首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 880 毫秒
1.
2.
中国传统的室内设计具有中国传统文化的一切特征,不管是空间的布局,还是装饰风格,都体现其内在的含蓄风格,在整体意境及设计理念上追求天人合一的自然和谐,同时也是传统建筑有机的组成部分。中国传统的设计元素越来越多地被当今世界设计师所借鉴。  相似文献   

3.
Abstract: The determination of sediment and nutrient loads is typically based on the collection and analysis of grab samples. The frequency and regularity of traditional sampling may not provide representation of constituent loading, particularly in systems with flashy hydrology. At two sites in the Little Bear River, Utah, continuous, high‐frequency turbidity was used with surrogate relationships to generate estimates of total phosphorus and total suspended solids concentrations, which were paired with discharge to estimate annual loads. The high frequency records were randomly subsampled to represent hourly, daily, weekly, and monthly sampling frequencies and to examine the effects of timing, and resulting annual load estimates were compared to the reference loads. Higher frequency sampling resulted in load estimates that better approximated the reference loads. The degree of bias was greater at the more hydrologically responsive site in the upper watershed, which required a higher sampling frequency than the lower watershed site to achieve the same level of accuracy in estimating the reference load. The hour of day and day of week of sampling impacted load estimation, depending on site and hydrologic conditions. The effects of sampling frequency on the determination of compliance with a water quality criterion were also examined. These techniques can be helpful in determining necessary sampling frequency to meet the objectives of a water quality monitoring program.  相似文献   

4.
研究基于疲劳损伤等效的宽带随机振动试验条件的加速因子。首先回顾了基于窄带模型的随机振动试验条件的加速因子表达式,然后应用随机振动疲劳损伤的频域估计方法——基于窄带模型的修正方法(WL方法、α0.75方法和TB方法等),得到了宽带随机振动试验条件加速因子计算的通用表达式。数值模拟分析表明,基于窄带模型的加速因子表达式对于比例载荷的宽带随机振动也是适用的,而对于非比例载荷,则需要应用文中提出的通用表达式才可以获得宽带随机振动的加速因子。  相似文献   

5.
ABSTRACT: The objective of water quality/watershed management is attainment of water quality goals specified by the Clean Water Act. The Total Maximal Daily Load (TMDL) planning process is a tool to set up watershed management. However, TMDL methodologies and concepts have several problems, including determination of Loading Capacity for only low flow critical periods that preclude consideration of wet weather sources in water quality management. Research is needed to develop watershed pollutant loading and receiving waters Loading Capacity models that will link wet and dry weather pollution loads to the probability of the exceedence of water quality standards. The long term impact of traditional Best Management Practices as well as ponds and wetlands, must be reassessed to consider long term accumulation of conservative toxic compounds. Socioeconomic research should focus on providing information on economic and social feasibility of implementation of additional controls in water quality limited watersheds.  相似文献   

6.
ABSTRACT: A stratified, spatially balanced sample with unequal probability selection was used to design a multipurpose survey of headwater streams in the Mid‐Atlantic Coastal Plain. Objectives for the survey include unbiased estimates of regional stream conditions, and adequate coverage of unusual but significant environmental settings to support empirical modeling of the factors affecting those conditions. The design and field application of the survey are discussed in light of these multiple objectives. A probability (random) sample of 175 first‐order nontidal streams was selected for synoptic sampling of water chemistry and benthic and riparian ecology during late winter and spring 2000. Twenty‐five streams were selected within each of seven hydrogeologic subre‐gions (strata) that were delineated on the basis of physiography and surficial geology. In each subregion, unequal inclusion probabilities were used to provide an approximately even distribution of streams along a gradient of forested to developed (agricultural or urban) land in the contributing watershed. Alternate streams were also selected. Alternates were included in groups of five in each subregion when field reconnaissance demonstrated that primary streams were inaccessible or otherwise unusable. Despite the rejection and replacement of a considerable number of primary streams during reconnaissance (up to 40 percent in one subregion), the desired land use distribution was maintained within each hydrogeologic subregion without sacrificing the probabilistic design.  相似文献   

