首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The relative abundance of ant species was measured by pit-fall trapping at 44 sites in southern New Mexico and southeastern Arizona, U.S.A.. Sites were selected for study based on documentation of a history of disturbance or protection from disturbance, exposure to varying intensities of livestock grazing, dominance by an exotic species of plant and vegetation change resulting from disturbance or restoration efforts. Ant community composition, relative abundances of species, and species richness were the same on disturbed and undisturbed sites. None of the metrics based on hypothesized responses of ants to disturbance clearly distinguished between disturbed and undisturbed sites. Ant communities on sites where restoration efforts have resulted in distinct differences in vegetative cover and composition were similar to the ant communities on degraded unrehabilitated sites on the same soil type. Ant communities in riparian cottonwood gallery forests in Arizona and New Mexico were similar but differed from the assemblages in exotic salt cedar and native ash riparian woodlands. Ant species exhibited remarkable resistance to human-induced disturbances in these rangeland areas. In grasslands dominated by the South African grass, Eragrostis lehmanniana Nees, large seed harvesting ants, Pogonomyrmex spp., were greatly reduced in abundance compared to native grasslands. Other ant metrics were not different in E. lehmanniana grasslands and native grasslands. We conclude that ants cannot be used as indicators of exposure to stress, ecosystem health or of rehabilitation success on rangeland ecosystems. Ants are also not useful indicators of faunal biodiversity in rangeland ecosystems.  相似文献   

2.
We evaluated the potential of soil microarthropods and enchytraeid worms to be useful as bioindicators of soil condition in forest, wetland, and agricultural ecosystems over a range of ecoregions. Selected mesofauna and soil characteristics in soil and litter in relatively undisturbed and disturbed examples of each of three ecosystems within each of three land resource regions were monitored over two years. Optimal times of year to sample these organisms as indicators of disturbance were April, May, July and September. No single measure reflected disturbance across all three ecosystems. Among forest sites, Simpson's diversity index, evenness, abundance of ants, and proportion of enchytraeids in the mesofauna differed between soils of different disturbance levels. Among agricultural sites, richness, evenness, abundance of mites, and proportions of collembolans and of enchytraeids in the mesofauna differed between disturbance levels. Among wetland sites, Shannon's and Simpson's diversity indices, richness based on the total mesofauna, and abundances of mites, diplurans, ants, and isotomid and onychiurid collembolans differed between disturbance levels. Covariates most frequently associated with abundance and diversity of the measured mesofauna were soil electrical conductivity, available N, organic matter, and pH. Canonical correspondence analysis provided information somewhat different to bivariate analysis. Using both approaches to examine soil and litter taxa that have distinctive responses to disturbance may help to identify candidate groups applicable for use in large-scale environmental monitoring programs.  相似文献   

3.
The improvement of land management practices on lands susceptible to desertification requires information on the status and condition of the existing resources as well as any change occurring in the resource condition over time. The Environmental Monitoring and Assessment Program (EMAP) of the U.S. Environmental Protection Agency has developed a statistical survey design for monitoring the condition of ecological resources on large spatial scales. EMAP-Rangelands used a uniformity sampling study in 1993 to evaluate response plot designs for three categories of indicators (soils, vegetation, and spectral reflectance) to be used for monitoring ecological condition of a site. The response plot design study was developed to integrate on-site measurements for the three indicator categories. The study was conducted on the Colorado Plateau in southern Utah in three rangeland resource classes (grassland, desertscrub, and conifer woodland) of differing productivity levels in an attempt to develop a common plot design for all three resource classes. Basic measurement units were developed to facilitate integration of data collection. Preliminary spatial analysis of the sampling study found considerable differences in variation patterns among the study sites and measurement categories for the indicator classes used by EMAP-Rangelands. Evidence of substantial trends in the indicator measurements on monitoring sites relative to regional trends leads to the conclusion that nonstationary spatial models for biological processes on a monitoring site may be needed to fulfill the requirements for developing plot designs and indicator criteria.The U.S. Environmental Protection Agency, through the Office of Research and Development, funded the research described here. This paper has been subjected to the Agency's peer and administrative review and has been approved as an EPA publication. The U.S. Government has the right to retain a nonexclusive, royalty-free license in and to any copyright covering this article.  相似文献   

