首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Among the mitigation strategies to prevent nitrogen (N) losses from ureic fertilizers, urease inhibitors (UIs) have been demonstrated to promote high N use efficiency by reducing ammonia (NH3) volatilization. In the last few years, some field experiments have also shown its effectiveness in reducing nitrous oxide (N2O) losses from fertilized soils under conditions of low soil moisture. An incubation experiment was carried out with the aim of assessing the main biotic mechanisms behind N2O emissions once that the UIs N-(n-butyl) thiophosphoric triamid (NBPT) and phenil phosphorodiamidate (PPDA) were applied with Urea (U) under different soil moisture conditions (40, 60 and 80 % water-filled pore space, WFPS). In the same study we tried to analyze to what extent soil WFPS regulates the effect of these inhibitors on N2O emissions. The use of PPDA in our study allowed us to compare the effect of NBPT with that of another commercially available urease inhibitor, aiming to see if the results were inhibitor-specific or not. Based on the results from this experiment, a WFPS (i.e. 60 %) was chosen for a second study (i.e. mesocosm experiment) aiming to assess the efficiency of the UIs to indirectly affect N2O emissions through influencing the pool of soil mineral N. The N2O emissions at 40 % WFPS were almost negligible, being significantly lower from all fertilized treatments than that produced at 60 and 80 % WFPS. When compared to U alone, NBPT+U reduced the N2O emissions at 60 % WFPS but had no effect at 80 % WFPS. The application of PPDA significantly increased the emissions with respect to U at 80 % WFPS whereas no significant effect was found at 60 %. At 80 % WFPS, denitrification was the main source of N2O emissions for all treatments. In the mesocosm study, the application of NBPT+U was an effective strategy to reduce N2O emissions (75 % reduction compared to U alone), due to a lower soil ammonium (NH4 +) content induced by the inhibitor. These results suggest that adequate management of the UI NBPT could provide, under certain soil conditions, an opportunity for mitigation of N2O emissions from fertilized soils.  相似文献   

2.
Measured carbon dioxide (CO2) flux from peat soils using the closed chamber technique combines root-related (autotrophic + heterotrophic where rhizosphere organisms are involved) and peat-based (heterotrophic) respiration. The latter contributes to peat loss while the former is linked to recent CO2 removal through photosynthesis. The objective of this study was to separate root- from peat-based respiration. The study was conducted on peatland under 6 and 15 year old oil palm (Elaeis guineensis Jacq.) plantations in Jambi Province, Indonesia in 2011 to 2012. CO2 emissions were measured in the field from 25 cm diameter and 25 cm tall closed chambers using an infrared gas analyser. Root sampling and CO2 emissions measurements were at distances of 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, and 4.5 m from the centre of the base of the palm tree. The emission rate for the six and 15 year old oil palm plantations at ≥3.0 m from the centre of the tree were 38.2?±?9.5 and 34.1?±?15.9 Mg CO2 ha?1 yr?1, respectively. At distances <2.5 m, total respiration linearly decreased with distances from the trees. Heterotrophic respirations were 86 % of the 44.7?±?11.2 and 71 % of 47.8?±?21.3 Mg CO2 ha?1 yr?1 of weighted surface flux, respectively for the 6 and 15 year old plantations. We propose that CO2 flux measurements in oil palm plantations made at a distance of ≥3 m from the tree centre be used to represent the heterotrophic respiration that is relevant for the environmental impact assessment.  相似文献   

