首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 513 毫秒
1.
易悬浮和外源输入下原位覆盖对生物有效磷形成的影响   总被引:3,自引:0,他引:3  
在有外源磷持续汇入的前提下,研究了底泥原位覆盖钙改性材料和锁磷剂被悬浮颗粒再覆盖后对沉积物生物有效磷(BAP)的影响.结果表明,与空白对照相比,底泥原位覆盖后,BAP平均下降34.30%,此外,上覆水及间隙水溶解性无机磷(DIP)的浓度分别平均下降了74.25%和47.48%(0~3 cm),说明覆盖材料可以有效减少水体DIP的浓度,促进易被生物利用态磷浓度的降低.然而,当覆盖材料受到悬浮颗粒影响后,BAP平均下降20.27%,其中,藻类可利用磷(AAP)、碳酸氢钠可提取磷(Olsen-P)和水溶性磷(WSP)的含量较未被悬浮颗粒覆盖组显著提高,分别增加了18.28%、17.41%和12.58%,说明覆盖材料受悬浮颗粒影响后不利于降低底泥磷的生物有效性.  相似文献   

2.
几种不同稳定剂抑制河流底泥释磷效果的初步研究   总被引:1,自引:0,他引:1  
以上海苏州河支流——蒲汇塘的富磷底泥为试验对象,研究高锰酸钾、双氧水、过氧化钙和硝酸钙4种稳定剂对底泥中磷元素释放的抑制效果。结果表明:高锰酸钾和双氧水对磷的抑制作用持续时间较短,过氧化钙能够快速将底泥的NaOH-P转化为永久性HCI-P,而硝酸钙对磷的转化速度相对较为缓慢;投加过氧化钙可以将孔隙水中正磷酸根的浓度从2.815 mg/L降低至0.003mg/L.硝酸钙也可将其值从2.813 mg/L降至0.094mg/L;经过氧化钙和硝酸钙处理后,上覆水总磷含量分别可达到0.029mg/L和0.028mg/L,能够满足国家地表Ⅱ类水质要求。因此,过氧化钙和硝酸钙可以作为抑制底泥磷释放的稳定剂使用。  相似文献   

3.
镁改性芦苇生物炭控磷效果及其对水体修复   总被引:5,自引:4,他引:1  
将收割的芦苇制成生物炭,投加到底泥中以控制内源磷释放,是一种将芦苇资源化利用的新途径.将芦苇通过氯化镁浸渍改性,分别在300、450和600℃条件下高温裂解,制得3种镁改性芦苇生物炭,通过等温吸附实验分析3种炭对磷酸盐的吸附特征,选择了对磷酸盐吸附效果较好的生物炭MBC-450作为研究材料.以某校园河道底泥和上覆水为研究对象,探讨镁改性芦苇生物炭在不同投加方式(混合和覆盖)下对上覆水磷酸盐的吸附作用及内源磷释放的控制效果.结果表明,混合和覆盖投加可有效降低上覆水DIP浓度,与对照组相比磷累积吸附量分别提高了17.3%和11.7%;混合投加对间隙水磷的控制效果更明显,与对照组相比,间隙水DIP从0~2 cm至4~6 cm分别降低了14.7%、18.9%和35.36%,而覆盖投加对应分别降低了33.3%、-28.2%和12.9%.与对照组相比,生物炭混合和覆盖分别导致0~2 cm和2~4 cm底泥中NH4Cl-P占TP的比例分别升高了15%、15%(混合)和12%、2%(覆盖),而BD-P占TP的比例分别降低了7%、9%(混合)和6%、3%(覆盖),Al-P占TP的比例分别降低了7%、6%(混合)和7%、-1%(覆盖),其余形态磷变化不明显.生物炭混合和覆盖投加均能提高表层底泥微生物的活性,混合投加方式对更深层底泥微生物活性的提高更显著.  相似文献   