4.
针对太湖湖滨带,均匀布设49个点位,分别于2009年12月、2010年4、8月开展浮游植物及水质监测。结果显示,湖滨带浮游植物群落多样性整体较低,优势种从枯水期到丰水期呈"鱼腥藻-鱼腥藻-微囊藻"的演变趋势;西北部湖区(竺山湖、梅梁湾、西部沿岸)浮游植物密度明显高于东南部湖区(东部沿岸、东太湖、南部沿岸);湖滨带浮游植物群落结构与湖体相似,密度比湖体高1个数量级;RDA排序筛选出在显著水平上解释浮游植物分布的最小变量组合为TN、CODMn、SS、p H、SD,且方差分解指出TN是相对最重要的变量;当物种适合度为50%~100%时,与TN具有较好梯度响应关系的是四尾栅藻及弓型藻,并且这2个种与TN、TP及综合营养状态指数的组合变量也有较好的梯度响应关系,具备指示太湖湖滨带富营养化的可能,但定量指示意义尚待进一步研究。  相似文献   

5.
We introduce climate impact response functions as a means for summarizing and visualizing the responses of climate-sensitive sectors to changes in fundamental drivers of global climate change. In an inverse application, they allow the translation of thresholds for climate change impacts (‘impact guard-rails’) into constraints for climate and atmospheric composition parameters (‘climate windows’). It thus becomes feasible to specify long-term objectives for climate protection with respect to the impacts of climate change instead of crude proxy variables, like the change in global mean temperature. We apply the method to assess impacts on terrestrial ecosystems, using the threat to protected areas as the central impact indicator. Future climate states are characterized by geographically and seasonally explicit climate change patterns for temperature, precipitation and cloud cover, and by their atmospheric CO2 concentration. The patterns are based on the results of coupled general circulation models. We study the sensitivity of the impact indicators and the corresponding climate windows to the spatial coverage of the analysis and to different climate change projections. This enables us to identify the most sensitive biomes and regions, and to determine those factors which significantly influence the results of the impact assessment. Based on the analysis, we conclude that climate impact response functions are a valuable means for the representation of climate change impacts across a wide range of plausible futures. They are particularly useful in integrated assessment models of climate change based on optimizing or inverse approaches where the on-line simulation of climate impacts by sophisticated impact models is infeasible due to their high computational demand. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
Studies on abundance and types of various pollution indicator bacterial populations from tropical estuaries are rare. This study was aimed to estimate current levels of pollution indicator as well as many groups of human pathogenic bacteria and their seasonal variations in different locations in Mandovi and Zuari Rivers in the central west coast of India. The sampling covered the estuarine and upstream regions of these rivers representing premonsoon (May 2005), monsoon (September 2006) and post-monsoon (November 2005). Both the abundance and types of autochthonous and allochthonous microbial populations in the near shore environments are affected by land drainages, domestic sewage outfalls and other discharges. The overall ranges (and their mean abundance; no. ml(-1)) of the monitored groups of bacteria were: total coliforms: 0-29,047 (3,134 ml(-1)); total streptococci: 3-14,597 (798); total vibrios: 13-42,275 (2,530); Escherichia coli: 0-1,333 (123); Vibrio cholerae: 0-3,012 (207); Salmonella spp: 0-1,646 (90); Streptococcus faecalis: 0-613 (88) and Aeromonas spp: 0-2,760 (205). In general, abundance of sewage pollution indicator bacteria such as total coliforms and total streptococci was lower than that reported from many other locations worldwide.  相似文献   

