermeasures and design of protection equipment, understanding the biomechanics of motorcycle users under impact conditions is necessary. The objective of this work is to analyze the overall kinematics and injuries sustained by riders and child pillion passengers in various accident configurations.

Methods: Motorcycle accident data were analyzed. Common accident scenarios and impact parameters were identified. Two numerical approaches were employed. The multibody model was validated with a motorcycle crash test and used to generate possible accident cases for various impact conditions specified to cover all common accident scenarios. Specific impact conditions were selected for detailed finite element analysis. The finite element simulations of motorcycle-to-car collisions were conducted to provide insight into kinematics and injury mechanisms.

Results: Global kinematics found when the motorcycle’s front wheel impacts a car (config-MC) highlighted the translation motion of both the rider and passenger toward the impact position. The rider’s trunk impacted the handlebar and the head either impacted the car or missed. The hood constituted the highest head impact occurrence for this configuration. The child mostly impacted the rider’s back. Different kinematics were found when car impacted the lateral side of the motorcycle (config-CM). Upper bodies of both rider and child were laterally projected toward the car front. The windshield constituted the highest proportion of head impacts. The hood and A-pillar recorded a moderate proportion. The rider in finite element simulations with config-MC experienced high rib stress, lung strain, and pressure beyond the injury limit. A high head injury criterion was observed when the head hit the car. However, the simulation with config-CM exhibited high lower extremities stress and lung pressure in both occupants. Hyperextension of the rider’s neck was observed. The cumulative strain damage measure of the child’s brain was higher than the threshold for diffuse axonal injury (DAI).

Conclusions: This study revealed 2 kinematics patterns and injury mechanisms. Simulations with config-MC manifested a high risk of head and thorax injury to the rider but a low risk of severe injury to the child. Thorax injury to the rider due to handlebar impact was only found in simulations with config-MC. However, a high risk of skull, lower extremity, brain, and neck injuries were more pronounced for cases with config-CM. A high risk of DAI was also noticed for the child. In simulations with config-CM the child exhibited a higher risk of severe injury.  相似文献   

9.
Objective: The objective of this study was to compare and evaluate the difference in head kinematics between the TNO and THUMS models in pedestrian accident situations.

Methods: The TNO pedestrian model (version 7.4.2) and the THUMS pedestrian model (version 1.4) were compared in one experiment setup and 14 different accident scenarios where the vehicle velocity, leg posture, pedestrian velocity, and pedestrian's initial orientation were altered. In all simulations, the pedestrian model was impacted by a sedan. The head trajectory, head rotation, and head impact velocity were compared, as was the trend when various different parameters were altered.

Results: The multibody model had a larger head wrap-around distance for all accident scenarios. The maximum differences of the head's center of gravity between the models in the global x-, y-, and z-directions at impact were 13.9, 5.8, and 5.6 cm, respectively. The maximum difference between the models in head rotation around the head's inferior–superior axis at head impact was 36°. The head impact velocity differed up to 2.4 m/s between the models. The 2 models showed similar trends for the head trajectory when the various parameters were altered.

Conclusions: There are differences in kinematics between the THUMS and TNO pedestrian models. However, these model differences are of the same magnitude as those induced by other uncertainties in the accident reconstructions, such as initial leg posture and pedestrian velocity.  相似文献   


10.
In vehicle-pedestrian collisions, lower extremities of pedestrians are frequently injured by vehicle front structures. In this study, a finite element (FE) model of THUMS (total human model for safety) was modified in order to assess injuries to a pedestrian lower extremity. Dynamic impact responses of the knee joint of the FE model were validated on the basis of data from the literature. Since in real-world accidents, the vehicle bumper can impact the lower extremities in various situations, the relations between lower extremity injury risk and impact conditions, such as between impact location, angle, and impactor stiffness, were analyzed. The FE simulation demonstrated that the motion of the lower extremity may be classified into a contact effect of the impactor and an inertia effect from a thigh or leg. In the contact phase, the stress of the bone is high in the area contacted by the impactor, which can cause fracture. Thus, in this phase the impactor stiffness affects the fracture risk of bone. In the inertia phase, the behavior of the lower extremity depends on the impact locations and angles, and the knee ligament forces become high according to the lower extremity behavior. The force of the collateral ligament is high compared with other knee ligaments, due to knee valgus motions in vehicle-pedestrian collisions.  相似文献   

11.
Objective: Autonomous emergency braking (AEB) systems fitted to cars for pedestrians have been predicted to offer substantial benefit. On this basis, consumer rating programs—for example, the European New Car Assessment Programme (Euro NCAP)—are developing rating schemes to encourage fitment of these systems. One of the questions that needs to be answered to do this fully is how the assessment of the speed reduction offered by the AEB is integrated with the current assessment of the passive safety for mitigation of pedestrian injury. Ideally, this should be done on a benefit-related basis.