3.
Tropical peat swamp forests, which are predominantly located in Southeast Asia (SEA) and play a prominent role as a global carbon store, are being intensively degraded and converted to agricultural lands and tree plantations. For national inventories, updated estimates of peat emissions of greenhouse gases (GHG) from land use (LU) and land-use change in the tropics are required. In this context, we reviewed the scientific literature and calculated emission factors of peat net emissions of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) in seven representative LU categories for SEA i.e. intact peat swamp forest, degraded forest (logged, drained and affected by fire), mixed croplands and shrublands, rice fields, oil palm, Acacia crassicarpa and sago palm plantations. Peat net CO2 uptake from or emissions to the atmosphere were assessed using a mass balance approach. The balance included main peat C inputs through litterfall and root mortality and outputs via organic matter mineralization and dissolved organic carbon. Peat net CO2 loss rate from degraded forest, croplands and shrublands, rice fields, oil palm, A. crassicarpa and sago palm plantations amounted to 19.4?±?9.4, 41.0?±?6.7, 25.6?±?11.5, 29.9?±?10.6, 71.8?±?12.7 and 5.2?±?5.1 Mg CO2 ha?1 y?1, respectively. Total peat GHG losses amounted to 20.9?±?9.4, 43.8?±?6.8, 36.1?±?12.9, 30.4?±?10.6, 72?±?12.8 and 8.6?±?5.3 Mg CO2-equivalent ha?1 y?1 in the same LU categories, respectively. A single land-clearing fire would result in additional emissions of 493.6?±?156.0 Mg CO2-equivalent ha?1.  相似文献   

4.

Restoration of deforested and drained tropical peat swamp forests is globally relevant in the context of reducing emissions from deforestation and forest degradation. The seasonal flux of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) in a restoration concession in Central Kalimantan, Indonesia, was measured in the two contrasting land covers: shrubs and secondary forests growing on peatlands. We found that land covers had high, but insignificantly different, soil carbon stocks of 949?+?56 and 1126?+?147 Mg ha?1, respectively. The mean annual CO2 flux from the soil of shrub areas was 52.4?±?4.1 Mg ha?1 year?1, and from secondary peat swamp forests was 42.9?±?3.6 Mg ha?1 year?1. The significant difference in mean soil temperature in the shrubs (31.2 °C) and secondary peat swamp forests (26.3 °C) was responsible for the difference in total CO2 fluxes of these sites. We also found the mean annual total soil respiration was almost equally partitioned between heterotrophic respiration (20.8?+?1.3 Mg ha?1 year?1) and autotrophic respiration (22.6?+?1.5 Mg ha?1 year?1). Lowered ground water level up to ??40 cm in both land covers caused the increase of CO2 fluxes to 40–75%. These numbers contribute to the provision of emission factors for rewetted organic soils required in the national reporting using the 2013 Supplement of the 2006 Intergovernmental Panel on Climate Change (IPCC) Guidelines for wetlands as part of the obligation under the United Nations Framework Convention on Climate Change (UNFCCC).

  相似文献   

5.
Measurements of carbon dioxide (CO2) flux at the soil surface of oil palm (Elaeis guineensis Jacq.) plantations on peatlands typically exhibit considerable temporal and spatial variation, which challenges the derivation of emission factors required in land use discussions. We tested 20 cm surface soil moisture content, and the diurnal patterns in soil and air temperatures as CO2 flux controls during an annual measurement schedule in a 15-year-old oil palm plantation in Jambi Province, Sumatra, Indonesia. A total of 480 CO2 flux measurements were obtained using an Infrared Gas Analyser (IRGA) at six different time intervals each day. Samples were recorded at 20 observation points distributed along four transects located 15, 42, 50, 70, and 84 m from the edge of the drainage canal. Results showed CO2 flux exhibited no relationship to soil and air temperature, however values tended to increase with volumetric soil moisture content; the highest annual flux of 55 Mg ha?1 yr?1 was observed at mid-day, when air temperature was highest, and lowest at dawn when soil and air temperatures were lowest. CO2 flux decreased consistent with distance from the drainage canal, suggesting a higher flux with a deeper water table. This result indicates a shallow water table must be maintained. The annual mean CO2 flux of 46?±?30 Mg CO2 ha?1 yr?1 was comparable to other studies, and can be set as a baseline emissions factor for areas with similar land use and peat characteristics.  相似文献   

6.