7.
Patterns of Spatial Autocorrelation in Stream Water Chemistry   总被引:2,自引:0,他引:2  
Geostatistical models are typically based on symmetric straight-line distance, which fails to represent the spatial configuration, connectivity, directionality, and relative position of sites in a stream network. Freshwater ecologists have explored spatial patterns in stream networks using hydrologic distance measures and new geostatistical methodologies have recently been developed that enable directional hydrologic distance measures to be considered. The purpose of this study was to quantify patterns of spatial correlation in stream water chemistry using three distance measures: straight-line distance, symmetric hydrologic distance, and weighted asymmetric hydrologic distance. We used a dataset collected in Maryland, USA to develop both general linear models and geostatistical models (based on the three distance measures) for acid neutralizing capacity, conductivity, pH, nitrate, sulfate, temperature, dissolved oxygen, and dissolved organic carbon. The spatial AICC methodology allowed us to fit the autocorrelation and covariate parameters simultaneously and to select the model with the most support in the data. We used the universal kriging algorithm to generate geostatistical model predictions. We found that spatial correlation exists in stream chemistry data at a relatively coarse scale and that geostatistical models consistently improved the accuracy of model predictions. More than one distance measure performed well for most chemical response variables, but straight-line distance appears to be the most suitable distance measure for regional geostatistical modeling. It may be necessary to develop new survey designs that more fully capture spatial correlation at a variety of scales to improve the use of weighted asymmetric hydrologic distance measures in regional geostatistical models.  相似文献   

8.
We evaluated the relative performance of electrofishing and visual surveys (snorkeling) for estimating the abundance of combinations of fish species and size classes in rivers. We also assessed the effect of environmental conditions on potential differences between the results obtained using these two sampling methods. Sampling sites were distributed in the Laurentian region of Québec. Both methods were used while sections were blocked. Three snorkelers swam the river sections upstream while identifying and counting fish of each species and size classes. Three-pass electrofishing was performed in the same sites and abundances were estimated with a maximum likelihood depletion model. Greater abundances of fish were observed by snorkeling than by electrofishing at all sites. Snorkeling species richness was higher or equal to electrofishing richness in, respectively, 60 % and 40 % of sampled sites. Differences in the fish communities observed by both sampling methods were not related to environmental conditions. The results of our work are therefore contrary to that of most published studies that suggested the use of electrofishing over visual surveys. This study highlights that conclusions derived from previous work on sampling gear comparisons may not be generalisable; rather survey methods might benefit from being selected based on fish community composition.  相似文献   

9.
Mass bleaching events resulting in coral mortality are among the greatest threats to coral reefs, and are projected to increase in frequency and intensity with global warming. Achieving a better understanding of the consistency of the response of coral assemblages to thermal stress, both spatially and temporally, is essential to determine which reefs are more able to tolerate climate change. We compared variations in spatial and taxonomic patterns between two bleaching events at the scale of an island (Moorea Island, French Polynesia). Despite similar thermal stress and light conditions, bleaching intensity was significantly lower in 2007 (approximately 37 % of colonies showed signs of bleaching) than in 2002, when 55 % of the colonies bleached. Variations in the spatial patterns of bleaching intensity were consistent between the two events. Among nine sampling stations at three locations and three depths, the stations at which the bleaching response was lowest in 2002 were those that showed the lowest levels of bleaching in 2007. The taxonomic patterns of susceptibility to bleaching were also consistent between the two events. These findings have important implications for conservation because they indicate that corals are capable of acclimatization and/or adaptation and that, even at small spatial scales, some areas are consistently more susceptible to bleaching than others.  相似文献   

10.
Data from toxicity tests of the pore water extracted from Puget Sound sediments were compiled from surveys conducted from 1997 to 2009. Tests were performed on 664 samples collected throughout all of the eight monitoring regions in the Sound, an area encompassing 2,294.1 km2. Tests were performed with the gametes of the Pacific purple sea urchin, Strongylocentrotus purpuratus, to measure percent fertilization success as an indicator of relative sediment quality. Data were evaluated to determine the incidence, degree of response, geographic patterns, spatial extent, and temporal changes in toxicity. This is the first survey of this kind and magnitude in Puget Sound. In the initial round of surveys of the eight regions, 40 of 381 samples were toxic for an incidence of 10.5 %. Stations classified as toxic represented an estimated total of 107.1 km2, equivalent to 4.7 % of the total area. Percent sea urchin fertilization ranged from >100 % of the nontoxic, negative controls to 0 %. Toxicity was most prevalent and pervasive in the industrialized harbors and lowest in the deep basins. Conditions were intermediate in deep-water passages, urban bays, and rural bays. A second round of testing in four regions and three selected urban bays was completed 5–10 years following the first round. The incidence and spatial extent of toxicity decreased in two of the regions and two of the bays and increased in the other two regions and the third bay; however, only the latter change was statistically significant. Both the incidence and spatial extent of toxicity were lower in the Sound than in most other US estuaries and marine bays.  相似文献   