4.
通过底泥培养实验,并采用磷形态分级提取方法对底泥进行分析,研究了静止和水动力扰动这2种状态下锆改性沸石添加对不同深度处底泥中磷迁移和形态转化的影响.结果表明,无论是在静止还是在水动力扰动状态下,锆改性沸石添加均不仅降低了上覆水中溶解态活性磷(SRP)质量浓度,而且降低了不同深度处间隙水中SRP的质量浓度,并且还降低了底泥-上覆水界面SRP扩散通量.此外,当不存在和存在水动力扰动作用时,向表层底泥(0~10 mm)中添加锆改性沸石,不仅促使添加层中氧化还原敏感态磷(BD-P)和盐酸提取态磷(HCl~-P)向金属氧化物结合态磷(Na OH-rP)和残渣态磷(Res-P)极大转变,降低了添加层中潜在可移动态磷(Mobile-P)含量,而且还降低了添加层下方底泥(10~20 mm)中Mobile-P含量.与静止状态相比,水动力扰动状态下锆改性沸石添加对河道底泥磷迁移转化的影响规律存在一定的差异.水动力扰动虽然可以增强锆改性沸石添加对表层底泥间隙水中SRP的钝化效果,以及对底泥-上覆水界面SRP扩散通量的削减效应,但是却会略微降低锆改性沸石添加控制底泥中磷向上覆水体中释放的效率.表层底泥中潜在可移动态磷含量、不同深度处间隙水中SRP的质量浓度以及底泥-水界面SRP扩散通量的下降,对于锆改性沸石改良技术控制底泥磷向上覆水体释放至关重要.以上结果说明,无论是在静止还是在水动力扰动状态下,锆改性沸石添加均可以有效地控制河道底泥中磷向上覆水体的释放.  相似文献   

5.
考察了扰动与钝化剂对滇池重污染底泥的磷释放的影响.结果表明,钝化剂(PAM+聚铝)有显著的抑制沉积物的磷释放和捕捉上覆水中含磷颗粒的效果.加钝化剂后,上覆水的总磷(TP)、溶解性总磷(DTP)和溶解性无机磷(DIP)分别比未加钝化剂组低50.0%~89.8%,85.5%~97.9%和96.5%~100.0%.扰动促进了沉积物的磷释放,这是因为扰动导致泥水混合程度增加;扰动导致沉积物氧化还原状态的改变.5d后扰动组的磷开始释放,而未扰动组在第52d仍未释放.沉积物中释放的磷主要是磷酸盐.扰动促进了DIP的释放,扰动后DTP/TP、DIP/DTP及DIP/TP均增加.投加的铝盐的量在试验期间导致的上覆水中残余铝的含量在安全范围内.扰动对上覆水中残余铝的含量影响不大.  相似文献   

6.
灼烧净水污泥投加方式对磷吸附和磷形态的影响   总被引:4,自引:3,他引:1  
朱培颖  李大鹏  于胜楠 《环境科学》2017,38(5):1957-1964
以灼烧净水污泥为研究对象,探讨在其不同投加方式(混匀和覆盖)下,各底泥对外源磷的吸附效果以及间隙水和底泥中各形态磷的数量分布.结果表明,相比未灼烧净水污泥,灼烧净水污泥对磷的吸附能力显著改善,磷最大吸附量(Smax)提高了43.7%、底泥磷平衡浓度(EPC0)降低69.1%、磷饱和度(DPS)降低54.4%.混匀和覆盖对上覆水中磷消失的贡献率几乎一致,但明显高于对照实验.但如果考虑灼烧净水污泥与上覆水的接触几率,则混匀条件下,单位净水污泥对磷的吸附量为覆盖条件下的2.3倍.覆盖条件下,间隙水(1~2 cm)中溶解性磷酸盐浓度是混匀条件的33.17倍(平均值),这主要源于覆盖导致溶解氧渗透深度明显降低.混匀条件下,外源磷更易形成Ca-P,而覆盖条件下,易释放的NH_4Cl-P和Fe/Al-P占比更多,这暗示了混匀对底泥微环境的改造更有利于外源磷的吸附和内源磷的持留.  相似文献   