Tropical peatlands in the Peruvian Amazon exhibit high densities of Mauritia flexuosa palms, which are often cut instead of being climbed for collecting their fruits. This is an important type of forest degradation in the region that could lead to changes in the structure and composition of the forest, quality and quantity of inputs to the peat, soil properties, and greenhouse gas (GHG) fluxes. We studied peat and litterfall characteristics along a forest degradation gradient that included an intact site, a moderately degraded site, and a heavily degraded site. To understand underlying factors driving GHG emissions, we examined the response of in vitro soil microbial GHG emissions to soil moisture variation, and we tested the potential of pneumatophores to conduct GHGs in situ. The soil phosphorus and carbon content and carbon-to-nitrogen ratio as well as the litterfall nitrogen content and carbon-to-nitrogen ratio were significantly affected by forest degradation. Soils from the degraded sites consistently produced more carbon dioxide (CO2) than soils from the intact site during in vitro incubations. The response of CO2 production to changes in water-filled pore space (WFPS) followed a cubic polynomial relationship with maxima at 60–70% at the three sites. Methane (CH4) was produced in limited amounts and exclusively under water-saturated conditions. There was no significant response of nitrous oxide (N2O) emissions to WFPS variation. Lastly, the density of pneumatophore decreased drastically as the result of forest degradation and was positively correlated to in situ CH4 emissions. We conclude that recurrent M. flexuosa harvesting could result in a significant increase of in situ CO2 fluxes and a simultaneous decrease in CH4 emissions via pneumatophores. These changes might alter long-term carbon and GHG balances of the peat, and the role of these ecosystems for climate change mitigation, which stresses the need for their protection.

  相似文献   

7.
库布齐沙漠油蒿灌丛土壤呼吸速率时空变异特征研究   总被引:4,自引:0,他引:4  
孟祥利  陈世苹  魏龙  林光辉 《环境科学》2009,30(4):1152-1158
利用Li-840红外气体分析仪和Li-6400-09土壤呼吸气室组装而成的动态密闭土壤呼吸测定系统,于2006年生长季对内蒙古库布齐沙漠油蒿(Artemisia ordosica)生态系统2种不同类型土壤的土壤呼吸速率进行了野外测定,分析了日动态、季节动态及其对环境因子的响应,并阐述了油蒿灌丛空间异质性的特征.结果表明,油蒿灌丛的土壤呼吸速率日动态呈单峰曲线,在12:00左右有最大值.在适宜的水分和温度条件下,生长季里土壤呼吸速率在7~8月份出现最大值.土壤呼吸速率的季节动态与土壤含水量有显著的相关关系,表明水分是限制生长季干旱区灌丛土壤呼吸的最重要因子,分别可以解释油蒿冠幅下土壤和裸地的土壤呼吸速率2006年主要生长季节(5~9月)变化的75%和77%.油蒿灌丛土壤呼吸速率在空间尺度上存在着显著的异质性.油蒿冠幅覆盖下的土壤呼吸速率季节平均值为(155.58±15.20) mg·(m2·h)-1,要显著地大于灌丛间裸地的数值(110.50±6.77) mg·(m2·h)-1.2种不同类型土壤的土壤呼吸速率是由于根生物量的差异引起的,根生物量可以解释2006年生长季库布齐油蒿灌丛土壤呼吸速率空间异质性的43%.结果表明,在植被覆盖度异质性较大的灌丛生态系统中,要准确定量生态系统碳的释放时,必须充分考虑小尺度上土壤呼吸的空间异质性.  相似文献   

8.
内蒙古羊草草原根呼吸和土壤微生物呼吸区分的研究   总被引:2,自引:1,他引:1  
史晶晶  耿元波 《环境科学》2014,35(1):341-347
利用根生物量回归法对内蒙古锡林河流域羊草草原根呼吸和土壤微生物呼吸进行了区分.结果表明,根呼吸占土壤呼吸的比例在13%~52%之间,平均为(24±3)%;土壤微生物呼吸占土壤呼吸的比例在48%~87%之间,平均为(76±3)%.土壤呼吸与根生物量的线性相关性不稳定.根呼吸活力与根冠比具有负指数相关关系(R2=0.661,P=0.20),与0~10、10~20、20~30和30~40 cm土壤含水量均有极显著的正指数相关关系(P<0.000 1).根呼吸与根呼吸活力具有极显著的指数相关关系(R2=0.848,P=0.01),根呼吸对土壤呼吸的贡献量与根呼吸活力具有显著的指数相关关系(R2=0.818,P=0.01).  相似文献   

