首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 828 毫秒
1.
本文利用了1998—2012年中国241个城市的空间面板数据对中国雾霾污染和FDI的区域分布特征及空间溢出效应进行经验考察,结合系统广义矩估计(SGMM)方法构建了动态空间面板模型,采用了Moran’s I和Geary’s C指数对中国FDI与雾霾(PM_(2.5))污染空间自相关性进行了全域和局域分析。结果发现:(1)雾霾(PM_(2.5))污染与FDI存在显著的空间正相关性,证明了雾霾(PM_(2.5))污染空间的溢出效应以及FDI的辐射效应的存在。同时FDI高值集聚区域一般是雾霾(PM_(2.5))高值集聚区,FDI低值集聚区域一般是雾霾(PM_(2.5))低值集聚区,表明一个地区的引资效果和雾霾(PM_(2.5))污染在地理上的集聚密切相关。雾霾(PM_(2.5))污染表现出显著的"叠加效应"和"溢出效应",说明中国雾霾(PM_(2.5))污染在空间维度、时间维度以及时空维度上分别表现出交叉、累积、持续的演变特征。(2)全样本下,FDI对雾霾(PM_(2.5))浓度的影响表现出增促效应。FDI存量每升高1%,雾霾(PM_(2.5))浓度升高0.011%。(3)分地区样本下,东部城市FDI存量每升高1%,雾霾(PM_(2.5))浓度升高0.001 9%;中部城市FDI存量每升高1%,雾霾(PM_(2.5))浓度升高0.018 3%;而西部城市FDI存量对雾霾(PM_(2.5))浓度影响不显著。上述实证结果说明中国雾霾污染存在着显著的空间依赖性和区域异质性,FDI对中国大部分城市的雾霾污染存在显著的增促效应。  相似文献   

2.
中国多城市群大范围持续遭遇雾霾等空气环境问题,不仅严重影响着人民生活健康,同时成为制约中国社会经济发展的主要瓶颈。创新驱动作为引领发展的重要源泉,是治理城市雾霾的重要手段。因此,本文利用2004—2016年中国地级市PM2.5浓度、创新等数据,基于STIRPAT模型,通过空间计量方法在同时考虑空间横向维度及时间纵向维度下就中国城市创新对雾霾的影响进行了实证分析,并进一步从城市创新对雾霾的动态效应、作用距离阈值等多个角度进行了稳健性检验。实证结果表明:①中国城市雾霾污染呈现明显的空间溢出效应和高排放俱乐部集聚特征。②中国城市创新具有积极的减霾作用。从横向空间维度来看表现为积极的空间溢出效应,但存在一定的有效距离阈值。从纵向时间维度来看,减霾效应整体存在边际递减态势。③交通便利化及能源效率的提高有效抑制了城市雾霾污染的加剧,以煤为主的能源结构仍是城市雾霾污染加剧的一大诱因。基于上述事实,本文提出以下政策建议:中国在城市雾霾治理过程中应实施科学规划,布局联防联控。防止城市"单边"治霾努力成果被周边城市的"泄漏效应"所削减;聚集创新要素,打造创新型城市引擎。在城市群内部形成创新竞争、合作机制,创新重塑城市群发展模式以缓解城市雾霾污染;考虑到城市创新对于雾霾治理红利存在边际递减态势,除上述减霾渠道外,治霾政策仍需坚持从源头着手,优化产业、能源结构,促进能效、路效提高,最终成就美丽城市。  相似文献   

3.
雾霾污染是困扰中国经济发展的重大民生与环境问题。基于改进产出密度模型,运用地统计和空间计量模型分析长三角城市2015~2017年雾霾污染空间格局和影响因素。研究发现:(1)雾霾污染存在季节性变化特征并且各城市雾霾污染状况逐渐好转。(2)雾霾污染具有显著的局域集聚特征和空间异质性,杭州、宁波和台州呈现低-低集聚特征,而滁州、扬州、镇江和泰州为高-高集聚型,污染区域集中于省界处,污染程度自西北向东南逐渐降低。雾霾污染存在显著的城际空间正相关和空间溢出效应,周边城市雾霾污染对本地区会产生负影响。(3)长三角城市人口集聚、研发投入、产业结构、工业烟粉尘排放及城市建设均对雾霾污染产生正向影响,对外开放、能源消耗以及降水等因素对雾霾污染产生负向影响;雾霾污染与经济增长之间不存在库兹涅茨曲线关系。经济集聚通过优化生产要素的空间分布与组合、共享治污基础设施等,形成雾霾污染抑制作用。  相似文献   