7.
通过底泥培养实验,并采用磷形态分级提取方法对底泥进行分析,研究了静止和水动力扰动这2种状态下锆改性沸石添加对不同深度处底泥中磷迁移和形态转化的影响。结果表明,无论是在静止还是在水动力扰动状态下,锆改性沸石添加均不仅降低了上覆水中溶解态活性磷(SRP)质量浓度,而且降低了不同深度处间隙水中SRP的质量浓度,并且还降低了底泥-上覆水界面SRP扩散通量。此外,当不存在和存在水动力扰动作用时,向表层底泥(0~10mm)中添加锆改性沸石,不仅促使添加层中氧化还原敏感态磷(BD-P)和盐酸提取态磷(HCl-P)向金属氧化物结合态磷(NaOH-rP)和残渣态磷(Res-P)极大转变,降低了添加层中潜在可移动态磷(Mobile-P)含量,而且还降低了添加层下方底泥(10~20mm)中Mobile-P含量。与静止状态相比,水动力扰动状态下锆改性沸石添加对河道底泥磷迁移转化的影响规律存在一定的差异。水动力扰动虽然可以增强锆改性沸石添加对表层底泥间隙水中SRP的钝化效果,以及对底泥-上覆水界面SRP扩散通量的削减效应,但是却会略微降低锆改性沸石添加控制底泥中磷向上覆水体中释放的效率。表层底泥中潜在可移动态磷含量、不同深度处间隙水中SRP的质量浓度以及底泥-水界面SRP扩散通量的下降,对于锆改性沸石改良技术控制底泥磷向上覆水体释放,起到至关重要的作用。以上结果说明,无论是在静止还是在水动力扰动状态下,锆改性沸石添加均可以有效地控制河道底泥中磷向上覆水体的释放。  相似文献   

8.
池塘残饵对底泥氮、磷释放影响的模拟研究   总被引:2,自引:1,他引:1  
吕元蛟  李瑞娇  张念  赵峰  谢从新  张敏 《环境科学》2014,35(6):2178-2184
运用室内静态模拟的方法,设置静态释放组(A组)和饲料添加组(B组),研究了池塘残饵分解对底泥氮、磷释放的影响.结果表明,A组DO高于B组(P<0.05),A组pH值为中性,B组pH值呈弱酸性.添加饲料后,B组硝态氮低于A组(P<0.05),而B组活性磷高于A组(P<0.05).实验第2~14 d,A组氨氮高于B组(P<0.05),此后B组氨氮升高,实验结束时B组氨氮高于A组(P<0.05).研究表明,添加饲料的B组,初期氨氮和硝态氮的释放都受到抑制.静态释放的A组,氮的释放变化是先上升,后降低的趋势,而饲料添加的B组,氮的释放变化趋势则是先降低,后升高.B组饲料分解向上覆水释放大量的磷,活性磷的变化呈现先上升后下降的趋势.  相似文献   

9.
稳定剂控制底泥中磷元素释放的机理性研究   总被引:5,自引:0,他引:5       下载免费PDF全文
以河流富磷底泥为试验对象,研究4 种稳定剂对底泥磷元素释放的抑制效果和机理.结果表明,高锰酸钾和过氧化氢控制底泥释磷的持续性较差,投加高锰酸钾后底泥孔隙水的正磷酸根含量比对照高出0.344mg/L,过氧化钙和硝酸钙能够稳定地抑制底泥中磷的释放,可将孔隙水磷酸盐浓度分别降低至0.003,0.094mg/L.高锰酸钾和过氧化氢不能有效地降低底泥中NaOH-P 含量,过氧化钙和硝酸钙主要通过提高HCl-P 含量来控制磷的释放.  相似文献   