7.
To date seagrass monitoring has involved the removal of seagrass from its environment. In fragile or highly disturbed systems, monitoring using destructive techniques may interfere with the environment or add to the burden of disturbance. Video photography is a form of non-destructive monitoring that does not require the removal of seagrass or interference with the environment and has the potential to be a valuable tool in monitoring seagrass systems. This study investigated the efficacy of video photography as a tool for detecting change in seagrass cover, using the temperate Australian species Amphibolis antarctica (Labill.) Sonder ex Aschers. Using visual and random point estimates of seagrass cover from video footage, it was possible to determine the minimum sample size (number of random video frames) needed to detect change in seagrass cover, the minimum detectable change in cover and the probability of the monitoring design committing a Type II error. Video footage was examined at three scales: transects (m apart), sites (km apart) and regions (tens of km apart). Using visual and random point estimation techniques, a minimum sample size of ten quadrats per transect was required to detect change in uniform and variable seagrass cover. With ten quadrats it was possible to identify a minimum detectable change in cover of 15% for uniform and 30% for variable seagrass cover. Power analysis was used to determine the probability of committing a Type II error from the data. Region level data had low power, corresponding to a high risk of committing a Type II error. Site and transect level data had high power corresponding to a low risk of committing a Type II error. Based on this study's data, managers using video to monitor for change in seagrass cover are advised to use data from the smaller scale, for example, site and transect level data. By using data from the smaller scale, managers will have a low risk of incorrectly concluding there has not been a disturbance when one has actually occurred.  相似文献   

8.
In univariate frequency analysis, the return period of an event has a one-to-one correspondence with its characteristic value, and the response of the hydraulic structure to hydrological load expressed by the hydrological event is monotonic. Thus, the design criteria of the hydraulic structure can be equivalently represented by the return period of the hydrological event, and consequently, design event-based design parameters evaluated have been widely used in practical engineering. However, the monotonic correspondence between the return period of the hydrological event and the response of the hydraulic structure does not exist in the multivariate context, and hydrological load with a larger joint return period does not always produce a more unsafe response. Misunderstandings of concepts of return periods of hydrological event, and estimation of hydrological design events usually take place in multivariate frequency analysis. This study theoretically derives the relations between different types of joint return periods, joint return period and its marginal return periods, the occurrence of bivariate extreme events and their return periods, and then the theoretical framework is tested. Results from the case contribute to the understanding of bivariate return periods of hydrological event, and the results demonstrate that design criteria cannot be equivalently represented by joint return periods of hydrological load, and design parameters of the hydraulic structure should not be determined by multivariate hydrological design events.  相似文献   

9.
Agroecology is the application of ecological concepts and principles to the design and management of sustainable agricultural systems. An agroecological approach to agriculture has special importance in the humid tropics where agricultural development and the preservation of tropical forests are most often in direct conflict. It is proposed that a more sustainable approach to development is needed, where agroecosystems depend on low external inputs, function more on the use of locally available and renewable resources, have benign impacts on the environment, and are based on the knowledge and culture of the local inhabitants. Examples of traditional agroecosystem management in Mesoamerica that can provide this basis are presented. The preservation of both biological and cultural diversity are integral to the long-term sustainable management of natural resources in the tropics.  相似文献   

10.
Water quality regulation and litigation have elevated the awareness and need for quantifying water quality and source contributions in watersheds across the USA. In the present study, the regression method, which is typically applied to large (perennial) rivers, was evaluated in its ability to estimate constituent loads (NO(3)-N, total N, PO(4)-P, total P, sediment) on three small (ephemeral) watersheds with different land uses in Texas. Specifically, regression methodology was applied with daily flow data collected with bubbler stage recorders in hydraulic structures and with water quality data collected with four low-frequency sampling strategies: random, rise and fall, peak, and single stage. Estimated loads were compared with measured loads determined in 2001-2004 with an autosampler and high-frequency sampling strategies. Although annual rainfall and runoff volumes were relatively consistent within watersheds during the study period, measured annual nutrient and sediment concentrations and loads varied considerably for the cultivated and mixed watersheds but not for the pasture watershed. Likewise, estimated loads were much better for the pasture watershed than the cultivated and mixed landuse watersheds because of more consistent land management and vegetation type in the pasture watershed, which produced stronger correlations between constituent loads and mean daily flow rates. Load estimates for PO(4)-P were better than for other constituents possibly because PO(4)-P concentrations were less variable within storm events. Correlations between constituent concentrations and mean daily flow rate were poor and not significant for all watersheds, which is different than typically observed in large rivers. The regression method was quite variable in its ability to accurately estimate annual nutrient loads from the study watersheds; however, constituent load estimates were much more accurate for the combined 3-yr period. Thus, it is suggested that for small watersheds, regression-based annual load estimates should be used with caution, whereas long-term estimates can be much more accurate when multiple years of concentration data are available. The predictive ability of the regression method was similar for all of the low-frequency sampling strategies studied; therefore, single-stage or random strategies are recommended for low-frequency storm sampling on small watersheds because of their simplicity.  相似文献   