The objective of this research was to develop a benefit-based methodology for assessment of integrated pedestrian protection systems with AEB and passive safety components. The method should include weighting procedures to ensure that it represents injury patterns from accident data and replicates an independently estimated benefit of AEB.

Methods: A methodology has been developed to calculate the expected societal cost of pedestrian injuries, assuming that all pedestrians in the target population (i.e., pedestrians impacted by the front of a passenger car) are impacted by the car being assessed, taking into account the impact speed reduction offered by the car's AEB (if fitted) and the passive safety protection offered by the car's frontal structure. For rating purposes, the cost for the assessed car is normalized by comparing it to the cost calculated for a reference car.

The speed reductions measured in AEB tests are used to determine the speed at which each pedestrian in the target population will be impacted. Injury probabilities for each impact are then calculated using the results from Euro NCAP pedestrian impactor tests and injury risk curves. These injury probabilities are converted into cost using “harm”-type costs for the body regions tested. These costs are weighted and summed. Weighting factors were determined using accident data from Germany and Great Britain and an independently estimated AEB benefit. German and Great Britain versions of the methodology are available. The methodology was used to assess cars with good, average, and poor Euro NCAP pedestrian ratings, in combination with a current AEB system. The fitment of a hypothetical A-pillar airbag was also investigated.

Results: It was found that the decrease in casualty injury cost achieved by fitting an AEB system was approximately equivalent to that achieved by increasing the passive safety rating from poor to average. Because the assessment was influenced strongly by the level of head protection offered in the scuttle and windscreen area, a hypothetical A-pillar airbag showed high potential to reduce overall casualty cost.

Conclusions: A benefit-based methodology for assessment of integrated pedestrian protection systems with AEB has been developed and tested. It uses input from AEB tests and Euro NCAP passive safety tests to give an integrated assessment of the system performance, which includes consideration of effects such as the change in head impact location caused by the impact speed reduction given by the AEB.  相似文献   

12.
Objective: Pedestrians are the most vulnerable road users due to the lack of mass, speed, and protection compared to other types of road users. Adverse weather conditions may reduce road friction and visibility and thus increase crash risk. There is limited evidence and considerable discrepancy with regard to impacts of weather conditions on injury severity in the literature. This article investigated factors affecting pedestrian injury severity level under different weather conditions based on a publicly available accident database in Great Britain.

Method: Accident data from Great Britain that are publicly available through the STATS19 database were analyzed. Factors associated with pedestrian, driver, and environment were investigated using a novel approach that combines a classification and regression tree with random forest approach.

Results: Significant severity predictors under fine weather conditions from the models included speed limits, pedestrian age, light conditions, and vehicle maneuver. Under adverse weather conditions, the significant predictors were pedestrian age, vehicle maneuver, and speed limit.

Conclusions: Elderly pedestrians are associated with higher pedestrian injury severities. Higher speed limits increase pedestrian injury severity. Based on the research findings, recommendations are provided to improve pedestrian safety.  相似文献   


13.
《Safety Science》2006,44(4):335-347
Pedestrians are involved in traffic accidents due to many reasons. It is generally thought that personal background of pedestrians has an effect on their involvement rate in the road traffic accidents. Identifying these characteristics would lead to a better understanding of pedestrian accident pattern so that the resources in the field of education, engineering, and enforcement could be used in better ways. This study attempts to test the hypothesis mentioned earlier. The investigated personal background includes the following characteristics: gender, type, age, nationality, and educational background. The data was reduced from vast number of pedestrian injury accident reports in the Kingdom of Bahrain. The actual accident records were categorized according to these characteristics and compared to their exposure risk. It was assumed that the exposure risk, which is the expected number of accidents for each category of the pedestrians, was in proportion to their presence in the pedestrian population. Another study was carried out in parallel to observe the pedestrian characteristics in Bahrain. The results of the two studies were analyzed statistically using Chi-square method to compare the actual to the expected accident frequencies. The whole Kingdom of Bahrain population statistics were used wherever the information on the pedestrian population was not available. The findings revealed that personal characteristics considered in this study have significant influence on pedestrian’s involvement in traffic accidents. The results also showed that pedestrians with the following characteristics were probably showing risk to exposure to accidents more than other categories: male, young (0–12 years) and old (50 years and over), non-local, and those with low educational background.  相似文献   