11.
Scale is important to consider when investigating effects of the environment on a species. Breeding Bird Survey (BBS) data and landscape metrics derived from aerial photographs were evaluated to determine how relationships of bird abundances with landscape variables changed over a continuous range of 16 spatial scales. We analyzed the average number of birds per stop (1985–1994) for five songbird species (family Cardinalidae) for each of 50 stops on 198 BBS transects throughout six states in the Central Plains, USA. Land along each transect was categorized into six cover types, and landscape metrics of fractal dimension (a measure of shape complexity of habitat patches), edge density, patch density, and percent area were calculated, with principal components used to construct composite environmental variables. Associations of bird abundances and landscape variables changed in accordance with small scale changes. Abundances of three species were correlated with edge density and one with component I, which subsumes initial variables of patch density for urban, closed forest, open forest, and open country. Fractal dimension and component II (summarizing amount of closed forest versus open country) were associated with the most species. Correlation patterns of fractal dimension with northern cardinal (Cardinalis cardinalis) and painted bunting (Passerina ciris) abundances were similar, with highest correlations at intermediate to small scales, suggesting indirectly that these species thrive in areas where local habitat conditions are most important. Multiscale analysis can provide insight into the spatial scale(s) at which species respond, a topic of intrinsic scientific interest with applied implications for researchers establishing protocols to assess and monitor avian populations.  相似文献   

12.
We studied indicators of rangeland health on benchmark sites with long, well documented records of protection from stress by domestic livestock or histories of environmental stress and vegetation change. We measured ecosystem properties (metrics) that were clearly linked to ecosystem processes. We focused on conservation of soil and water as key processes in healthy ecosystems, and on maintenance of biodiversity and productivity as important functions of healthy ecosystems. Measurements from which indicators of rangeland health were derived included: sizes of unvegetated patches, cover and species composition of perennial grasses, cover and species composition of shrubs and herbaceous perennials, soil slaking, and abundance and species composition of the bird fauna. Indicators that provided an interpretable range of values over the gradient from irreversibly degraded sites to healthy sites included: bare patch index, cover of long-lived grasses, palatability index, and weighted soil surface stability index. Indicators for which values above a threshold may serve as an indicator of rangeland health include: cover of plant species toxic to livestock, cover of exotic species, and cover of increaser species. Several other indicator metrics were judged not sensitive nor interpretable. Examples of application of rangeland health indicators to evaluate the success of various restoration efforts supported the contention that a suite of indicators are required to assess rangeland health. Bird species diversity and ant species diversity were not related to the status of the sample site and were judged inadequate as indicators of maintenance of biodiversity.  相似文献   

13.
In the years 2004 and 2005, we collected samples of phytoplankton, zooplankton, and macroinvertebrates in an artificial small pond in Budapest (Hungary). We set up a simulation model predicting the abundances of the cyclopoids, Eudiaptomus zachariasi, and Ischnura pumilio by considering only temperature and the abundance of population of the previous day. Phytoplankton abundance was simulated by considering not only temperature but the abundances of the three mentioned groups. When we ran the model with the data series of internationally accepted climate change scenarios, the different outcomes were discussed. Comparative assessment of the alternative climate change scenarios was also carried out with statistical methods.  相似文献   