11.
The effectiveness of vegetative buffer strips (VBS) for reducing herbicide transport has not been well documented for runoff prone soils. A multi‐year plot‐scale study was conducted on an eroded claypan soil with the following objectives: (1) assess the effects of buffer width, vegetation, and season on runoff transport of atrazine (ATR), metolachlor (MET), and glyphosate; (2) develop VBS design criteria for herbicides; and (3) compare differences in soil quality among vegetation treatments. Rainfall simulation was used to create uniform antecedent soil water content and to generate runoff. Vegetation treatment and buffer width impacted herbicide loads much more than season. Grass treatments reduced herbicide loads by 19‐28% and sediment loads by 67% compared to the control. Grass treatments increased retention of dissolved‐phase herbicides by both infiltration and adsorption, but adsorption accounted for the greatest proportion of retained herbicide load. This latter finding indicated VBS can be effective on poorly drained soils or when the source to buffer area ratio is high. Grass treatments modestly improved surface soil quality 8‐13 years after establishment, with significant increases in organic C, total N, and ATR and MET sorption compared to continuously tilled control. Herbicide loads as a function of buffer width were well described by first‐order decay models which indicated VBS can provide significant load reductions under anticipated field conditions.  相似文献   

12.
传统的大气污染评价方法是以Pi/Pio为基础,用于特殊环境的大气污染控制存在一定的缺陷,本文提出影响负荷分析法,是建立在大气污染物输送扩散的基础上的,并用以研究峨眉山风景保护区大气污染控制的对策,其结论更为科学合理。  相似文献   

13.
Abstract: In blackwater river estuaries, a large portion of external carbon, nitrogen, and phosphorus load are combined in complex organic molecules of varying recalcitrance. Determining their lability is essential to establishing the relationship between anthropogenic loads and eutrophication. A method is proposed in which organic C, N, and P are partitioned into labile and refractory forms, based upon first‐order decay estimated by biochemical oxygen demand relative to total organic carbon, and C:N and C:P ratios as a function of organic carbon lability. The technique was applied in developing total maximum daily loads for the lower St. Johns, a blackwater Atlantic coastal plain river estuary in Northeast Florida. Point source organic nutrients were determined to be largely labile. Urban runoff was found to have the highest relative labile organic N and P content, followed by agricultural runoff. Natural forest and silviculture runoff were high in refractory organic N and P. Upstream labile C, N, and P loads were controlled by autochthonous production, with 34‐50% of summer total labile carbon imported as algal biomass. Differentiation of labile and refractory organic forms suggests that while anthropogenic nutrient enrichment has tripled the total nitrogen load, it has resulted in a 6.7‐fold increase in total labile nitrogen load.  相似文献   

14.
ABSTRACT: A Geographic Information System (GIS) based non‐point source runoff model is developed for the Las Vegas Valley, Nevada, to estimate the nutrient loads during the years 2000 and 2001. The estimated nonpoint source loads are compared with current wastewater treatment facilities loads to determine the non‐point source contribution of total phosphorus (TP), total nitrogen (TN), and total suspended solids (TSS) on a monthly and annual time scale. An innovative calibration procedure is used to estimate the pollutant concentrations for different land uses based on available water quality data at the outlet. Results indicate that the pollutant concentrations are higher for the Las Vegas Valley than previous published values for semi‐arid and arid regions. The total TP and TN loads from nonpoint sources are approximately 15 percent and 4 percent, respectively, of the total load to the receiving water body, Lake Mead. The TP loads during wet periods approach the permitted loads from the wastewater treatment plants that discharge into Las Vegas Wash. In addition, the GIS model is used to track pollutant loads in the stream channels for one of the subwatersheds. This is useful for planning the location of Best Management Practices to control nonpoint pollutant loads.  相似文献   

