首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
IntroductionPedestrian fatalities increased 46% in the United States during 2009–2016. This study identified circumstances under which the largest increases in deaths occurred during this period.MethodAnnual counts of U.S. pedestrian fatalities and crash involvements were extracted from the Fatality Analysis Reporting System and General Estimates System. Poisson regression examined if pedestrian fatalities by various roadway, environmental, personal, and vehicle factors changed significantly during 2009–2016. Linear regression examined changes over the study period in pedestrian deaths per 100 crash involvements and in horsepower per 1000 pounds of weight among passenger vehicles involved in fatal single-vehicle pedestrian crashesResultsPedestrian deaths per 100 crash involvements increased 29% from 2010, when they reached their lowest point, to 2015, the most recent year for which crash involvement data were available. The largest increases in pedestrian deaths during 2009–2016 occurred in urban areas (54% increase from 2009 to 2016), on arterials (67% increase), at nonintersections (50% increase), and in dark conditions (56% increase). The rise in the number of SUVs involved in fatal single-vehicle pedestrian crashes (82% increase) was larger than the increases in the number of cars, vans, pickups, or medium/heavy trucks involved in these crashes. The power of passenger vehicles involved in fatal single-vehicle pedestrian crashes increased over the study period, with larger increases in vehicle power among more powerful vehicles.ConclusionsEfforts to turn back the recent increase in pedestrian fatalities should focus on the conditions where the rise has been the greatest.Practical applicationsTransportation agencies can improve urban arterials by investing in proven countermeasures, such as road diets, median crossing islands, pedestrian hybrid beacons, and automated speed enforcement. Better road lighting and vehicle headlights could improve pedestrian visibility at night.  相似文献   

2.
Objectives: During the past 2 decades, there have been large increases in mean horsepower and the mean horsepower-to–vehicle weight ratio for all types of new passenger vehicles in the United States. This study examined the relationship between travel speeds and vehicle power, defined as horsepower per 100 pounds of vehicle weight.

Methods: Speed cameras measured travel speeds and photographed license plates and drivers of passenger vehicles traveling on roadways in Northern Virginia during daytime off-peak hours in spring 2013. The driver licensing agencies in the District of Columbia, Maryland, and Virginia provided vehicle information numbers (VINs) by matching license plate numbers with vehicle registration records and provided the age, gender, and ZIP code of the registered owner(s). VINs were decoded to obtain the curb weight and horsepower of vehicles. The study focused on 26,659 observed vehicles for which information on horsepower was available and the observed age and gender of drivers matched vehicle registration records. Log-linear regression estimated the effects of vehicle power on mean travel speeds, and logistic regression estimated the effects of vehicle power on the likelihood of a vehicle traveling over the speed limit and more than 10 mph over the limit.

Results: After controlling for driver characteristics, speed limit, vehicle type, and traffic volume, a 1-unit increase in vehicle power was associated with a 0.7% increase in mean speed, a 2.7% increase in the likelihood of a vehicle exceeding the speed limit by any amount, and an 11.6% increase in the likelihood of a vehicle exceeding the limit by 10 mph. All of these increases were highly significant.

Conclusions: Speeding persists as a major factor in crashes in the United States. There are indications that travel speeds have increased in recent years. The current findings suggest the trend toward substantially more powerful vehicles may be contributing to higher speeds. Given the strong association between travel speed and crash risk and crash severity, this is cause for concern.  相似文献   


3.
Abstract

Objective: The objective of this research study is to estimate the benefit to pedestrians if all U.S. cars, light trucks, and vans were equipped with an automated braking system that had pedestrian detection capabilities.

Methods: A theoretical automatic emergency braking (AEB) model was applied to real-world vehicle–pedestrian collisions from the Pedestrian Crash Data Study (PCDS). A series of potential AEB systems were modeled across the spectrum of expected system designs. Both road surface conditions and pedestrian visibility were accounted for in the model. The impact speeds of a vehicle without AEB were compared to the estimated impact speeds of vehicles with a modeled pedestrian detecting AEB system. These impacts speeds were used in conjunction with an injury and fatality model to determine risk of Maximum Abbreviated Injury Scale of 3 or higher (MAIS 3+) injury and fatality.

Results: AEB systems with pedestrian detection capability, across the spectrum of expected design parameters, reduced fatality risk when compared to human drivers. The most beneficial system (time-to-collision [TTC]?=?1.5?s, latency = 0?s) decreased fatality risk in the target population between 84 and 87% and injury risk (MAIS score 3+) between 83 and 87%.

