首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
为了研究柱状活性焦负载V2O5选择性催化还原NO的性能,采用等体积浸渍法制备一系列柱状V2O5/AC催化剂,采用工业分析、元素分析、SEM、BET对催化剂进行表征.结果表明,柱状活性焦表面具有大量的孔隙结构,硝酸改性提高活性焦的氧含量、比表面积和微孔率.同时研究了V2O5负载量、反应温度、Q浓度、空速等因素对NO脱除率的影响.结果表明,在V2O5负载量为3%、反应温度150℃,O2体积分数为5%,空速2500 L/(M·h)时NO的脱除率可达61.89%.  相似文献   

2.
以四苯基卟啉为原料和氯化亚铁合成了仿酶配合物-四苯基卟啉铁(Ⅱ)(TPPFe),产物结构通过红外(IR)、紫外(UV)和元素分析得到验证。在H2O2氧化脱硫体系中考察了不同反应条件下产物对含二苯并噻吩(DBT)的模型油氧化脱硫的催化效果。结果显示,在催化剂四苯基卟啉铁(Ⅱ)用量为0.04 g、氧化剂H2O2用量为0.20 m L、反应温度为50℃及反应时间3 h的较优条件下,DBT的氧化脱除率可达62.0%,展现了产物较好的催化活性。  相似文献   

3.
H2O2辅助TiO2/CdS/壳聚糖复合膜光催化甲基橙脱色研究   总被引:1,自引:0,他引:1  
为利用可见光对染料废水进行高效脱色,采用仿生矿化法制备了具有可见光响应的TiO2/CdS/壳聚糖复合膜光催化剂.用氙灯模拟日光,以甲基橙为目标污染物,探讨了催化剂用量、H2O2投加量、甲基橙初始浓度、溶液pH值、无机阴离子和催化剂重复使用对甲基橙溶液脱色效果的影响.结果表明,甲基橙质量浓度为15 mg/L,催化剂质量浓度为1.00 g/L,H2O2浓度为3.9 mmol/L,pH值为6.0时,光照130 min后甲基橙溶液的脱色率可达到99.90%.催化剂重复使用试验表明,制得的催化剂使用寿命较长,且其反应活性良好.  相似文献   

4.
研究了催化剂CuO/γ-Al2O3与脉冲电晕放电协同作用脱除烟气中的SO2和NO.结果表明, 在100 ℃以下,CuO/γ-Al2O3与脉冲电晕放电协同作用具有较好的脱硫脱氮效果.当脉冲电压40 kV,进口烟气温度80 ℃,出口烟气温度40℃,气体在烟道中的流速为1.3 m/s,SO2的初始质量浓度为1 400 mg/m3,NO的初始质量浓度350 mg/m3,SO2的脱除率达到85%,NO的脱除率达到30%.  相似文献   

5.
为提高煤矿风排瓦斯的处理和利用效率,采用溶胶-凝胶法控制合成条件以制备三维交联通透型的多级孔道细长柱形Al2O3,并以其为载体用水热合成法制备负载量极低的非贵金属Cu-Mn/Al2O3整体柱催化剂.对催化剂的结构和物理化学性质进行BET、SEM、XRD和XPS表征,并采用微型固定床反应器测试催化剂对低浓度甲烷燃烧的转化效率.结果表明,通过控制模具形状、尺寸以及干燥温度等条件可实现对催化剂形状的控制合成.减小陈化过程的凝胶尺寸和降低干燥过程中的水分和溶剂脱除速率等均可得到细长柱形Cu-Mn/Al2O3催化剂.催化剂负载活性组分Cu、Mn的摩尔比为1∶2时,柱形催化剂的比表面积更高,可达174.5 m2/g,比块状催化剂比表面积高54.8 m2/g;催化剂活性组分负载量极低的情况下,柱形催化剂活性较高,T90为560℃,比块状催化剂低50℃.细长柱形的催化剂内部具有独特的微观孔结构即传质通道,该传质通道有利于催化剂与物料的充分接触以增加反应效率,此外柱形催化剂整体成型具备较高机械强度,因此为实际矿井中用于加快风排瓦斯的燃烧效率的催化剂应用奠定了基础.  相似文献   