15.
Abstract: A mix of causative mechanisms may be responsible for flood at a site. Floods may be caused because of extreme rainfall or rain on other rainfall events. The statistical attributes of these events differ according to the watershed characteristics and the causes. Traditional methods of flood frequency analysis are only adequate for specific situations. Also, to address the uncertainty of flood frequency estimates for hydraulic structures, a series of probabilistic analyses of rainfall‐runoff and flow routing models, and their associated inputs, are used. This is a complex problem in that the probability distributions of multiple independent and derived random variables need to be estimated to evaluate the probability of floods. Therefore, the objectives of this study were to develop a flood frequency curve derivation method driven by multiple random variables and to develop a tool that can consider the uncertainties of design floods. This study focuses on developing a flood frequency curve based on nonparametric statistical methods for the estimation of probabilities of rare floods that are more appropriate in Korea. To derive the frequency curve, rainfall generation using the nonparametric kernel density estimation approach is proposed. Many flood events are simulated by nonparametric Monte Carlo simulations coupled with the center Latin hypercube sampling method to estimate the associated uncertainty. This study applies the methods described to a Korean watershed. The results provide higher physical appropriateness and reasonable estimates of design flood.  相似文献   

16.
This study aims to prepare a low-cost, environmentally friendly, and alternative, biosorbent to remove chromium Cr (III) and lead Pb (II) from polluted water and to find out the highest removal efficiencies using 2k factorial experiments. The Cr (III) and Pb (II) tolerant fungal strain identified as Penicillium chrysogenum was isolated from ceramic industrial sludge. The impact of process variables on biosorption of Cr (III) and Pb (II) by P. chrysogenum was first evaluated with the Taguchi screening design. Factors and levels were determined to optimize Cr (III) and Pb (II) removal efficiency. According to this, five factors; initial concentration, pH, biosorbent dose, temperature, and inactivation methods were determined for both metals, each factor defined as a fixed factor with two levels. Optimization of the parameters affecting the removal process was determined by the Taguchi method and the signal-to-noise (S/N) ratios are calculated. The maximum removal efficiency (99.92%) was observed at pH 7, biosorbent 1 mg L–1, inactivation with autoclaving, and at 20°C with an initial metal concentration of 50 mg L–1 Cr (III). On the other hand, the maximum removal efficiency (98.99%) was observed at pH 4, biosorbent 5 mg L–1, inactivation with autoclaving, and at 20°C with an initial metal concentration of 50 mg L–1 Pb (II). Furthermore, metal ions removal by P. chrysogenum was also confirmed by scanning electron microscopy (SEM) combined with an energy dispersive X-ray spectrometer (EDS). The presence of functional groups on fungal cells of metal binding was investigated by Fourier transform infrared (FT-IR).  相似文献   

17.
ABSTRACT: Evaluation of the non-point source pollutant load entering a lake from multiple tributaries requires either that all tributaries be monitored or that some extrapolation method be used to estimate loads originating in areas not monitored. Unmonitored areas include not only watersheds of tributaries that are not monitored, but also portions of a monitored tributary's drainage basin downstream from the monitoring site and areas of direct drainage. Significant portions of large lake drainage basins are often not monitored, and loads for these areas are often estimated by extrapolation. Six simple extrapolation procedures were evaluated by using them to estimate loads for areas that had been monitored and comparing the estimated loads with the monitored loads. Three approaches were based on inter-basin ratios of area, C-factor, and discharge. The other approaches used regression relationships between concentration and flow to estimate concentrations for the unmonitored basin. The ratio approaches generally were more reliable than the regression approaches. However, extrapolation by any method tested was not very precise. Some methods also were biased when applied to watersheds of a size different than the monitored one. Extrapolation by any of these methods would compromise the precision of the lake-wide load estimate, if the unmonitored area were a significant part of the entire basin.  相似文献   