14.
IntroductionDue to the diversity of pedestrian-to-ground impact (secondary impact) mechanisms, secondary impacts always result in more unpredictable injuries as compared to the vehicle-to-pedestrian collisions (primary impact). The purpose of this study is to investigate the effects of vehicle frontal structure, vehicle impact velocity, and pedestrian size and gait on pedestrian-to-ground impact injury risk.MethodA total of 600 simulations were performed using the MADYMO multi-body system and four different sizes of pedestrians and six types initial gait were considered and impacted by five vehicle types at five impact velocities, respectively. The pedestrian rotation angle ranges (PRARs) (a, b, c, d) were defined to identify and classify the pedestrian rotation angles during the ground impact.ResultsThe PRARs a, b, and c were the ranges primarily observed during the pedestrian landing. The PRAR has a significant influence on pedestrian-to-ground impact injuries. However, there was no correlation between the vehicle velocity and head injury criterion (HIC) caused by the secondary impact. In low velocity collisions (20, 30 km/h), the severity of pedestrian head injury risk caused by the secondary impact was higher than that resulting from the primary impact.ConclusionsThe PRARs defined in this study are highly correlated with the pedestrian-to-ground impact mechanism, and can be used to further analyze the pedestrian secondary impact and to predict the head injury risk.Practical applicationsTo reduce the pedestrian secondary impact injury risk, passive and active safety countermeasures should be considered together to prevent the pedestrian's head-to-ground impacts, particularly in the low-velocity collisions.  相似文献   

15.
Objectives: The purpose of this study is to define a computationally efficient virtual test system (VTS) to assess the aggressivity of vehicle front-end designs to pedestrians considering the distribution of pedestrian impact configurations for future vehicle front-end optimization. The VTS should represent real-world impact configurations in terms of the distribution of vehicle impact speeds, pedestrian walking speeds, pedestrian gait, and pedestrian height. The distribution of injuries as a function of body region, vehicle impact speed, and pedestrian size produced using this VTS should match the distribution of injuries observed in the accident data. The VTS should have the predictive ability to distinguish the aggressivity of different vehicle front-end designs to pedestrians.

Methods: The proposed VTS includes 2 parts: a simulation test sample (STS) and an injury weighting system (IWS). The STS was defined based on MADYMO multibody vehicle to pedestrian impact simulations accounting for the range of vehicle impact speeds, pedestrian heights, pedestrian gait, and walking speed to represent real world impact configurations using the Pedestrian Crash Data Study (PCDS) and anthropometric data. In total 1,300 impact configurations were accounted for in the STS. Three vehicle shapes were then tested using the STS. The IWS was developed to weight the predicted injuries in the STS using the estimated proportion of each impact configuration in the PCDS accident data. A weighted injury number (WIN) was defined as the resulting output of the VTS. The WIN is the weighted number of average Abbreviated Injury Scale (AIS) 2+ injuries recorded per impact simulation in the STS. Then the predictive capability of the VTS was evaluated by comparing the distributions of AIS 2+ injuries to different pedestrian body regions and heights, as well as vehicle types and impact speeds, with that from the PCDS database. Further, a parametric analysis was performed with the VTS to assess the sensitivity of the injury predictions to changes in vehicle shape (type) and stiffness to establish the potential for using the VTS for future vehicle front-end optimization.

Results: An STS of 1,300 multibody simulations and an IWS based on the distribution of impact speed, pedestrian height, gait stance, and walking speed is broadly capable of predicting the distribution of pedestrian injuries observed in the PCDS database when the same vehicle type distribution as the accident data is employed. The sensitivity study shows significant variations in the WIN when either vehicle type or stiffness is altered.

Conclusions: Injury predictions derived from the VTS give a good representation of the distribution of injuries observed in the PCDS and distinguishing ability on the aggressivity of vehicle front-end designs to pedestrians. The VTS can be considered as an effective approach for assessing pedestrian safety performance of vehicle front-end designs at the generalized level. However, the absolute injury number is substantially underpredicted by the VTS, and this needs further development.  相似文献   