9.
With the increasing use of tropical peatland for agricultural development, documentation of the rate of carbon dioxide (CO2) emissions is becoming important for national greenhouse gas inventories. The objective of this study was to evaluate soil-surface CO2 fluxes from drained peat under different land-use systems in Riau and Jambi Provinces, Sumatra, Indonesia. Increase of CO2 concentration was tracked in measurement chambers using an Infrared Gas Analyzer (IRGA, LI-COR 820 model). The results showed that CO2 flux under oil palm (Elaeis guineensis) plantations ranged from 34?±?16 and 45?±?25 Mg CO2 ha–1 year–1 in two locations in Jambi province to 66?±?25 Mg CO2 ha–1 year–1 for a site in Riau. For adjacent plots within 3.2 km in the Kampar Peninsula, Riau, CO2 fluxes from an oil palm plantation, an Acacia plantation, a secondary forest and a rubber plantation were 66?±?25, 59?±?19, 61?±?25, 52?±?17 Mg ha–1 year–1, respectively, while on bare land sites it was between 56?±?30 and 67?±?24 Mg CO2 ha–1 year–1, indicating no significant differences among the different land-use systems in the same landscape. Unexplained site variation seems to dominate over land use in influencing CO2 flux. CO2 fluxes varied with time of day (p?<?0.001) with the noon flux as the highest, suggesting an overestimate of the mean flux values with the absence of night-time measurements. In general, CO2 flux increased with the depth of water table, suggesting the importance of keeping the peat as wet as possible.  相似文献   

10.
外源碳和氮输入对降水变化下土壤呼吸的短期影响   总被引:1,自引:1,他引:0  
利用野外原位小区控制试验,模拟研究了降水变化下草地生态系统土壤呼吸对外源碳和氮输入的响应.在2014年,以内蒙古锡林河流域温带典型草原为研究对象,测定了增加降水处理(CK)、增加降水配施氮肥处理[CN,2.5 g·(m2·a)-1]、增加降水配施碳源处理[CG,24 g·(m2·a)-1]和增加降水配施氮肥和碳源处理[CNG,2.5 g·(m2·a)-1+24 g·(m2·a)-1]下土壤呼吸的变化,并分析了土壤呼吸与土壤温度、土壤水分、土壤可溶性有机碳(DOC)、土壤微生物量碳(MBC)之间的关系.结果表明,在自然降水较多的第一次增加降水(FWE)阶段,CG处理和CNG处理168 h土壤CO2累积通量显著增加,而CN处理168 h土壤CO2累积通量无显著变化,并且CG处理和CNG处理土壤MBC含量显著高于CK处理和CN处理,同时,该阶段平均CO2释放速率与土壤MBC含量正相关(P<0.05).与FWE阶段相比,无自然降水的第二次增加降水(SWE)阶段各处理168 h土壤CO2累积释放量显著降低,并且各处理MBC含量也显著降低(P<0.05),仅有土壤DOC含量显著增加(P<0.05),CG处理和CN处理168 h土壤CO2累积通量显著降低(P<0.05).两个降水阶段土壤呼吸速率与土壤温度或土壤体积含水量均有显著的正相关性(P<0.05).因此,自然降水的分布对土壤水分的影响调控着外源氮和碳对半干旱草地生态系统土壤呼吸的作用效应.  相似文献   