10.
河蚬或藻存在下组合扰动对内源磷迁移的影响   总被引:2,自引:0,他引:2  
为阐明河蚬(Corbicula fluminea)或铜绿微囊藻(Microcystis aeruginosa)存在下,物理和摇蚊幼虫组合扰动对内源磷再生和迁移转化的影响,以太湖梅梁湾上覆水和沉积物为研究对象,分析了上覆水、间隙水、沉积物中不同形态磷的变化规律.结果表明,与摇蚊幼虫扰动和组合扰动相比,河蚬或藻类的出现都会使得上覆水中不同形态磷(总磷、溶解性总磷、溶解性磷酸盐、颗粒态磷)显著增加.河蚬或藻类均导致间隙水DIP明显降低,并致使DIP峰值区域向更深处迁移(3~4cm变为4~5cm),而对照试验则相反.与对照试验相比,河蚬或藻存在下组合扰动均导致0~4cm沉积物NH4Cl-P含量及其占总磷百分比降低,Fe/Al-P含量及其占总磷百分比增加,并且河蚬或藻对NH4Cl-P降低和Fe/Al-P增加的影响基本一致.在多种扰动因素存下,摇蚊幼虫对上覆水中DTP和DIP贡献最大,后者可能源于摇蚊幼虫显著降低了间隙水中DIP含量及沉积物中NH4Cl-P含量.这暗示了在组合扰动基础上叠加河蚬或者藻类,均进一步促进了内源磷再生和迁移.  相似文献   

11.
The potential harm of heavy metals is a primary concern in application of sludge to the agricultural land. A pot experiment was conducted to evaluate the effect of two sludges on fractionation of Zn and Cu in soil and their phytotoxicity to pakchoi. The loamy soil was mixed with 0%, 20%, 40%, 60% and 80% (by weight) of digested sewage sludge (SS) and composted sludge (SC). The additions of both sludges caused a significant raise in all fractions, resulting in that exchangeable (EXCH) and organic bound (OM) became predominance of Zn and organic bound Cu occupied the largest portion. There was more available amount of Zn and Cu in SS treatments than SC treatments. During the pot experiment, the concentration of Zn in EXCH, carbonate (CAR) and OM and Cu in EXCH and OM fractions decreased in all treatments, so their bioavailability reduced. Germination rate and plant biomass decreased when the addition rate was high and the best yield appeared in 20% mixtures at the harvest of pakchoi. The two sludges increased tissue contents of Zn and Cu especially in the SS treatments. Zn in pakchoi was not only in relationship to ΔEXCH and ΔCAR forms but also in ΔOM forms in the sludge-soil mixtures. Tissue content of Cu in pakchoi grown on SC-soils could not be predicted by ΔEXCH. These correlation rates between Zn and Cu accumulation in pakchoi and variation of different fractions increased with time, which might indicate that sludges represented stronger impacts on the plant in long-term land application.  相似文献   

12.
A hydroponic experiment was carried out to study intraspecific differences in the effects of different concentrations of cadmium (Cd)(0-10 mg/L) and arsenate (As(V)) (0-8 mg/L) on the growth parameters and accumulation of Cd and As in six wheat varieties Jing-9428, Duokang-1, Jingdong-11, Jing-411, Jingdong-8 and Zhongmai-8. The endpoints of wheat seedlings, including seed germination,biomass, root length and shoot height, decreased with increasing the Cd and As concentrations. Significant differences in seed germination, biomass, root length, shoot height and the accumulation of Cd and As were observed between the treatments and among the varieties (p < 0.05). The lethal dosage 50% were about 20, 80, 60, 60, 80 and 20 mg As/L for Jing-9428, Duokang-1, Jingdong-11,Jing-411, Jingdong-8 and Zhongmai-8, respectively, and the corresponding values for Cd were about 30, 80, 20, 40, 60 and 10 mg Cd/L, respectively. Among the six varieties, Duokang-1 was found to be the most resistant to Cd and As toxicity, and Zhongmai-8 was the most sensitive to Cd and As co-contamination. The resistance of the six varieties was found dependant on the seedling uptake of Cd and As. Duokang-1 was the most suitable for cultivation in Cd and As co-contaminated soils.  相似文献   