16.
This study was aimed at investigating the injury mechanism of pedestrian chests in collisions with passenger vehicles of various frontal shapes and examining the influence of the local structural stiffness on the chest injury risk by using the headform impact test at the chest contact area of the vehicle. Three simulations of vehicle to pedestrian collisions were conducted using three validated pedestrian finite element (FE) models of three pedestrian heights of 177 (AM50th), 165 and 150 cm and three FE vehicles models representing a one-box vehicle, a minicar and a medium car. The validity of the vehicle models was evaluated by comparing the headform acceleration against the measured responses from headform impact tests. The chest impact kinematics and the injury mechanisms were analyzed in terms of the distribution of the von Mises stress of the ribcage and in terms of the chest deflections. The chest contact locations on the front panel and the bonnet top were identified in connection to the causation of rib fractures. The risk of rib fractures was predicted by using the von Mises stress distribution. The headform impact tests were carried out at the chest contact area on the front panel and bonnet to examine the safety performance with respect to pedestrian chest protection. In simulations of the one-box vehicle to pedestrian collisions, the chest was struck directly by the frontal structure at a high velocity and deformed substantially, since a shear force was generated by the stiff windshield frame. The acceleration of the headform was related to the rib deflections. The injury threshold of the ribcage deflection (42 mm) corresponded to the headform average acceleration of 68 G. In the minicar collision, the chest was struck with the bonnet top and cowl area at a low velocity, and the deformation was small due to the distributed contact force between the chest and the bonnet top. Besides, the ribcage deformation was too small for bridging a relation between the headform accelerations and rib deflections. In the medium car collision, the deformation mode of the chest was similar to that in the minicar collision. The chest collided with the bonnet top at a low velocity and deformed uniformly. The deflection of the ribs had an observable correlation with the headform accelerations measured in the headform impact tests. The frontal shape of a vehicle has a large influence on a pedestrian’s chest loadings, and the chest deformation depends on the size of the pedestrian and the stiffness of the vehicle. The one-box passenger vehicle causes a high chest injury risk. The headform impactor test can be utilized for the evaluation of the local stiffness of a vehicle’s frontal structure. The reduction of the headform acceleration is an effective measure for pedestrian chest protection for specific shapes of vehicles by efficacy in modifying the local structural stiffness.  相似文献   

17.
IntroductionThe incidence of pedestrian death over the period 2010 to 2014 per 1000,000 in North Cyprus is about 2.5 times that of the EU, with 10.5 times more pedestrian road injuries than deaths. With the prospect of North Cyprus entering the EU, many investments need to be undertaken to improve road safety in order to reach EU benchmarks.MethodWe conducted a stated choice experiment to identify the preferences and tradeoffs of pedestrians in North Cyprus for improved walking times, pedestrian costs, and safety. The choice of route was examined using mixed logit models to obtain the marginal utilities associated with each attribute of the routes that consumers chose. These were used to estimate the individuals' willingness to pay (WTP) to save walking time and to avoid pedestrian fatalities and injuries. We then used the results to obtain community-wide estimates of the value of a statistical life (VSL) saved, the value of an injury (VI) prevented, and the value per hour of walking time saved.ResultsThe estimate of the VSL was €699,434 and the estimate of VI was €20,077. These values are consistent, after adjusting for differences in incomes, with the median results of similar studies done for EU countries. The estimated value of time to pedestrians is €7.20 per person hour.ConclusionsThe ratio of deaths to injuries is much higher for pedestrians than for road accidents, and this is completely consistent with the higher estimated WTP to avoid a pedestrian accident than to avoid a car accident. The value of time of €7.20 is quite high relative to the wages earned.Practical applicationsFindings provide a set of information on the VRR for fatalities and injuries and the value of pedestrian time that is critical for conducing ex ante appraisals of investments to improve pedestrian safety.  相似文献   

18.
Abstract

Objective: The objective of this research study is to estimate the benefit to pedestrians if all U.S. cars, light trucks, and vans were equipped with an automated braking system that had pedestrian detection capabilities.

Methods: A theoretical automatic emergency braking (AEB) model was applied to real-world vehicle–pedestrian collisions from the Pedestrian Crash Data Study (PCDS). A series of potential AEB systems were modeled across the spectrum of expected system designs. Both road surface conditions and pedestrian visibility were accounted for in the model. The impact speeds of a vehicle without AEB were compared to the estimated impact speeds of vehicles with a modeled pedestrian detecting AEB system. These impacts speeds were used in conjunction with an injury and fatality model to determine risk of Maximum Abbreviated Injury Scale of 3 or higher (MAIS 3+) injury and fatality.

Results: AEB systems with pedestrian detection capability, across the spectrum of expected design parameters, reduced fatality risk when compared to human drivers. The most beneficial system (time-to-collision [TTC]?=?1.5?s, latency = 0?s) decreased fatality risk in the target population between 84 and 87% and injury risk (MAIS score 3+) between 83 and 87%.