11.
The climate mitigation potential of tropical peatlands has gained increased attention as Southeast Asian peatlands are being deforested, drained and burned at very high rates, causing globally significant carbon dioxide (CO2) emissions to the atmosphere. We used a process-based dynamic tropical peatland model to explore peat carbon (C) dynamics of several management scenarios within the context of simulated twenty-first century climate change. Simulations of all scenarios with land use, including restoration, indicated net C losses over the twenty-first century ranging from 10 to 100 % of pre-disturbance values. Fire can be the dominant C-loss pathway, particularly in the drier climate scenario we tested. Simulated 100 years of oil palm (Elaeis guineensis) cultivation with an initial prescribed burn resulted in 2400–3000 Mg CO2?ha?1 total emissions. Simulated restoration following one 25-year oil palm rotation reduced total emissions to 440–1200 Mg CO2?ha?1, depending on climate. These results suggest that even under a very optimistic scenario of hydrological and forest restoration and the wettest climate regime, only about one third of the peat C lost to the atmosphere from 25 years of oil palm cultivation can be recovered in the following 75 years if the site is restored. Emissions from a simulated land degradation scenario were most sensitive to climate, with total emissions ranging from 230 to 10,600 Mg CO2?ha?1 over 100 years for the wettest and driest dry season scenarios, respectively. The large difference was driven by increased fire probability. Therefore, peat fire suppression is an effective management tool to maintain tropical peatland C stocks in the near term and should be a high priority for climate mitigation efforts. In total, we estimate emissions from current cleared peatlands and peatlands converted to oil palm in Southeast Asia to be 8.7 Gt CO2 over 100 years with a moderate twenty-first century climate. These emissions could be minimized by effective fire suppression and hydrological restoration.  相似文献   

12.
不同耕作方式下土壤水分状况对土壤呼吸的初期影响   总被引:8,自引:4,他引:4  
以2001年在东北典型黑土上进行的保护性耕作长期定位试验下免耕、垄作及常规耕作土壤进行了室内培养实验,按照田间持水量(water-holding capacity,WHC)的30%、60%、90%、120%、150%、180%、210%、240%、270%设定了9个水分梯度,并分别对其二氧化碳(CO_2)排放量进行了22 d的短期观测,以研究不同耕作方式下土壤水分状况对土壤呼吸的初期影响.结果表明:1干土条件下在加水培养初期,3种耕作方式均产生了明显的激发效应,并且土壤呼吸速率与土壤含水量间存在正相关关系.2除干旱(30%WHC)及淹水(240%WHC、270%WHC)条件下,3种耕作方式CO_2排放通量分别为免耕垄作常规耕作.3对不同耕作方式下土壤水分状况及CO_2排放通量进行了方程拟合,在30%~270%WHC条件下,免耕的CO_2排放通量与水分状况拟合为二次回归方程,而垄作与常规耕作则是线性回归方程.在30%~210%WHC条件下,免耕与垄作下土壤CO_2排放通量与水分状况均可拟合为较好的对数方程,可决系数R~2分别为0.966、0.956.  相似文献   

13.
施氮对黄土旱塬区春玉米土壤呼吸和温度敏感性的影响   总被引:6,自引:3,他引:3  
了解施氮对土壤呼吸和温度敏感性的影响,是研究农田土壤呼吸变化的重要环节,对预测农田土壤呼吸变化具有重要意义.基于中国科学院长武黄土高原农业生态试验站的氮肥管理试验,于2013年4月至2014年9月利用LI-8100系统(LICOR,Lincoln,NE,USA)监测施氮和不施氮条件下旱地春玉米生长季土壤呼吸、温度、水分以及根系生物量的变化,研究施氮条件下生物与非生物因素对土壤呼吸速率和温度敏感性(Q10)的影响.施氮显著提高了生长季土壤的累积呼吸量(P0.05),与不施氮相比,施氮处理累积呼吸量2013年提高了35%,2014年提高了54%.但施氮显著降低了土壤呼吸温度敏感性(P0.05),施氮处理的Q10较对照2013年降低了27%,2014年降低了17%.施氮显著提高了春玉米产量、地上部生物量和根系生物量(P0.05).施氮处理根系生物量较不施氮处理2013年提高了0.32倍,2014年提高了1.23倍.施氮对土壤温度和水分无显著影响,根系生物量是施氮条件下导致土壤呼吸差异的重要生物因素.  相似文献   