14.
We examined the response of demographic, morphological, and chemical parameters of turtle grass (Thalassia testudinum), to much-higher-than-normal rainfall associated with an El Niño event in the winter of 1997–1998. Up to 20 inches of added rain fell between December 1997 and March 1998, triggering widespread and persistent phytoplankton blooms along the west coast of Florida. Water-column chlorophyll concentrations estimated from serial SeaWiFS imagery were much higher during the El Niño event than in the previous or following years, although the timing and magnitude of phytoplankton blooms varied among sites. Seagrass samples collected in 1997, 1998, and 1999 provided an excellent opportunity to test the responsiveness of Thalassia to decline and subsequent improvement of water quality and clarity in four estuaries. Using a scoring technique based on temporal responsiveness, spatial consistency, and statistical strength of indicators, we found that several morphological parameters (Thalassia shoot density, blade width, blade number, and shoot-specific leaf area) were responsive and consistent measures of light stress. Some morphological parameters, such as rhizome apex density, responded to declines and subsequent improvement in water clarity, but lacked the statistical discriminating power necessary to be useful indicators. However, rhizome sugar, starch, and the total carbohydrate concentrations also exhibited spatially and temporally consistent variation as well as statistical strength. Because changes in shoot density, as well as water clarity, affect rhizome carbohydrate levels, a composite metric based on Thalassia shoot density and rhizome carbohydrate levels together is probably more useful than either parameter alone as an indicator of seagrass health.  相似文献   

15.
In this paper, we evaluate relationships between in-stream habitat, water chemistry, spatial distribution within a predominantly agricultural Midwestern watershed and geomorphic features and fish assemblage attributes and abundances. Our specific objectives were to: (1) identify and quantify key environmental variables at reach and system wide (watershed) scales; and (2) evaluate the relative influence of those environmental factors in structuring and explaining fish assemblage attributes at reach scales to help prioritize stream monitoring efforts and better incorporate all factors that influence aquatic biology in watershed management programs. The original combined data set consisted of 31 variables measured at 32 sites, which was reduced to 9 variables through correlation and linear regression analysis: stream order, percent wooded riparian zone, drainage area, in-stream cover quality, substrate quality, gradient, cross-sectional area, width of the flood prone area, and average substrate size. Canonical correspondence analysis (CCA) and variance partitioning were used to relate environmental variables to fish species abundance and assemblage attributes. Fish assemblages and abundances were explained best by stream size, gradient, substrate size and quality, and percent wooded riparian zone. Further data are needed to investigate why water chemistry variables had insignificant relationships with IBI scores. Results suggest that more quantifiable variables and consideration of spatial location of a stream reach within a watershed system should be standard data incorporated into stream monitoring programs to identify impairments that, while biologically limiting, are not fully captured or elucidated using current bioassessment methods.  相似文献   

16.
Fine spatial and temporal phytoplankton variability in Mali Ston Bay has been observed for the first time based on physicochemical properties and small herbivorous zooplankton. Extensive year-through research was conducted during 2002 at Usko station which is traditionally an area of intensive shellfish farming. The Neretva River inflow, submarine springs (“vruljas”) and precipitation are additional sources of nutrients in the bay. Temperature and salinity, combined with total inorganic nitrogen (TIN) were observed to be the most important environmental factors driving the succession of phytoplankton communities. Orthophosphate was a potential limiting factor for phytoplankton development. The nanophytoplankton abundances, as well as the microphytoplankton diatoms are controlled by herbivorous zooplankton grazing (‘top-down’ control) more than other groups of microphytoplankton. Nanophytoplankton dominated phytoplankton abundance and its most intensive development was recorded in winter and spring, while increase in microphytoplankton abundance occurred in spring and autumn. Diatoms dominated microphytoplankton abundance mostly in winter and autumn, while dinoflagellates dominated in spring and summer. Considering the number of taxa and abundance, dinoflagellates were the dominant microphytoplankton group during the year and were the main component of the spring blooms. At that time, in conditions of elevated temperature (>16 °C), decreased salinity (34–36) and increased concentrations of TIN, blooms of harmful dinoflagellate Prorocentrum minimum were recorded for the first time in the bay. The results showed a significant difference in environmental conditions, as well as in the annual phytoplankton succession and community structure, as compared with studies carried out more than 20 years ago in this area.  相似文献   