Conclusions: Though not all crashes could be avoided, AEB significantly mitigated risk to pedestrians. The longer the TTC of braking and the shorter the latency value, the higher benefits showed by the AEB system. All AEB models used in this study were estimated to reduce fatalities and injuries and were more effective when combined with driver braking.  相似文献   

19.
Objectives: Engaging in active transport modes (especially walking) is a healthy and environmentally friendly alternative to driving and may be particularly beneficial for older adults. However, older adults are a vulnerable group: they are at higher risk of injury compared with younger adults, mainly due to frailty and may be at increased risk of collision due to the effects of age on sensory, cognitive, and motor abilities. Moreover, our population is aging, and there is a trend for the current cohort of older adults to maintain mobility later in life compared with previous cohorts. Though these trends have serious implications for transport policy and safety, little is known about the contributing factors and injury outcomes of pedestrian collision. Further, previous research generally considers the older population as a homogeneous group and rarely considers the increased risks associated with continued ageing.

Method: Collision characteristics and injury outcomes for 2 subgroups of older pedestrians (65–74 years and 75+ years) were examined by extracting data from the state police–reported crash dataset and hospital admission/emergency department presentation data over the 10-year period between 2003 and 2012. Variables identified for analysis included pedestrian characteristics (age, gender, activity, etc.), crash location and type, injury characteristics and severity, and duration of hospital stay. A spatial analysis of crash locations was also undertaken to identify collision clusters and the contribution of environmental features on collision and injury risk.

Results: Adults over 65 years were involved in 21% of all pedestrian collisions. A high fatality rate was found among older adults, particularly for those aged 75 years and older: this group had 3.2 deaths per 100,000 population, compared to a rate of 1.3 for 65- to 74-year-olds and 0.7 for adults below 65 years of age. Older pedestrian injuries were most likely to occur while crossing the carriageway; they were also more likely to be injured in parking lots, at driveway intersections, and on sidewalks compared to younger cohorts. Spatial analyses revealed older pedestrian crash clusters on arterial roads in urban shopping precincts. Significantly higher rates of hospital admissions were found for pedestrians over the age of 75 years and for abdominal, head, and neck injuries; conversely, older adults were underrepresented in emergency department presentations (mainly lower and upper extremity injuries), suggesting an increased severity associated with older pedestrian injuries. Average length of hospital stay also increased with increasing age.

Conclusion: This analysis revealed age differences in collision risk and injury outcomes among older adults and that aggregate analysis of older pedestrians can distort the significance of risk factors associated with older pedestrian injuries. These findings have implications that extend to the development of engineering, behavioral, and enforcement countermeasures to address the problems faced by the oldest pedestrians and reduce collision risk and improve injury outcomes.  相似文献   

20.
Abstract

Objective: This study aimed to investigate the situational characteristics of fatal pedestrian accidents involving vehicles traveling at low speeds in Japan. We focused on vehicles with 4 or more wheels. Such characteristics included daytime or nighttime conditions, road type, vehicle behaviors preceding the accident, and vehicle impact locations.

Methods: Pedestrian fatality data on vehicle–pedestrian accidents were obtained from the Institute for Traffic Accident Research and Data Analysis of Japan (ITARDA) from 2005 to 2014. Nine vehicle classifications were considered: Trucks with gross vehicle weight (GVW) ≥7.5 tons and <7.5 tons, buses, box vans, minivans, sport utility vehicles (SUVs), sedans, light passenger cars (LPCs), and light cargo vans (LCVs). We compared the situational daytime or nighttime conditions, road type, vehicle behaviors preceding the accident, and vehicle impact locations for accident-involved vehicles traveling at low and higher speeds across all vehicle types.

Results: The results indicate that pedestrian fatalities involving vehicles traveling at low speeds occurred more often under daytime conditions across all vehicle types. At signalized intersections, the relative proportions of pedestrian fatalities were significantly higher when vehicles were traveling at low speed, except when the accidents involved box vans or SUVs. Similarly, when vehicles turned right, the relative proportions of pedestrian fatalities were significantly higher when vehicles traveling at low speed were involved across all vehicle types. In terms of the frontal right vehicle impact location, the relative proportions of pedestrian fatalities were significantly higher when trucks with GVW ≥7.5 tons or <7.5 tons, sedans, or LCVs traveling at low speed were involved.

Conclusions: The situational characteristics of fatal pedestrian accidents involving vehicles traveling at low speeds identified in this study can guide targeted development of new traffic safety regulations or technologies specific to vehicle–pedestrian interactions at low vehicle travel speeds (i.e., driver alert devices or automated emergency braking systems). Ultimately, these developments can improve pedestrian safety by reducing the frequency or severity of vehicle–pedestrian accidents for vehicles turning right at intersections and/or reducing the number of resultant pedestrian fatalities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号