14.
全球气候变化导致的降水格局改变影响陆地生态系统碳收支状况。陆地生态系统所固定的碳主要通过呼吸作用返回到大气中,而温度和水分是调节生态系统呼吸的重要因素。ChinaFLUX千烟洲中亚热带人工林通量站夏季雨热不同季而造成的季节性干旱为探讨温度和水分对生态系统呼吸的调控作用提供了天然的试验条件。研究利用该生态系统2003-2010年涡度相关和常规气象数据,阐述了生态系统呼吸对温度和土壤含水量的响应特征,对比分析了只考虑温度与同时考虑温度和土壤含水量对生态系统呼吸的季节模式和年呼吸量的影响。研究表明,生态系统呼吸的季节变异主要受土壤温度的控制,呈现指数响应特征。但是,在干旱胁迫条件下,土壤含水量对生态系统呼吸的季节变异起到明显的调控作用。参考温度下的生态系统呼吸(Rref)明显受土壤含水量的影响。生态系统年呼吸量为1 289.4±73.9 gC·m-2·a-1,两类模型的估算结果没有显著差异。但是在生态系统的季节变异上,两类模型估算存在显著差异,同时考虑温度与土壤含水量的模型更适合模拟遭受干旱胁迫的生态系统呼吸。  相似文献   

15.
IntroductionNitrousoxide (N2 O)isoneoftheenvironmentallyimportanttracegases ,currentlyaccountingfor 2 %—4 %oftotalGreenhouseWarmingPotential (GWP ) .Itisalsoinvolvedinthedepletionofstratosphericozone .SoilhasbeenknownasthemajorsourceofN2 O ,accountingfor 6 5 %oftotalglobalemissions(Prather,1995 ) .Thus,reducingN2 Oemissionsfromsoilsisamaintaskfortheprotectionoftheglobalatmosphere .N2 Oisproducedastheresultofsoilmicrobialprocesses ,primarillybynitrification ,whentheoxidationhappensofNH+…  相似文献   

16.
We examined the effects of simulated rainfall and increasing N supply of different levels on CO2 pulse emission from typical Inner Mongolian steppe soil using the static opaque chamber technique, respectively in a dry June and a rainy August. The treatments included NH4NO3 additions at rates of 0, 5, 10, and 20 g N/(m2.year) with or without water. Immediately after the experimental simulated rainfall events, the CO2 effluxes in the watering plots without N addition (WCK) increased greatly and reached the maximum value at 2 hr. However, the efflux level reverted to the background level within 48 hr. The cumulative CO2 effluxes in the soil ranged from 5.60 to 6.49 g C/m2 over 48 hr after a single water application, thus showing an increase of approximately 148.64% and 48.36% in the efftuxes during both observation periods. By contrast, the addition of different N levels without water addition did not result in a significant change in soil respiration in the short term. Two-way ANOVA showed that the effects of the interaction between water and N addition were insignificant in short-term soil COz efftuxes in the soil. The cumulative soil CO2 fluxes of different treatments over 48 hr accounted for approximately 5.34% to 6.91% and 2.36% to 2.93% of annual C emission in both experimental periods. These results stress the need for improving the sampling frequency after rainfall in future studies to ensure more accurate evaluation of the grassland C emission contribution.  相似文献   

17.
Little is known about the multiple impacts of sustainable land management practices on soil and water conservation, carbon sequestration, mitigation of global change and crop yield productivity in semiarid Mediterranean agroecosystems. We hypothesized that a shift from intensive tillage to more conservative tillage management practices (reduced tillage optionally combined with green manure) leads to an improvement in soil structure and quality and will reduce soil erosion and enhance carbon sequestration in semiarid Mediterranean rainfed agroecosystems. To test the hypothesis, we assessed the effects of different tillage treatments (conventional (CT), reduced (RT), reduced tillage combined with green manure (RTG), and no tillage (NT)) on soil structure and soil water content, runoff and erosion control, soil carbon dioxide (CO2) emissions, crop yield and carbon sequestration in two semiarid agroecosystems with organic rainfed almond (Prunus dulcis Mill) in the Murcia Region (southeast Spain). It was found that reduction and suppression of tillage under almonds led to an increase in soil water content in both agroecosystems. Crop yields ranged from 775 to 1,766 kg ha?1 between tillage treatments, but we did not find a clear relation between soil water content and crop yield. RT and RTG treatments showed lower soil erosion rates and higher crop yields of almonds than under CT treatment. Overall, higher soil organic carbon contents and aggregate stability were observed under RTG treatment than under RT or CT treatment. It is concluded that conversion from CT to RTG is suitable to increase carbon inputs without enhancing soil CO2 emissions in semiarid Mediterranean agroecosystems.  相似文献   