Conclusions: Though not all crashes could be avoided, AEB significantly mitigated risk to pedestrians. The longer the TTC of braking and the shorter the latency value, the higher benefits showed by the AEB system. All AEB models used in this study were estimated to reduce fatalities and injuries and were more effective when combined with driver braking.  相似文献   

4.
Introduction: Pedestrian fatalities in the United States increased 45.5% between 2009 and 2017. More than 85% of those additional pedestrian fatalities occurred at night. Method: We examine Fatality Analysis Reporting System (FARS) data for fatal pedestrian crashes that occurred in the dark between 2002 and 2017. Within-variable and before/after examinations of crashes in terms of infrastructure, user, vehicle, and situational characteristics are performed with one-way analysis of variance (ANOVA) and two-sample t-tests. We model changes in crash characteristic proportions between 2002–2009 and 2010–2017 using linear regressions and test for autocorrelation with Breusch-Godfrey tests. Results: The increase in fatal nighttime pedestrian crashes is most strongly correlated with infrastructure factors: non-intersection unmarked locations (saw 80.8% of additional fatalities); 40–45 mph roads (54.6%); five-lane roads (40.7%); urban (99.7%); and arterials (81.1%). In addition, SUVs were involved in 39.7% of additional fatalities, overrepresenting their share of the fleet. Increased pedestrian alcohol and drug involvement warrant further investigation. The age of pedestrians killed increased more (18.1%) than the national average (3.2%). Conclusions: By identifying factors related to the increase in nighttime pedestrian fatalities, this work constitutes a vital first step in making our streets safer for pedestrians. Practical Applications: More research is needed to understand the efficacy of different solutions, but this paper provides guidance for such future research. Engineering solutions such as road diets or traffic calming may be used to improve identified infrastructure issues by reducing vehicle speeds and road widths. Rethinking vehicle design, especially high front profiles, may improve vehicle issues. However, the problems giving rise to these pedestrian fatalities are likely a result of not only engineering issues but also interrelated social and political factors. Solutions may be correspondingly comprehensive, employing non-linear, systems-based approaches such as Safe Systems.  相似文献   

5.
Objective: The purpose of this study was to identify and better understand the features of fatal injuries in cyclists aged 75 years and over involved in collisions with either hood- or van-type vehicles.

Methods: This study investigated the fatal injuries of cyclists aged 75 years old and over by analyzing accident data. We focused on the body regions to which the fatal injury occurred using vehicle–bicycle accident data from the Institute for Traffic Accident Research and Data Analysis (ITARDA) in Japan. Using data from 2009 to 2013, we examined the frequency of fatally injured body region by gender, age, and actual vehicle travel speed. We investigated any significant differences in distributions of fatal injuries by body region for cyclists aged 75 years and over using chi-square tests to compare with cyclists in other age groups. We also investigated the cause of fatal head injuries, such as impact with a road surface or vehicle.

Results: The results indicated that head injuries were the most common cause of fatalities among the study group. At low vehicle travel speeds for both hood- and van-type vehicles, fatalities were most likely to be the result of head impacts against the road surface.

The percentage of fatalities following hip injuries was significantly higher for cyclists aged 75 years and over than for those aged 65–74 or 13–59 in impacts with hood-type vehicles. It was also higher for women than men in the over-75 age group in impacts with these vehicles.

Conclusions: For cyclists aged 75 years and over, wearing a helmet may be helpful to prevent head injuries in vehicle-to-cyclist accidents. It may also be helpful to introduce some safety measures to prevent hip injuries, given the higher level of fatalities following hip injury among all cyclists aged 75 and over, particularly women.  相似文献   


6.
Abstract

Objective: When 2 vehicles of different sizes collide, the occupants of the smaller vehicle are more likely to be injured than the occupants of the larger vehicle. The larger vehicle is both more protective of its own occupants and more aggressive toward occupants of the other vehicle. However, larger, heavier vehicles tend to be designed in ways that amplify their incompatibility with smaller, lighter vehicles (by having a higher ride height, for example). A 2012 study by the Insurance Institute for Highway Safety (IIHS) concluded that fatalities caused by design incompatibility have decreased in recent years. The current study was conducted to update the 2012 IIHS analysis and to explore trends in vehicle incompatibility over time.

Methods: Analyses examined deaths in crashes involving 1- to 4-year-old passenger vehicles from 1989 to 2016 collected from the Fatality Analysis Reporting System (FARS). Trends in driver risk were examined by comparing driver death rates per million registered vehicle years across vehicle type and size. Trends in aggressivity were examined by comparing partner driver death rates across vehicle type and size.

Results: Cars and SUVs have continued their trend toward reduced incompatibility. In 1989–1992, SUVs were 132% more likely to kill the driver in a partner car compared with when a car crashed with another car. By 2013–2016, this value had dropped to 28%. Pickups and cars remain just as incompatible in 2013–2016 as they were in 1989–1992, however (159% vs. 158%). Remaining pickup incompatibility may be largely due to excess curb weight rather than to shape or design features, because light pickups were just 23% more likely to kill the driver in a partner car compared with when a car crashed with another car.