17.
A Health Index/Risk Evaluation Tool (HIRET) has been developed for the integration of risk assessment and spatial planning using GIS capabilities. The method is meant to assist decision makers and site owners in the evaluation of potential human health risk with respect to land use. Human health risk defined as the potential adverse effects on human life or health is generally accepted as the most important aspect for site assessment and planning of remediation strategies. It concerns polluted sites that endanger human health on one hand and derelict land that does not cause the immediate risk on the other hand. In current state-of-the-art risk-assessment, long-term spatial and temporal changes of risks, in relation to changes in contamination patterns and land use functions, are not taken into account. The aim of this paper is to demonstrate the methodology developed for human health risk assessment in aspect of spatial and temporal domain. HIRET was developed as an extension for ESRI software ArcView 3.2 and allows performing dynamic human health risk assessment in long-term period, which is relevant for land use planning. The paper illustrates how such methodology can assist in environmental decision-making to enhance the efficiency of contaminated land management. A case study of contaminated site is given showing how data can be used within a GIS framework to produce maps indicating areas of potential human health risk.  相似文献   

18.
The choice of spatial and temporal scale used in environmental assessments may influence the observed results. One method of assessing the impact of stream habitat alterations involves the comparison of response variables among treatment categories (i.e., impacted and unimpacted sites). The influence of spatial resolution on patterns of response variables among treatment categories in assessments of stream channelization and other types of habitat alterations has not been evaluated. We examined how patterns of 10 community response variables among channel types and our interpretations of channelization impacts on fish and macroinvertebrate communities differed among three spatial resolutions in a warmwater stream in Mississippi and Alabama. Four fish and three macroinvertebrate community response variables exhibited different patterns among channel types at different spatial resolutions. Our interpretations of the impacts of channelization on fish and macroinvertebrate communities differed among spatial resolutions. Channelization had a negative influence on fish communities either with or without evidence of potential community recovery in one channel type. Channelization impacts on macroinvertebrate communities ranged from a negative influence to no effect. Our results suggest that spatial resolution can influence the observed results and interpretations derived from assessments of stream habitat alterations.  相似文献   

19.
Landscape connectivity, as an important indicator of regional landscape functional pattern measured by cost–distances model, could both reveal evidence of, and act as an indicator, for desertification. Using Minqin county as a case study, this study was further to test cost–distance connectivity for indicating desertification, and to analyze temporal changes of connectivity in the county from 1977 to 1997. The results further indicate the connectivity interpreted as lower cost–distance and higher risk of desertification. The temporal change analysis of connectivity provides more detail supplement of desertification processes. Landscape connectivity changes in the county had three distinctive phases, the strongest decline of log cost–distance with overwhelming decrease area and decrease amount in the period 1977–1984, and its slight decline with the relative balance between the high decrease amount and high increase amount in the period 1984–1992, then its the slight decline with the relative balance between the low decrease amount and low increase amount in the period 1992–1997. The frequent temporal and spatial transition in source class, grassland, alkali–saline land and irrigated cultivated land caused negative effects on the oasis environment.  相似文献   

20.
Recognition and understanding of landscape dynamics as a historical legacy of disturbances are necessary for sustainable management of forest ecosystems. This study analyzes spatial and temporal changes in land use and forest cover patterns in a typical mountain forest area in Rize Forest Enterprise of the Northeastern part of Turkey. The area is investigated by evaluated the temporal changes of spatial structure of forest conditions through spatial analysis of forest cover type maps from 1984 and 2007 using GIS and FRAGSTATS. The quantative evidences presented here showed that there were drastic changes in the temporal and spatial dynamics of land use/forest cover. As an overall change between 1984 and 2007, there was a net decrease of 2.30% in total forested areas. On one hand, productive forest areas decreased 12,506 ha, on the other hand, degraded forest areas increased 14,805 ha. In examining the changes of crown closure and development stages of forest ecosystem during the study period, the forest stand area with medium crown closures increased. Regenerated area increased while the other development stages were left to grow to mature development stages in the period. These results regarding to crown closure and development stage showed that forest quality has increased but total forest areas decreased. This is partially due to out-migration of rural population in Rize and Cayeli towns. In terms of spatial configuration, analysis of the metrics revealed that landscape structure in Study area had changed substantially over the 23-year study period, resulting in fragmentation of the landscape as indicated by the large patch numbers and the smaller mean patch sizes due to heavy timber subtraction, illegal cutting, and uncontrolled stand treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号