6.
为提高铜基催化剂的CO-SCR脱硝性能,并降低反应温度,以铜为活性组分,铁为助剂,γ-Al_2O_3为催化剂载体,采用等体积浸渍法制备了一系列Cu-Fe/γ-Al_2O_3型CO-SCR脱硝催化剂,考察了活性组分负载量、助剂成分及负载量、催化剂预处理及烟气工况对催化剂活性的影响,并对催化剂进行了XRD、BET、XPS和AES等表征。结果表明,预处理会使催化剂表面的部分Cu~(2+)转变为Cu~+,有利于反应的进行。铜负载量为5%时催化剂的脱硝效率最高,铁的加入可以明显提高铜基催化剂在较低温度下的脱硝效率,5Cu-3Fe/γ-Al_2O_3催化剂表现出最优的脱硝性能,在450℃下脱硝效率达到99.8%。  相似文献   

7.
以活性炭纤维为载体,Ni2+,Mn2+,Zn2+和Fe2+的硝酸盐为活性组分,采用浸渍法制备了4种负载型催化剂,并以H2O2为氧化剂,碱性品红为目标污染物,用催化湿式氧化法,探讨了催化剂用量、H2O2投加量、染料初始浓度、反应溶液p H值、反应时间和催化剂重复使用等因素对碱性品红脱色效果的影响。结果表明,Ni-ACF较其它催化剂有较好的活性,染料的初始质量浓度为100 mg/L,Ni-ACF的用量为3.2 g/L、H2O2的投加量为20 m L/L、p H值为5.4(原液)时,反应4 h后碱性品红的脱色率达97.7%。催化剂重复使用活性良好,连续使用4次,脱色率仍可达62.5%。  相似文献   

8.
用微乳法和熔盐法结合制备出了Na2Ti6O13纳米带,并用XRD,SEM对其进行表征;研究了Na2Ti6O13在紫外光下对偶氮染料活性艳橙(X-GN)的降解,并探讨了pH值、催化剂投加量和外加H2O2氧化剂对光催化效率的影响。实验表明,Na2Ti6O13具有很好的光催化性能,30W紫外灯下光催化60min对25mg/LX-GN的降解率最高可达94.1%;反应液pH值过高或过低会影响催化剂活性,最佳pH值为5.7;一定范围内,光催化效率随催化剂投加量的增加而提高,但投加量大于1.0 g/L时,催化效率反而下降;适当投加H2O2能显著提高降解效果。  相似文献   

9.
Fe2O3/UV/H2O2光催化法降解造纸废水的研究   总被引:3,自引:0,他引:3  
以Fe2O3为催化剂,高压汞灯为光源,对造纸废水进行光催化法降解实验研究,初步分析了光催化法处理废水的基本原理,对不同反应体系的处理效果进行比较并讨论了Fe2O3用量、H2O2用量、pH值、反应时间等影响处理效果的主要因素.研究结果表明,Fe2O3/UV/H2O2体系能有效、快速地降低造纸废水的COD.实验考察了Fe2O3用量、H2O2用量、pH值、反应时间等因素对降解效果的影响,得出的最佳的降解条件及效果为:室温下Fe2O3用量为1.0 g/L,H2O2用量为0.5%(体积比),pH值为3.0,300 W高压汞灯照射下反应3 h后废水的CODCr去除率达到93.3%,出水CODCr降到54 mg/L.光催化反应体系中,Fe2O3的光催化氧化在有机物的降解反应中起着主要作用.由于Fe2O3和H2O2能发生协同作用,因此在反应体系中加入适量H2O2可以提高光催化反应效率和反应速度,大大提高了对造纸废水的处理效果.反应体系中的催化剂可回收处理后重复使用多次,对处理效果没有明显影响.  相似文献   