Conclusions: The trend toward reduced fleet incompatibility has continued in the latest crash data, particularly for cars and SUVs. Although pickup–car incompatibility has also decreased over time, pickups remain disproportionately aggressive toward other vehicles, possibly due to their greater average curb weight. Reducing the weight of some of the heaviest vehicles and making crash avoidance technology fitment more widespread may be promising means to reduce remaining fleet incompatibility. Identifying the source of remaining incompatibility will be important for safety improvements going forward.  相似文献   

7.
Objectives: Each year, pedestrian injuries constitute over 40% of all road casualty deaths and up to 60% of all urban road casualty deaths in Ghana. This is as a result of the overwhelming dependence on walking as a mode of transport in an environment where there are high vehicular speeds and inadequate pedestrian facilities. The objectives of this research were to establish the (1) impact of traffic calming measures on vehicle speeds and (2) association between traffic calming measures and pedestrian injury severity in built-up areas in Ghana.

Method: Vehicle speeds were unobtrusively measured in 38 selected settlements, including 19 with traffic calming schemes and 19 without. The study design used in this research was a matched case–control. A regression analysis compared case and control casualties using a conditional logistic regression.

Results: Generally, the mean vehicle speeds and the proportion of vehicles exceeding the 50?km/h speed limit were significantly lower in settlements that have traffic calming measures compared to towns without any traffic calming measures. Additionally, the proportion of motorists who exceeded the speed limit was 30% or less in settlements that have traffic calming devices and the proportion who exceeded the speed limit was 60% or more in towns without any traffic calming measures. The odds of pedestrian fatality was significantly higher in settlements that have no traffic calming devices compared to those that have (odds ratio [OR]?=?1.98; 95% confidence interval, 1.09–4.43). The protective effects of a traffic calming scheme that has a speed table was notably higher than those where there were no speed tables.

Conclusion: It was clearly evident that traffic calming devices reduce vehicular speeds and, thus, the incidence and severity of pedestrian injuries in built-up areas in Ghana. However, the fact that they are deployed on arterial roads is increasingly becoming a road safety concern. Given the emerging safety challenges associated with speed calming measures, we recommend that their use be restricted to residential streets but not on arterial roads. Long-term solutions for improving pedestrian safety proposed herein include bypassing settlements along the highways to reduce pedestrians’ exposure to traffic collisions and adopting a modern way of enforcement such as evidence-based laser monitoring in conjunction with a punishment regime that utilizes the demerit points system.  相似文献   

8.
Objective: In 2012 in the United States, pedestrian injuries accounted for 3.3% of all traffic injuries but, disproportionately, pedestrian fatalities accounted for roughly 14% of traffic-related deaths (NHTSA 2014 NHTSA. Traffic Safety Facts 2012 Pedestrians. Washington, DC: Author; 2014. DOT HS 811 888. [Google Scholar]). In many other countries, pedestrians make up more than 50% of those injured and killed in crashes. This research project examined driver response to crash-imminent situations involving pedestrians in a high-fidelity, full-motion driving simulator. This article presents a scenario development method and discusses experimental design and control issues in conducting pedestrian crash research in a simulation environment. Driving simulators offer a safe environment in which to test driver response and offer the advantage of having virtual pedestrian models that move realistically, unlike test track studies, which by nature must use pedestrian dummies on some moving track.

Methods: An analysis of pedestrian crash trajectories, speeds, roadside features, and pedestrian behavior was used to create 18 unique crash scenarios representative of the most frequent and most costly crash types. For the study reported here, we only considered scenarios where the car is traveling straight because these represent the majority of fatalities. We manipulated driver expectation of a pedestrian both by presenting intersection and mid-block crossing as well as by using features in the scene to direct the driver's visual attention toward or away from the crossing pedestrian. Three visual environments for the scenarios were used to provide a variety of roadside environments and speed: a 20–30 mph residential area, a 55 mph rural undivided highway, and a 40 mph urban area.

Results: Many variables of crash situations were considered in selecting and developing the scenarios, including vehicle and pedestrian movements; roadway and roadside features; environmental conditions; and characteristics of the pedestrian, driver, and vehicle. The driving simulator scenarios were subjected to iterative testing to adjust time to arrival triggers for the pedestrian actions. This article discusses the rationale behind creating the simulator scenarios and some of the procedural considerations for conducting this type of research.

Conclusions: Crash analyses can be used to construct test scenarios for driver behavior evaluations using driving simulators. By considering trajectories, roadway, and environmental conditions of real-world crashes, representative virtual scenarios can serve as safe test beds for advanced driver assistance systems. The results of such research can be used to inform pedestrian crash avoidance/mitigation systems by identifying driver error, driver response time, and driver response choice (i.e., steering vs. braking).  相似文献   

9.
Objectives: The purpose of this study is to define a computationally efficient virtual test system (VTS) to assess the aggressivity of vehicle front-end designs to pedestrians considering the distribution of pedestrian impact configurations for future vehicle front-end optimization. The VTS should represent real-world impact configurations in terms of the distribution of vehicle impact speeds, pedestrian walking speeds, pedestrian gait, and pedestrian height. The distribution of injuries as a function of body region, vehicle impact speed, and pedestrian size produced using this VTS should match the distribution of injuries observed in the accident data. The VTS should have the predictive ability to distinguish the aggressivity of different vehicle front-end designs to pedestrians.