13.
Toxic effects of two agrochemicals on nifH gene in agricultural black soil were investigated using denaturing gradient gel electrophoresis (DGGE) and sequencing approaches in a microcosm experiment. Changes of soil nifH gene diversity and composition were examined following the application of acetochlor, methamidophos and their combination. Acetochlor reduced the nifH gene diversity (both in gene richness and diversity index values) and caused changes in the nifH gene composition. The effects of acetochlor on nifH gene were strengthened as the concentration of acetochlor increased. Cluster analysis of DGGE banding patterns showed that nifH gene composition which had been affected by low concentration of acetochlor (50 mg/kg) recovered firstly. Methamidophos reduced nifH gene richness that except at 4 weeks. The medium concentration of methamidophos (150 mg/kg) caused the most apparent changes in nifH gene diversity at the first week while the high concentration of methamidophos (250 mg/kg) produced prominent effects on nifH gene diversity in the following weeks. Cluster analysis showed that minimal changes of nifH gene composition were found at 1 week and maximal changes at 4 weeks. Toxic effects of acetochlor and methamidophos combination on nifH gene were also apparent. Different nifH genes (bands) responded differently to the impact of agrochemicals: four individual bands were eliminated by the application of the agrochemicals, five bands became predominant by the stimulation of the agrochemicals, and four bands showed strong resistance to the influence of the agrochemicals. Fifteen prominent bands were partially sequenced, yielding 15 different nifH sequences, which were used for phylogenetic reconstructions. All sequences were affiliated with the alpha- and beta-proteobacteria, showing higher similarity to eight different diazotrophic genera.  相似文献   

14.
The effects of arbuscular mycorrhizal (AM) fungus (Glomus mosseae) and phosphorus (P) addition (100 mg/kg soil) on arsenic (As) uptake by maize plants (Zea mays L.) from an As-contaminated soil were examined in a glasshouse experiment.Non-mycorrhizal and zero-P addition controls were included.Plant biomass and concentrations and uptake of As,P,and other nutrients,AM colonization,root lengths,and hyphal length densities were determined.The results indicated that addition of P significantly inhibited root colonization and development of extraradical mycelium.Root length and dry weight both increased markedly with mycorrhizal colonization under the zero-P treatments,but shoot and root biomass of AM plants was depressed by P application.AM fungal inoculation decreased shoot As concentrations when no P was added,and shoot and root As concentrations of AM plants increased 2.6 and 1.4 times with P addition,respectively.Shoot and root uptake of P,Mn,Cu,and Zn increased,but shoot Fe uptake decreased by 44.6%,with inoculation, when P was added.P addition reduced shoot P,Fe,Mn,Cu,and Zn uptake of AM plants,but increased root Fe and Mn uptake of the nonmycorrhizal ones.AM colonization therefore appeared to enhance plant tolerance to As in low P soil,and have some potential for the phytostabilization of As-contaminated soil,however,P application may introduce additional environmental risk by increasing soil As mobility.  相似文献   

15.
Laogang landfill near Shanghai is the largest landfill in China, and receives about 10000 t of daily garbage per day, Samples of topsoil and plants were analyzed to evaluate mercury pollution from the landfill. For topsoil samples, there were significant correlations among total mercury (HgT), combinative mercury (Hgc) and gaseous mercury (HgG), and content of total organic carbon (TOC), but, no significantly relationship was found between Hg content and filling time. Hg content changes in vertical profiles with time showed that the average Hgv of profiles 1992, 1996, and 2000 was similar, but their average HgG was quite different. HgT was significantly correlated with Hgc in profile 1992 and 2000, and Hgv was significantly correlated with Hg6 in profile 1996. HgG/Hgv ratio in profile samples decreased in the order of (HgG,/HgT)1992〉(HgG/HgT)1996〉〉(HgG/HgT)2000. A simple outline of Hg release in landfill could be drawn: with increasing of filling time, degradation undergoes different biodegradation, accordingly, gaseous mercury goes through small, more, and small proportion to total mercury. Distribution of Hg in plants was inhomogeneous, following the order of leaf〉root〉stem. The highest value of leaf may be associated with higher atmospheric Hg from landfill. Ligneous plants (e.g. Phyllostachys glanca, Prunus salicina and Ligustrum lucidum) are capable of enriching more Hg than herbaceous plants.  相似文献   