4.
雾霾污染是困扰中国经济发展的重大民生与环境问题。基于改进产出密度模型,运用地统计和空间计量模型分析长三角城市2015~2017年雾霾污染空间格局和影响因素。研究发现:(1)雾霾污染存在季节性变化特征并且各城市雾霾污染状况逐渐好转。(2)雾霾污染具有显著的局域集聚特征和空间异质性,杭州、宁波和台州呈现低-低集聚特征,而滁州、扬州、镇江和泰州为高-高集聚型,污染区域集中于省界处,污染程度自西北向东南逐渐降低。雾霾污染存在显著的城际空间正相关和空间溢出效应,周边城市雾霾污染对本地区会产生负影响。(3)长三角城市人口集聚、研发投入、产业结构、工业烟粉尘排放及城市建设均对雾霾污染产生正向影响,对外开放、能源消耗以及降水等因素对雾霾污染产生负向影响;雾霾污染与经济增长之间不存在库兹涅茨曲线关系。经济集聚通过优化生产要素的空间分布与组合、共享治污基础设施等,形成雾霾污染抑制作用。  相似文献   

5.
长江经济带PM_(2.5)时空特征及影响因素研究   总被引:1,自引:0,他引:1  
大气细颗粒物(PM_(2.5))因其对空气环境质量乃至人类健康的巨大危害而逐渐引起学者们的关注。本文以我国综合实力最强、战略支撑作用最为突出的区域之一——长江经济带为研究对象,基于城市级空气质量监测数据,运用地理学时空分析与GIS可视化方法探索并呈现了2015年长江经济带PM_(2.5)的时空分布特征及其演变规律;在此基础上,结合空间回归模型考察了PM_(2.5)浓度与区域城市发展之间的内在关系。结果表明,就空间特征而言,长江中下游地区PM_(2.5)污染较长江上游地区更为严重,长江北岸地区比长江南岸地区更为严重;PM_(2.5)高浓度集聚地带主要位于鄂皖苏大部分地区,与空气质量较佳的云南及其周边地区呈"对角"分布状态。长江经济带内城市间PM_(2.5)浓度存在着显著的正向空间自相关,且自相关性随距离增大而不断减弱,其门槛尺度约为900 km;在这一范围内,PM_(2.5)空间集聚效应较为明显。就时间特征而言,冬季PM_(2.5)浓度相对较高,春秋两季次之,夏季空气质量最好;各地区浓度分布在年初相对离散,后有所趋同。此外,PM_(2.5)与其他类型的大气污染物(如SO2、NO2、O3)浓度两两之间均存在着显著的正相关性,暗示大气污染物从原发污染演变为二次污染,形成恶性循环。空间回归分析结果表明,PM_(2.5)污染随经济发展水平的提高呈现先上升后下降的趋势,在一定程度上支持了"环境库兹涅兹曲线"假说;且人口密度、公共交通运输强度均在不同程度上导致长江经济带PM_(2.5)浓度的升高。最后,从区域性联防联控、不同类型大气污染物协同治理、促进经济发展方式转型等方面为长江经济带的大气环境治理提出切实可行的政策建议。  相似文献   

6.
城市群空间功能分工是区域分工的高级形式,探究其对雾霾污染的影响机制对于促进城市群可持续健康发展具有重要意义。在阐述城市群空间功能分工影响雾霾污染的机理基础上,利用长三角城市群面板数据进行了实证分析。研究发现:城市群空间功能分工引致的城市功能专业化增强对区域雾霾污染有显著抑制作用,提高城市功能专业化程度不仅有助于降低本地区的雾霾污染水平,对邻近地区的雾霾污染也有抑制作用。城市群空间功能分工的减霾作用在中心城市组、非中心城市组、非G60科创走廊城市组的检验中均成立;相对于中心城市,非中心城市的功能专业化程度提高对雾霾污染的抑制作用更大。城市群空间功能分工主要通过产业结构升级效应和劳动力禀赋效应降低区域雾霾污染。最后从构建功能互补发展格局等方面阐述了政策启示。  相似文献   