Methods: The proposed VTS includes 2 parts: a simulation test sample (STS) and an injury weighting system (IWS). The STS was defined based on MADYMO multibody vehicle to pedestrian impact simulations accounting for the range of vehicle impact speeds, pedestrian heights, pedestrian gait, and walking speed to represent real world impact configurations using the Pedestrian Crash Data Study (PCDS) and anthropometric data. In total 1,300 impact configurations were accounted for in the STS. Three vehicle shapes were then tested using the STS. The IWS was developed to weight the predicted injuries in the STS using the estimated proportion of each impact configuration in the PCDS accident data. A weighted injury number (WIN) was defined as the resulting output of the VTS. The WIN is the weighted number of average Abbreviated Injury Scale (AIS) 2+ injuries recorded per impact simulation in the STS. Then the predictive capability of the VTS was evaluated by comparing the distributions of AIS 2+ injuries to different pedestrian body regions and heights, as well as vehicle types and impact speeds, with that from the PCDS database. Further, a parametric analysis was performed with the VTS to assess the sensitivity of the injury predictions to changes in vehicle shape (type) and stiffness to establish the potential for using the VTS for future vehicle front-end optimization.

Results: An STS of 1,300 multibody simulations and an IWS based on the distribution of impact speed, pedestrian height, gait stance, and walking speed is broadly capable of predicting the distribution of pedestrian injuries observed in the PCDS database when the same vehicle type distribution as the accident data is employed. The sensitivity study shows significant variations in the WIN when either vehicle type or stiffness is altered.

Conclusions: Injury predictions derived from the VTS give a good representation of the distribution of injuries observed in the PCDS and distinguishing ability on the aggressivity of vehicle front-end designs to pedestrians. The VTS can be considered as an effective approach for assessing pedestrian safety performance of vehicle front-end designs at the generalized level. However, the absolute injury number is substantially underpredicted by the VTS, and this needs further development.  相似文献   


10.
Objective: European car design regulations and New Car Assessment Program (NCAP) ratings have led to reductions in pedestrian injuries. The aim of this study was to evaluate the impact of improving vehicle front design on mortality and morbidity due to pedestrian injuries in a European country (Germany) and 2 countries (the United States and India) that do not have pedestrian-focused NCAP testing or design regulations.

Methods: We used data from the International Road Traffic and Accident Database and the Global Burden of Disease project to estimate baseline pedestrian deaths and nonfatal injuries in each country in 2013. The effect of improved passenger car star ratings on probability of pedestrian injury was based on recent evaluations of pedestrian crash data from Germany. The effect of improved heavy motor vehicle (HMV) front end design on pedestrian injuries was based on estimates reported by simulation studies. We used burden of disease methods to estimate population health loss by combining the burden of morbidity and mortality in disability-adjusted life years (DALYs) lost.

Results: Extrapolating from evaluations in Germany suggests that improving front end design of cars can potentially reduce the burden of pedestrian injuries due to cars by up to 24% in the United States and 41% in India. In Germany, where cars comply with the United Nations regulation on pedestrian safety, additional improvements would have led to a 1% reduction. Similarly, improved HMV design would reduce DALYs lost by pedestrian victims hit by HMVs by 20% in each country. Overall, improved vehicle design would reduce DALYs lost to road traffic injuries (RTIs) by 0.8% in Germany, 4.1% in the United States, and 6.7% in India.

Conclusions: Recent evaluations show a strong correlation between Euro NCAP pedestrian scores and real-life pedestrian injuries, suggesting that improved car front end design in Europe has led to substantial reductions in pedestrian injuries. Although the United States has fewer pedestrian crashes, it would nevertheless benefit substantially by adopting similar regulations and instituting pedestrian NCAP testing. The maximum benefit would be realized in low- and middle-income countries like India that have a high proportion of pedestrian crashes. Though crash avoidance technologies are being developed to protect pedestrians, supplemental protection through design regulations may significantly improve injury countermeasures for vulnerable road users.  相似文献   


11.
Objective: Traffic incidents occurring on roadways require the coordinated effort of multiple responder and recovery entities, including communications, law enforcement, fire and rescue, emergency medical services, hazardous materials, transportation agencies, and towing and recovery. The objectives of this study were to (1) identify and characterize transportation incident management (TIM)-related occupational fatalities; (2) assess concordance of surveillance data sources in identifying TIM occupations, driver vs. pedestrian status, and occupational fatality incident location; and (3) determine and compare U.S. occupational fatality rates for TIM industries.

Methods: The Kentucky Fatality Assessment and Control Evaluation (FACE) program analyzed 2005–2016 TIM occupational fatality data using multiple data sources: death certificate data, Collision Report Analysis for Safer Highways (CRASH) data, and media reports, among others. Literal text analysis was performed on FACE data, and a multiple linear regression model and SAS proc sgpanel were used to estimate and visualize the U.S. TIM occupational mortality trend lines and confidence bounds.