16.
Phytoremediation is a potential cleanup technology for the removal of heavy metals from contaminated soils.Bidens maximowicziana is a new Pb hyperaccumulator,which not only has remarkable tolerance to Pb but also extraordinary accumulation capacity for Pb.The maximum Pb concentration was 1509.3 mg/kg in roots and 2164.7 mg/kg in overground tissues.The Pb distribution order in the B. maximowicziana was:leaf>stem>root.The effect of amendments on phytoremediation was also studied.The mobility of soil Pb and the Pb concentrations in plants were both increased by EDTA application.Compared with CK(control check),EDTA application promoted translocation of Pb to overground parts of the plant.The Pb concentrations in overground parts of plants was increased from 24.23-680.56 mg/kg to 29.07-1905.57 mg/kg.This research demonstrated that B.maximowicziana appeared to be suitable for phytoremediation of Pb contaminated soil,especially,combination with EDTA.  相似文献   

17.
In this study an effort has been made to use plant polyphenol oxidases; potato (Solanum tuberosum) and brinjal (Solanum melongena), for the treatment of various important dyes used in textile and other industries. The ammonium sulphate fractionated enzyme preparations were used to treat a number of dyes under various experimental conditions. Majority of the treated dyes were maximally decolorized at pH 3.0. Some of the dyes were quickly decolorized whereas others were marginally decolorized. The initial first hour was sufficient for the maximum decolorization of dyes. The rate of decolorization was quite slow on long treatment of dyes. Enhancement in the dye decolorization was noticed on increasing the concentration of enzymes. The complex mixtures of dyes were treated with both preparations of polyphenol oxidases in the buffers of varying pH values. Potato polyphenol oxidase was significantly more effective in decolorizing the dyes to higher extent as compared to the enzyme obtained from brinjal polyphenol oxidase. Decolorization of dyes and their mixtures, followed by the formation of an insoluble precipitate, which could be easily removed simply by centrifugation.  相似文献   

18.
Decomposition of alachlor by ozonation and its mechanism   总被引:1,自引:0,他引:1  
Decomposition and corresponding mechanism of alachlor, an endocrine disruptor in water by ozonation were investigated. Results showed that alachlor could not be completely mineralized by ozone alone. Many intermediates and final products were formed during the process, including aromatic compounds, aliphatic carboxylic acids, and inorganic ions. In evoluting these products, some of them with weak polarity were qualitatively identified by GC-MS. The information of inorganic ions suggested that the dechlorination was the first and the fastest step in the ozonation of alachlor.  相似文献   

19.
The influence of the nonionic surfactant Tween 80 on pentachlorophenol (PCP) oxidation catalyzed by horseradish peroxidase was studied. The surfactant was tested at concentrations below and above its critical micelle concentration (CMC). Enhancement of PCP removal was observed at sub-CMCs. The presence of Tween 80 in the reaction mixture reduced enzyme inactivation which occurred through a combination of free radical attack and sorption by precipitated products. A simple first-order model was able to simulate time profiles for enzyme inactivation in the presence or absence of Tween 80. At supra-CMCs, the surfactant caused noticeable reductions in PCP removal, presumably through micelle partitioning of PCP which precluded the hydrophobic PCP molecule from interacting with the enzyme.  相似文献   

20.
Toxic effect of Zn(Ⅱ) on a green alga (Chlorella pyrenoidasa) in the presence of sepiolite and kaolinite was investigated.The Zn-free clays were found to have a negative impact on the growth of C.pyrenoidosa in comparison with control samples (without adding any clay or Zn(Ⅱ)).When Zn(Ⅱ) was added,the algae in the presence of clays could be better survived than the control samples,which was actually caused by a decrease in Zn(Ⅱ) concentration in the solution owing to the adsorption of Zn(Ⅱ) on the clays.When the solution system was diluted,the growth of algae could be further inhibited as compared to that in a system which had the same initial Zn(Ⅱ) concentration as in the diluted system.This in fact resulted from desorption of Zn(Ⅱ) from the zinc-contaminated clays,although the effect varied according to the different desorption capabilities of sepiolite and kaolinite.Therefore the adsorption and desorption processes of Zn(Ⅱ) played an important part in its toxicity,and adsorption and desorption of pollutants on soils/sediments should be well considered in natural eco-environmental systems before their risk of toxicity to aquatic organisms was assessed objectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号