7.
黄河流域是推进空气质量改善和经济社会高质量发展的核心区域,技术创新是破解流域PM_(2.5)污染防治难题的关键手段。该研究以2004—2019年黄河流域79个地级市PM_(2.5)污染数据为样本,利用核密度估计、空间自相关等方法探究PM_(2.5)在空间上的异质性和关联性特征,并将以技术创新为核心的社会经济因素和气温、降水等自然解释要素纳入同一空间面板杜宾模型,分析各因素对黄河流域PM_(2.5)的效应及其空间溢出效应,系统识别和甄别技术创新要素在这一过程中的贡献程度和溢出效应,解析技术创新对PM_(2.5)的作用机制与影响路径。研究发现:①黄河流域PM_(2.5)在空间上呈现显著的异质性和相关性,浓度值较高的地市主要集中于漯河、濮阳等黄河流域下游地区,全局Moran’s I指数均大于0.80且显著为正,空间关联以高高集聚和低低集聚类型为主;②专利授权量的增加通过排放源管控治理、移动源消减治理等路径对本地区PM_(2.5)防治具有正向推动作用,但由于绿色技术标准、绿色补贴等绿色技术壁垒的存在加剧了邻近地区污染治理难度,表现为负向空间溢出效应;③流域城市人均创新指数的提升通过营造良好的创新氛围、激发技术创新内生动力等机制同样促进了本地PM_(2.5)浓度下降,但空间溢出效应并不显著,未能对周边地区产生辐射带动作用。研究基于技术创新对PM_(2.5)防治的影响和空间溢出效应提出适应性对策建议,突出技术创新在空气污染防治中的关键作用,搭建和完善跨区域绿色技术创新体系,加强流域间联防联控机制与竞争合作机制,助推黄河流域空气质量改善、生态保护和高质量发展。  相似文献   

8.
雾霾污染的城市间动态关联及其成因研究   总被引:2,自引:0,他引:2  
面对严重的雾霾天气以及雾霾污染边界不断扩张的严峻挑战,加快创新大气污染联防联控体系以形成跨区域协同治污合力势在必行。本文基于京津冀、长三角、珠三角、成渝、长中游等五大地区96个城市2015年的空气质量指数(AQI)以及PM_(2.5)、PM_(10)、SO_2、CO、NO_2、O~3等6种分项污染物的逐日数据,从时间序列数据"预测能力"的视角,在向量自回归模型框架下识别雾霾污染的城市间动态交互影响效应,运用社会网络分析方法刻画雾霾污染空间关联的网络结构特征。在此基础上,运用二次指派程序从分项污染物视角考察雾霾污染空间关联的关键诱因,并利用双变量Moran指数揭示雾霾污染与其影响因素之间的空间相关性。研究发现,城市雾霾污染之间存在普遍的动态关联关系且呈现出联系紧密、稳定性强、带有明显特征的多线程复杂网络结构形态。不论在地区内部还是在全部样本城市当中,均不存在孤立的城市节点,这意味着面对雾霾污染的空间关联网络,任何一个城市都不能独善其身,均受到来自地区内部和地区以外其他城市以及它们构成的空间关联网络的影响。在六种分项污染物中,PM_(2.5)的空间关联是导致雾霾污染空间关联的最主要诱因。城市雾霾污染与其影响因素尤其是城市人口密度、投资强度、工业污染排放之间存在显著的空间相关性。基于上述结论,中国应当加快构建以防控PM_(2.5)为重点的跨区域雾霾污染协同治理机制,并将其融入城市群发展战略以及区域发展战略之中,最终实现包含雾霾污染协同治理在内的全方位的区域协同发展。  相似文献   

9.
道路拥堵与城市雾霾是机动车行驶带来的两个负溢出效应,大量文献揭示了城市机动车行驶对二者带来的影响,却鲜有文献关注道路拥堵程度与雾霾污染之间的内在联系。这其中的缘由在于,一则道路拥堵程度与雾霾污染之间互为因果,同时有共同的影响因素,由此带来的内生性难题难以有效解决;其次,采用统一标准来测度不同城市道路拥堵程度的数据难以获得。为此利用高德地图(Amap)根据机动车定位导航系统提供的城市拥堵延时的大数据,来捕获各省会城市每日道路交通的拥堵程度,同时运用各城市每日的燃油销售价格、国际市场原油价格以及上一周同一工作日道路的拥堵程度作为工具变量,通过两阶段最小二乘法(2SLS)估计道路拥堵程度对城市雾霾污染的影响。回归结果表明:①以城市燃油价格作为工具变量时,道路拥堵程度每增加1%,会导致省会城市PM2.5、PM10分别增加6.5%和6.7%;②以国际原油价格、上一周同一个工作日拥堵程度作为工具变量,以及改用GMM方法进行估计时,基准回归的结论仍然稳健,城市的治堵举措与治霾举措能够相互协同;③进一步以省会城市新增轨道交通来实现治堵和治霾的例子表明,发展轨道交通来实现治堵与治霾的协同效应,要以有效治堵作为前提,否则减排治霾的协同效果无法实现。  相似文献   