Results: There were 29 TIM fatalities from 2005 to 2015 in Kentucky; 41% of decedents were in the police protection occupation, and 21% each were in the fire protection and motor vehicle towing industries. Over one half of the TIM decedents were performing work activities as pedestrians when they died. Media reports identified the majority of the occupational fatalities as TIM related (28 of 29 TIM-related deaths); the use of death certificates as the sole surveillance data source only identified 17 of the 29 deaths as TIM related, and the use of CRASH data only identified 4 of the 29 deaths as TIM related. Injury scenario text analysis showed that law enforcement vehicle pursuit, towing and recovery vehicle loading, and disabled vehicle response were particular high-risk activities that led to TIM deaths. Using U.S. data, the motor vehicle towing industry had a significantly higher risk for occupational mortality compared to the fire protection and police protection industries.

Conclusions: Multiple data sources are needed to comprehensively identify TIM fatalities and to examine the circumstances surrounding TIM fatalities, because no one data source in itself was adequate and undercounted the total number of TIM fatalities. The motor vehicle towing industry, in particular, is at elevated risk for occupational mortality, and targeted mandatory TIM training for the motor vehicle towing industry should be considered. In addition, enhanced law enforcement roadside safety training during vehicle pursuit and apprehension of suspects is recommended.  相似文献   


12.
Abstract

Objective: In Sweden, cyclists, pedestrians, and moped riders share the space on combined pedestrian and cycle paths, and their speeds may differ greatly. Both actual speed and speed differences can potentially influence the number of accidents on the shared paths. As a starting point, this article studies the speed component and how cyclists’ speed varies at pedestrian and cycle paths depending on the day, week, and year; road user composition; and road design.

Methods: Three data sources were used: Existing measurements of cycle speed and flow in 3 different Swedish municipalities, Eskilstuna (1 site, January–December 2015), Linköping (6 sites, 4?weeks in September–October 2015), and Stockholm (10 sites, 1–5?days in August–September 2015); complementary measurements of cycle speed and flow in Linköping (4 sites, 1–10?days in August–September 2016) and Stockholm (1 site, only part of 2?days in August 2016) were also conducted within the project, in addition to roadside observations of bicycle types at the 5 new sites.

Results: The average speed of cyclists on the paths varied between 12.5 and 26.5?km/h. As expected, the lower average speeds were found in uphill directions, near intersections, and on paths with high pedestrian flows. The higher speeds were found in downhill directions and on commuter routes. In all, 70%–95% of road users observed on pedestrian and cycle paths were cyclists, and 5%–30% were pedestrians. The most common type of bicycle was a comfort bike, followed by a trekking bike. Electric-assisted bicycles and racer bikes occurred at all sites, with proportions of 1%–10% and 1%–15%, respectively. The 2 sites with the highest proportion of electric-assisted bicycles and racer bicycles also had the highest average speeds. The differences in average speed throughout the day, week, and year could only be assessed at one of the sites. Only small differences were found, with the most noticeable being that the average speed was lower in January and February (13.8?km/h) compared to the rest of the year (15.3–16.1?km/h). The average speed was also lower during daytime (14.7?km/h) than during other parts of the day (15.4–15.8?km/h).

Conclusions: The relationship between bicycle type and measured speed was not entirely clear, but the results suggest that paths with higher proportions of electric and racer bicycles have higher average speeds. There also appears to be a connection between average speed and the width of the distribution; that is, the higher the average speed, the wider the speed distribution. More research is needed on how speed levels and speed variance affect accident risk.  相似文献   

13.
Objective: The primary objective of this study was to evaluate the effects of different speed-control measures on the safety of unsignalized midblock street crossings.

Methods: In China, it is quite difficult to obtain traffic crash and conflict data for pedestrians using such crossings, mainly due to the lack of traffic data management and organizational issues. In light of this, the proposed method did not rely on such data, but considered vehicle speed, which is a leading contributing factor of pedestrian safety at mid blocks. To evaluate the speed reduction effects at different locations, the research team utilized the following methods in this study: (1) testing speed differences—on the basis of the collected data, statistical analysis is conducted to test the speed differences between upstream and crosswalk, upstream and downstream, and downstream and crosswalk; and (2) mean distribution deviation—this value is calculated by taking the difference in cumulative speed distributions for the two different samples just mentioned. In order to better understand the variation of speed reduction effects at different distances from speed-control facilities, data were collected from six types of speed-control measures with a visual range of 60 m.

Results: The results showed that speed humps, transverse rumble strips, and speed bumps were effective in reducing vehicle speeds. Among them speed humps performed the best, with reductions of 21.1% and 20.0% from upstream location (25.01 km/h) and downstream location (24.66 km/h) to pedestrian crosswalk (19.73 km/h), respectively. By contrast, the speed reduction effects were minimal for stop and yield signs, flashing yellow lights, and crossings without treatment.