18.
ABSTRACT: Landfill siting and design guidelines or regulations differ from state to state. Most include hydrogeological criteria, referring to hydraulic conductivities, aquifers, ground water flow patterns, contaminant travel times, and distance between landfill and sensitive targets for contaminants, etc. However, almost all of the existing hydrogeological guidelines are incomplete, inconsistent, or both. The aquitard between landfill and regional aquifer frequently offers less resistance to leachate migration than compliance with regulations may suggest. Residence times of leachate, that makes it through the landfill liner, is often overestimated. Monitoring wells in the regional aquifer are unreliable detectors of local leaks in a landfill. If a landfill does leak, costly aquifer restoration is called for. For traditional landfill designs, ground water monitoring considerations suggest the siting over homogeneous sand and gravel aquifers, rather than over complex till environments. An alternative landfill design criterion is suggested, which is based on a negative hydraulic gradient underneath the landfill. This design guarantees ground water protection, simplifies landfill monitoring, and generally enhances the landfill economy.  相似文献   

19.
/ The main objectives of this study were to identify the regions inFennoscandia where the critical loads of sulfur (S) and acidifying nitrogen(N) for lakes are exceeded and to investigate the consequences for depositionreductions, with special emphasis on the possible trade-offs between S and Ndeposition in order to achieve nonexceedance. In the steady-state model forcalculating critical loads and their exceedances, all relevant processesacting assinks for N and S are considered. The critical loads of N and S areinterrelated (defining the so-called critical load function), and therefore asingle critical load for one pollutant cannot be defined without makingassumptions about the other. Comparing the present N and S deposition withthe critical load function for each lake allows determination of thepercentage of lakes in the different regions of Fennoscandia where: (1) Sreductions alone can achieve nonexceedance, (2) N reductions alone aresufficient, and (3) both N and S reductions are required but to a certaindegree interchangeable. Secondly, deposition reduction requirements wereassessed by fixing the N deposition to the present level, in this wayanalyzing the reductions required for S, and by computing the percentage oflakes exceeded in Finland, Norway and Sweden for every possible percentdeposition reduction in S and N, in this way showing the (relative)effectiveness of reducing S and/or N deposition. The results showed clearregional patterns in the S and N reduction requirements. In practically thewhole of Finland and the northern parts of Scandinavia man-made acidificationof surface waters could be avoided by reducing S deposition alone. In thesouthern parts of Sweden some reductions in N deposition are clearly neededin addition to those for S. In southern Norway strong reductions are requiredfor both N and S deposition.KEY WORDS: Acidification; Critical load; Exceedance; Sulfur; Nitrogen;Deposition; Lake  相似文献   

20.
Effective watershed management requires an accurate assessment of the pollutant loads from the associated point and nonpoint sources. The importance of wet weather flow (WWF) pollutant loads is well known, but in semi‐arid regions where urbanization is significant the pollutant load in dry weather flow (DWF) may also be important. This research compares the relative contributions of potential contaminants discharged in DWF and WWF from the Ballona Creek Watershed in Los Angeles, California. Models to predict DWF and WWF loads of total suspended solids, biochemical oxygen demand, nitrate‐nitrogen, nitrite‐nitrogen, ammonia‐nitrogen, total Kjeldahl nitrogen, and total phosphorus from the Ballona Creek Watershed for six water years dating from 1991 to 1996 were developed. The contaminants studied were selected based on data availability and their potential importance in the degradation of Ballona Creek and Santa Monica Bay beneficial uses. Wet weather flow was found to contribute approximately 75 percent to 90 percent of the total annual flow volume discharged by the Ballona Creek Watershed. Pollutant loads are also predominantly due to WWF, but during the dry season, DWF is a more significant contributor. Wet weather flow accounts for 67 to 98 percent of the annual load of the constituents studied. During the dry season, however, the portion attributable to DWF increases to greater than 40 percent for all constituents except biochemical oxygen demand and total suspended solids. When individual catchments within the watershed are considered, the DWF pollutant load from the largest catchment is similar to the WWF pollutant load in two other major catchments. This research indicates WWF is the most significant source of nonpoint source pollution load on an annual basis, but management of the effects of the nonpoint source pollutant load should consider the seasonal importance of DWF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号