10.
文章将《京津冀及周边地区2017年大气污染防治工作方案》和其后续“攻坚行动方案”的发布作为准自然实验,使用双重差分模型(DID)评估大气污染治理的政策效果。回归结果发现:(1)“方案”的发布对于“2+26”城市的空气具有显著的改善作用,并通过了稳健性检验,构成雾霾的主要污染物PM_(2.5)、PM_(10)和AQI的改善程度最明显,SO_(2)、CO和NO_(2)的改善幅度次之,但O_(3)浓度在政策处理期内不降反升,说明近年来O_(3)污染程度加剧,亟须引起关注。(2)长期视角下SO_(2)和NO_(2)的治理效果较短期情况下相比有所提升,说明有些大气污染物仍然具有进一步改善的潜力,印证了大气污染治理是一项长久的“攻坚战”。(3)引入空间DID分析,通过空间杜宾和双重差分的嵌套模型,放松个体相互独立的假设,从空间维度探讨“方案”的政策效果,对比空间视角下的直接效应与间接效应得出,区域联防联控大气治理手段相比单一地区空气质量改善政策而言能够使得治理效果事半功倍。(4)使用中介效应模型,探讨了“方案”通过减少工业产值占GDP的比重和减少能源消费总量达到空气质量改善的两种作用机制。最后,文章为接下来进一步有效治理大气污染提出了相关的政策建议。  相似文献   

11.
Based on the Green Development Indicator System issued by the Chinese government, this study conducted an in-depth evaluation of provincial green development in China, from 2013 to 2016. The findings of the study showed that: (1) significant regional differences existed across provinces in China regarding green development. (2) In terms of changing trends, the overall level of green development exhibited an upward trend during the years covered by our study, with a faster rising rate of development in eastern and central regions of China than in western ones. (3) In terms of spatial correlation, the spatial autocorrelation of China’s green development was evident. However, the spatial agglomeration of provincial green development gradually waned during the period in 2013–2016. (4) When it comes to drivers of spatial autocorrelation, the comparatively upward trend in the environmental field served as the main factor that drove green development from agglomeration to balance. (5) In terms of convergence, the tendency showed that less developed regions were about to catch up with leading regions in China in green development, especially as regards the dimensions of ecological protection and resource utilization.  相似文献   

12.
长江中游城市群PM2.5时空特征及影响因素研究   总被引:1,自引:0,他引:1  
近年来,伴随着工业化和城市化进程的加快,长江中游城市群灰霾天气持续增多,空气污染问题日益突出。基于2015年1月至2016年2月长江中游城市群189个空气质量监测站点的PM2.5逐时监测数据,采用普通克里金插值、探索性空间数据分析法和相关系数法,从年、季、月尺度上分析了PM2.5的空间分布格局及其影响因素。结果表明:(1)在年尺度上,长江中游城市群PM2.5浓度空间分布总体呈现出明显的北部高南部低,局部地区略有突出的特征,该区PM2.5浓度年均值为55.28 μg/m3,其中湖北省PM2.5的年均值为三省市最高,为68.17 μg/m3;其次为湖南省,年均值为53.66 μg/m3;江西省PM2.5的年均值较小,为44.01 μg/m3。(2)在季节尺度上,长江中游城市群PM2.5浓度表现出冬春季高,夏秋季低的现势性,这与区域内夏季高温多雨、冬季低温少雨的气候条件密切相关。(3)长江中游城市群PM2.5月浓度变化大致呈U形分布,1月份PM2.5浓度最高, 1~6月份,PM2.5浓度呈逐步下降趋势, 6~8月份,区域PM2.5浓度处于“U”字的谷底。(4)NO2、CO是影响PM2.5浓度的两项主控大气污染物,而降水量和相对湿度则是影响PM2.5浓度的两个重要气象因素。 关键词: PM2.5浓度;时空特征;气象因素;长江中游城市群  相似文献   