Conclusions: Consequently, in order to reduce vehicle speeds and improve pedestrian safety at mid blocks, several speed-control measures such as speed humps, speed bumps, and transverse rumble strips are recommended to be deployed in the vicinity of pedestrian crosswalks.  相似文献   

14.
Abstract

Objective: The objective of this research is to use historical crash data to evaluate the potential benefits of both high- and low-speed automatic emergency braking (AEB) with forward collision warning (FCW) systems.

Methods: Crash data from the NHTSA’s NASS–General Estimates System (GES) and Fatality Analysis Reporting System (FARS) databases were categorized to classify crashes by the speed environment, as well as to identify cases where FCW systems would be applicable.

Results: Though only about 19% of reported crashes occur in environments with speeds greater than 45?mph, approximately 32% of all serious or fatal crashes occur in environments with speeds greater than 45?mph. The percentage of crashes where FCW systems would be relevant has remained remarkably constant, varying between about 21 and 26% from 2002 to 2015. In 2-vehicle fatal crashes where one rear-ends the other, the fatality rates are actually higher in the struck vehicle (33%) than the striking vehicle (26%). The disparity is even greater when considering size–class differences, such as when a light truck rear-ends a passenger car (15 vs. 42% fatality rates, respectively).

Conclusions: NHTSA and the Insurance Institute for Highway Safety (IIHS) proposed the Automatic Emergency Braking Initiative in 2015, which is intended to make AEB (also called crash-imminent braking) with FCW systems standard on nearly all new cars by September 2022. Twenty automakers representing 99% of the U.S. auto market voluntarily committed to the initiative. Though the commitment to safety is laudable, the AEB component of the agreement only covers low-speed AEB systems, with the test requirements set to 24?mph or optionally as low as 12?mph. The test requirements for the FCW component of the agreement include 2 tests that begin at 45?mph. Only 21% of relevant serious injury or fatal accidents occur in environments at speeds under 24?mph, whereas about 22% of serious or fatal crashes occur in environments with speeds greater than 45?mph. This means that the AEB with FCW systems as agreed upon will cover only 21% of serious or fatal crashes and will not cover 22% of serious or fatal crashes. Because these systems are protective not only for the occupants of the vehicle where they are installed but also other vehicles on the roads, the data indicate that these systems should be a standard feature on all cars for high-speed as well as low-speed environments for the greatest social benefit.  相似文献   

15.
Objective: Intersection crashes account for over 4,500 fatalities in the United States each year. Intersection Advanced Driver Assistance Systems (I-ADAS) are emerging vehicle-based active safety systems that have the potential to help drivers safely navigate across intersections and prevent intersection crashes and injuries. The performance of an I-ADAS is expected to be highly dependent upon driver evasive maneuvering prior to an intersection crash. Little has been published, however, on the detailed evasive kinematics followed by drivers prior to real-world intersection crashes. The objective of this study was to characterize the frequency, timing, and kinematics of driver evasive maneuvers prior to intersection crashes.

Methods: Event data recorders (EDRs) downloaded from vehicles involved in intersection crashes were investigated as part of NASS-CDS years 2001 to 2013. A total of 135 EDRs with precrash vehicle speed and braking application were downloaded to investigate evasive braking. A smaller subset of 59 EDRs that collected vehicle yaw rate was additionally analyzed to investigate evasive steering. Each vehicle was assigned to one of 3 precrash movement classifiers (traveling through the intersection, completely stopped, or rolling stop) based on the vehicle's calculated acceleration and observed velocity profile. To ensure that any significant steering input observed was an attempted evasive maneuver, the analysis excluded vehicles at intersections that were turning, driving on a curved road, or performing a lane change. Braking application at the last EDR-recorded time point was assumed to indicate evasive braking. A vehicle yaw rate greater than 4° per second was assumed to indicate an evasive steering maneuver.

Results: Drivers executed crash avoidance maneuvers in four-fifths of intersection crashes. A more detailed analysis of evasive braking frequency by precrash maneuver revealed that drivers performing complete or rolling stops (61.3%) braked less often than drivers traveling through the intersection without yielding (79.0%). After accounting for uncertainty in the timing of braking and steering data, the median evasive braking time was found to be between 0.5 to 1.5 s prior to impact, and the median initial evasive steering time was found to occur between 0.5 and 0.9 s prior to impact. The median average evasive braking deceleration for all cases was found to be 0.58 g. The median of the maximum evasive vehicle yaw rates was found to be 8.2° per second. Evasive steering direction was found to be most frequently in the direction of travel of the approaching vehicle.

Conclusions: The majority of drivers involved in intersection crashes were alert enough to perform an evasive action. Most drivers used a combination of steering and braking to avoid a crash. The average driver attempted to steer and brake at approximately the same time prior to the crash.  相似文献   

16.
Objective: This article estimates the safety potential of a current commercially available connected vehicle technology in real-world crashes.