18.
为探究短期氮磷添加对祁连山亚高山草地土壤呼吸及其组分的影响,于2019年6~8月采用随机区组设计,设置氮添加[10 g ·(m2 ·a)-1,N]、磷添加[5 g ·(m2 ·a)-1,P]、氮磷混施[10 g ·(m2 ·a)-1N、5 g ·(m2 ·a)-1P,NP]、对照(CK)和完全对照(CK'')这5个处理,测定了土壤总呼吸速率及其组分.结果表明,氮添加对土壤总呼吸和异养呼吸的降低速率均低于磷添加[-16.71% vs.(相对照,下同)-19.20%;-4.41% vs.-13.05%],但对自养呼吸的降低速率高于磷添加(-25.03% vs.-23.36%),而氮磷混施则对土壤总呼吸速率无显著影响.土壤总呼吸速率及其组分与土壤温度均呈显著的指数相关,其中氮添加降低了呼吸速率的温度敏感性(Q10:-5.64%~0.00%),而磷添加增加了Q10(3.38%~6.98%),氮磷混施降低了自养呼吸速率但增加了异养呼吸速率的Q10(16.86%),从而降低了土壤总呼吸速率的Q10(-2.63%~-2.02%).土壤pH、土壤全氮和根系磷含量与自养呼吸速率均具有显著相关性(P<0.05),而与异养呼吸速率无显著相关,且根系氮含量只与异养呼吸速率呈显著负相关(P<0.05).总体上,自养呼吸速率对氮添加更加敏感,而异养呼吸速率对磷添加更加敏感,氮或磷添加均显著降低了土壤总呼吸速率,而氮磷混施并未显著影响土壤总呼吸速率,此结果可为准确评估亚高山草地土壤碳排放提供科学依据.  相似文献   

19.
生物炭对塿土土壤温室气体及土壤理化性质的影响   总被引:23,自引:12,他引:11  
通过田间小区试验,分别向塿土土壤中添加0、20、40、60、80 t·hm~(-2)的苹果果树枝条生物炭后,分析了生物炭对土壤温度、土壤团聚体、NO_3~--N、NH_4~+-N、微生物量碳以及土壤温室气体排放的影响.结果表明,生物炭可以缓解土壤温度的变化,增加土壤大团聚体的数量,尤其是5 mm、5~2 mm和1~0.5 mm的团聚体数量.与对照相比,随着生物炭施用量的增加,土壤NO_3~--N、NH_4~+-N、微生物量碳分别增加了4.9%~33.9%、9.1%~41.1%和11.8%~38.5%.本研究中生物炭对土壤温室气排放的影响主要表现为:添加生物炭后,土壤CO_2的排放量以及CH_4的吸收汇分别增加了6.73%~23.35%和3.62%~14.17%;施用20 t·hm~(-2)和40 t·hm~(-2)的生物炭降低了土壤N_2O的排放和综合增温潜势(GWP),而当生物炭施用量大于等于60 t·hm~(-2)时反而增加了土壤N_2O的排放和综合增温潜势(GWP).说明生物炭作为一种土壤改良剂和碳减排剂,能够改善土壤质量,提高土壤肥力,提高农田土壤增汇减排的作用,此外,选择合适的生物炭施用量至关重要.  相似文献   

20.
Strict air pollution control measures were conducted during the Youth Olympic Games(YOG) period at Nanjing city and surrounding areas in August 2014.This event provides a unique chance to evaluate the effect of government control measures on regional atmospheric pollution and greenhouse gas emissions.Many previous studies have observed significant reductions of atmospheric pollution species and improvement in air quality,while no study has quantified its synergism on anthropogenic CO2...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号