13.
摘要: 近年来,与PM2.5相关的大气环境质量状况和改善问题一直是社会和公众关注的热点话题。通过选取中国339个地级市为研究对象,采用重心模型和局部空间自相关的研究方法,对中国339个城市大气PM2.5污染浓度空间格局演化进行实证分析。结果显示:(1)从重心分析来看,1998~2016年内的中国大气PM2.5污染浓度几何重心位于渭河平原附近以及中国东部和北方的大气PM2.5污染程度分别相对高于西部和南方地区。(2)从局部空间自相关分析来看,1998~2016年期间“高-高”类型的空间正相关的地区主要集中在华北地区、华中地区、华东地区、长江中下游沿岸城市及四川盆地;“低-低”类型的空间正相关的地区主要集中在西南和西北地区,也零星出现在东北和福建的部分城市中。最后对中国大气PM2.5污染空间格局进行初步成因探析。  相似文献   

14.
Long-lasting expansion of haze pollution in China has already presented a stern challenge to regional joint prevention and control. There is an urgent need to enlarge and reconstruct the coverage of joint prevention and control of air pollution in key area. Air quality models can identify and quantify the regional contribution of haze pollution and its key components with the help of numerical simulation, but it is difficult to be applied to larger spatial scale due to the complexity of model parameters. The time series analysis can recognize the existence of spatial interaction of haze pollution between cities, but it has not yet been used to further identify the spatial sources of haze pollution in large scale. Using econometric framework of time series analysis, this paper developed a new approach to perform spatial source apportionment. We applied this approach to calculate the contribution from spatial sources of haze pollution in China, using the monitoring data of particulate matter (PM2.5) across 161 Chinese cities. This approach overcame the limitation of numerical simulation that the model complexity increases at excess with the expansion of sample range, and could effectively deal with severe large-scale haze episodes.  相似文献   

15.
长江三角洲城市群空气质量时空分布特征   总被引:2,自引:0,他引:2  
基于数理统计、空间插值技术、相关性分析与GIS地图表达,研究长江三角洲城市群AQI及各空气含量因子污染浓度的时间、空间分布特征。通过提取国务院最新规划的长江三角洲城市群空间分布数据,划分研究区为"一核五圈",探讨了空气质量指数的时间变化特征和AQI、首要污染物的空间分布规律,定量评价了AQI与其污染因子的相关性,结果表明:(1)时间变化上,长三角城市群空气质量季均变化规律为夏季最好,冬季最差;月均变化呈波浪形分布,在1月份的平均浓度皆为最高;周均变化为:在一周后半段达到一周最大值;(2)空间分布上,分季节看,AQI在春、秋、冬三季空间梯度变化显著,呈现北高、南低的分布格局。在首要污染物的分布上,以PM_(2.5)和O_3均分长三角地区;(3)PM_(2.5)含量空间分布与AQI有较高相似性,均处于北高南低的分布状态,臭氧分布呈现东高西低,即较发达的城市臭氧含量相对较高的空间分布格局。最后通过相关性计算,AQI与PM_(2.5)相关性显著,与O_3没有明显相关性,为长三角大气污染防治提供依据。  相似文献   

16.
PM2.5浓度值增加对大气能见度、人体健康和气候变化有着重要影响。采用2015年长三角地区监测数据,运用探索性空间数据分析法和相关系数法,分析长三角地区城市PM2.5污染的时空格局和影响因素,结果表明:(1)2015年长三角地区城市PM2.5年均浓度值为54.54 μg/m3,季节变化总体呈现春冬高夏秋低的季节性周期变化规律,1月和12月为一年中PM2.5污染最严重的月份,污染范围最广,5~9月是PM2.5浓度值优良时段,日均值春季和冬季的波动周期较短而剧烈,夏季和秋季波动周期相对较长而平缓。(2)2015年长三角地区城市PM2.5年均浓度值整体上从江苏到浙江呈减少趋势,具有北高南低,局部突出的特征。(3)长三角地区城市PM2.5浓度空间上存在集聚现象,低值集聚主要分布在浙江沿海地区,高值集聚主要分布在苏南地区。(4)燃烧排放的烟尘和前体物的二次转化对长三角地区PM2.5浓度有显著影响。风速和降水量是影响PM2.5浓度的两个重要气象因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号