Method: Data from the Centre for Automotive Safety Research's at-scene in-depth crash investigations in South Australia were used to simulate the circumstances of real-world crashes. A total of 89 crashes were selected for inclusion in the study. The crashes were selected as representative of the most prevalent crash types for injury or fatal crashes and had potential to be mitigated by connected vehicle technology. The trajectory, speeds, braking, and impact configuration of the selected in-depth cases were replicated in a software package and converted to a file format allowing “replay” of the scenario in real time as input to 2 Cohda Wireless MK2 onboard units. The Cohda Wireless onboard units are a mature connected vehicle technology that has been used in both the German simTD field trial and the U.S. Department of Transport's Safety Pilot project and have been tuned for low false alarm rates when used in the real world. The crash replay was achieved by replacing each of the onboard unit Global Positioning System (GPS) inputs with the simulated data of each of the involved vehicles. The time at which the Cohda Wireless threat detection software issued an elevated warning was used to calculate a new impact speed using 3 different reaction scenarios and 2 levels of braking.

Results: It was found that between 37 and 86% of the simulated crashes could be avoided, with highest percentage due a fully autonomous system braking at 0.7 g. The same system also reduced the impact speed relative to the actual crash in all cases. Even when a human reaction time of 1.2 s and moderate braking of 0.4 g was assumed, the impact speed was reduced in 78% of the crashes. Crash types that proved difficult for the threat detection engine were head-on crashes where the approach angle was low and right turn–opposite crashes.

Conclusions: These results indicate that connected vehicle technology can be greatly beneficial in real-world crash scenarios and that this benefit would be maximized by having the vehicle intervene autonomously with heavy braking. The crash types that proved difficult for the connected vehicle technology could be better addressed if controller area network (CAN) information is available, such as steering wheel angle, so that driver intent can be inferred sooner. More accurate positioning in the real world (e.g., combining satellite positioning and accelerometer data) would allow the technology to be more effective for near-collinear head-on and rear-end crashes, because the low approach angles that are common in such crashes are currently ignored in order to minimize false alarms due to positioning uncertainty.  相似文献   

17.
Objective: Powered mobility devices (PMDs) are commonly used as aids for older people and people with disabilities, subgroups of vulnarable road users (VRUs) who are rarely noted in traffic safety contexts. However, the problem of accidents involving PMD drivers has been reported in many countries where these vehicles have become increasingly popular.

The aim of this study is to extract and analyze national PMD-related accident and injury data reported to the Swedish Traffic Accident Data Acquisition (STRADA) database. The results will provide valuable insight into the risks and obstacles that PMD drivers are exposed to in the traffic environment and may contribute to improving the mobility of this group in the long term.

Methods: The current study is based on data from 743 accidents and 998 persons. An analysis was performed on a subset of data (N?=?301) in order to investigate the development of accidents over a period of 10 years. Thereafter, each accident in the whole data set was registered as either single (N?=?427) or collision (N?=?315).

Results: The results show that there was a 3-fold increase in the number of PMD-related accidents reported to STRADA during the period 2007–2016.

With regard to single accidents, collisions, as well as fatalities, the injury statistics were dominated by males. Single accidents were more common than collisions (N?=?427 and N?=?316, respectively) and the level of injury sustained in each type of accident is on par.

The vast majority of single accidents resulted in the PMD driver impacting the ground (87%), due to either PMD turnover (71%) or the driver falling out of the PMD (16%). The reason for many of the single accidents was a difference in ground level (34%, typically a curb).

Cars, trucks, or buses were involved in 67% of collision events; these occured predominantly at junctions or intersections (70%).

Abbreviated Injury Scale (AIS) 3+ injuries were dominated by hip and head injuries in both single accidents and collision events.

Conclusions: The present study shows that further research on PMD accidents is required, with regard to both single accidents and collision events. To ensure that appropriate decisions are made, future work should follow up on injury trends and further improve the quality of PDM-related accident data. Improved vehicle stability and design, increased usage of safety equipment, proper training programs, effective maintenance services, and development of a supporting infrastructure would contribute to increased safety for PMD drivers.  相似文献   

18.
Objective: Pedestrian lower extremity represents the most frequently injured body region in car-to-pedestrian accidents. The European Directive concerning pedestrian safety was established in 2003 for evaluating pedestrian protection performance of car models. However, design changes have not been quantified since then. The goal of this study was to investigate front-end profiles of representative passenger car models and the potential influence on pedestrian lower extremity injury risk.

Methods: The front-end styling of sedans and sport utility vehicles (SUV) released from 2008 to 2011 was characterized by the geometrical parameters related to pedestrian safety and compared to representative car models before 2003. The influence of geometrical design change on the resultant risk of injury to pedestrian lower extremity—that is, knee ligament rupture and long bone fracture—was estimated by a previously developed assessment tool assuming identical structural stiffness. Based on response surface generated from simulation results of a human body model (HBM), the tool provided kinematic and kinetic responses of pedestrian lower extremity resulted from a given car's front-end design.

Results: Newer passenger cars exhibited a “flatter” front-end design. The median value of the sedan models provided 87.5 mm less bottom depth, and the SUV models exhibited 94.7 mm less bottom depth. In the lateral impact configuration similar to that in the regulatory test methods, these geometrical changes tend to reduce the injury risk of human knee ligament rupture by 36.6 and 39.6% based on computational approximation. The geometrical changes did not significantly influence the long bone fracture risk.

Conclusions: The present study reviewed the geometrical changes in car front-ends along with regulatory concerns regarding pedestrian safety. A preliminary quantitative benefit of the lower extremity injury reduction was estimated based on these geometrical features. Further investigation is recommended on the structural changes and inclusion of more accident scenarios.  相似文献   


19.
Objective: Insurance Institute for Highway Safety (IIHS) high-hooded side impacts were analyzed for matched vehicle tests with and without side airbags. The comparison provides a measure of the effectiveness of side airbags in reducing biomechanical responses for near-side occupants struck by trucks, SUVs, and vans at 50 km/h.

Method: The IIHS moving deformable barrier (MDB) uses a high-hooded barrier face. It weighs 1,500 kg and impacts the driver side perpendicular to the vehicle at 50 km/h. SID IIs dummies are placed in the driver and left second-row seats. They represent fifth percentile female occupants.

IIHS tests were reviewed for matches with one test with a side airbag and another without it in 2003–2007 model year (MY) vehicles. Four side airbag systems were evaluated: (1) curtain and torso side airbags, (2) head and torso side airbag, (3) curtain side airbag, and (4) torso side airbag.

There were 24 matched IIHS vehicle tests: 13 with and without a curtain and torso side airbags, 4 with and without a head and torso side airbag, 5 with and without a side curtain airbag, and 2 with and without a torso airbag. The head, chest, and pelvis responses were compared for each match and the average difference was determined across all matches for a type of side airbag.

Results: The average reduction in head injury criterion (HIC) was 68 ± 16% (P < .001) with curtain and torso side airbags compared to the HIC without side airbags. The average HIC was 296 with curtain and torso side airbags and 1,199 without them. The viscous response (VC) was reduced 54 ± 19% (P < .005) with curtain and torso side airbags. The combined acetabulum and ilium force (7 ± 15%) and pelvic acceleration (?2 ± 17%) were essentially similar in the matched tests.

The head and torso side airbag reduced HIC by 42 ± 30% (P < .1) and VC by 32 ± 26% compared to vehicles without a side airbag. The average HIC was 397 with the side head and torso airbag compared to 729 without it. The curtain airbag and torso airbag only showed lower head responses but essentially no difference in the chest and pelvis responses.

Conclusion: The curtain and torso side airbags effectively reduced biomechanical responses for the head and chest in 50 km/h side impacts with a high-hooded deformable barrier. The reductions in the IIHS tests are directionally the same as estimated fatality reductions in field crashes reported by NHTSA for side airbags.  相似文献   

20.
Abstract

Objectives: Automatic emergency braking (AEB) is a proven effective countermeasure for preventing front-to-rear crashes, but it has not yet fully lived up to its estimated potential. This study identified the types of rear-end crashes in which striking vehicles with AEB are overrepresented to determine whether the system is more effective in some situations than in others, so that additional opportunities for increasing AEB effectiveness might be explored.

Methods: Rear-end crash involvements were extracted from 23?U.S. states during 2009–2016 for striking passenger vehicles with and without AEB among models where the system was optional. Logistic regression was used to examine the odds that rear-end crashes with various characteristics involved a striking vehicle with AEB, controlling for driver and vehicle features.

Results: Striking vehicles were significantly more likely to have AEB in crashes where the striking vehicle was turning relative to when it was moving straight (odds ratio [OR]?=?2.35; 95% confidence interval [CI], 1.76, 3.13); when the struck vehicle was turning (OR = 1.66; 95% CI, 1.25, 2.21) or changing lanes (OR = 2.05; 95% CI, 1.13, 3.72) relative to when it was slowing or stopped; when the struck vehicle was not a passenger vehicle or was a special use vehicle relative to a car (OR = 1.61; 95% CI, 1.01, 2.55); on snowy or icy roads relative to dry roads (OR = 1.83; 95% CI, 1.16, 2.86); or on roads with speed limits of 70+ mph relative to those with 40 to 45?mph speed limits (OR = 1.49; 95% CI, 1.10, 2.03). Overall, 25.3% of crashes where the striking vehicle had AEB had at least one of these overrepresented characteristics, compared with 15.9% of strikes by vehicles without AEB.

Conclusions: The typical rear-end crash occurs when 2 passenger vehicles are proceeding in line, on a dry road, and at lower speeds. Because atypical crash circumstances are overrepresented among rear-end crashes by striking vehicles with AEB, it appears that the system is doing a better job of preventing the more typical crash scenario. Consumer information testing programs of AEB use a test configuration that models the typical rear-end crash type. Testing programs promoting good AEB performance in crash circumstances where vehicles with AEB are overrepresented could guide future development of AEB systems that perform well in these additional rear-end collision scenarios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号