10.
V2O5/TiO2催化剂选择性催化还原脱除NOx的研究   总被引:8,自引:1,他引:7  
通过浸渍法制备V2O5/TiO2催化剂,在固定床反应器中进行NH3选择性催化还原脱除NOx的研究.结果表明,对于100/140目催化剂,NOx转化率随反应时间线性增加,NH3选择性催化还原NOx反应为一级反应,反应活化能为98.23 kJ*mol-1.对于片状催化剂,气体流量和催化剂的厚度对脱氮反应有较大的影响,气体流量增加,NOx转化率提高,当流量增至120 L*h-1后,NOx转化率趋于稳定;催化剂厚度由0.1 cm增至0.2 cm, NOx转化率从83%降至40%, 催化剂有效因子从0.254降至0.127.对于0.1 cm厚的片状催化剂,在573 K和空速1.4 s-1条件下,NOx转化率可达92%.  相似文献   

11.
催化还原法脱硫是一种能够直接回收单质硫的烟气脱硫(FGD)技术,近年来倍受关注.尽管催化还原法脱硫技术所采用的催化剂的种类繁多,但是该技术所采用的还原剂的种类却相对较少.以H2、C、CH4、NH3和CO 5种还原剂为分类标准,综述了催化还原SO2为单质硫技术的主要研究成果;讨论了相关催化剂的性质和催化反应机理;分析了不同还原脱硫技术的优缺点.最后,论述了催化还原法脱硫有待解决的关键问题与发展趋势.  相似文献   

12.
金属氧化物在脱硫脱氮技术中的应用   总被引:8,自引:0,他引:8  
许多金属氧化物在烟气脱硫脱氮技术中可用作反应的催化剂或SO2的吸收剂,针对其不同的功能,对国内外开发研究的金属氧化物烟气脱硫脱氮方法进行了分类归纳,并分析了各自的优缺点,指出了Fe2O3,MnO2,CuO等金属氧化物在烟气脱硫脱氮领域中的应用前景和进一步的研究方向。  相似文献   

13.
A new process of flue gas desulfurization in circulating fluidized bed with flue gas bypass ducts is presented. k? Model, Discrete Phase Model and Finite-Rate Chemistry Model are proposed to simulate the desulfurization process characteristics in circulating fluidized bed reactor. The proposed model is validated by the comparison of experimental data and simulation results. The results show that the desulfurization reactor with bypass ducts is superior to the reactor without bypass ducts. The reactor with bypass ducts has higher desulfurization efficiencies and lower flow resistances than the reactor without bypass ducts, and it is more suitable for flue gas flow variation. Desulfurization reaction rate is controlled by absorption reaction on sorbent particles surface. When water content and Ca/S ratio increase, desulfurization efficiency of the reactor with bypass ducts increases. When SO2 concentration increases, desulfurization efficiency decreases.  相似文献   

14.
An efficient and eco-friendly oxidative bromination reaction of phenol has been achieved by treatment with KBr–H2O2 in the presence of a catalytic amount ammonium salt of molybdophosphoric acid or phosphotungstic acid that supported on silica, which were synthesized by sol–gel method. The physicochemical characterization indicated that supported catalysts still retained its Keggin type and the particles were well dispersed onto the surface of silica support. The evaluated results of liquid phase bromination of phenol showed that these catalysts exhibited high catalytic oxybromination activity and high para substituted selectivity, and good stability was also observed after recycling three times. Meanwhile, no highly toxic and corrosive materials were used and formed in the reaction process, which makes this process environmentally benign. The influences of the reaction time, catalyst amount and solvent on oxidative bromination reaction were also investigated.  相似文献   

15.
Pt掺杂TiO2纳米粉体的制备及其光催化活性研究   总被引:3,自引:0,他引:3  
以钛酸丁酯为前驱物,醋酸为酸催化剂,采用溶胶-凝胶法制备掺有不同质量分数Pt的纳米TiO2粉体.通过X射线粉末衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和X射线光电子能谱(XPS)等现代分析手段对所制备的不同Pt/TiO2纳米粉体的微观结构进行了表征.并以甲基橙染料的光催化降解为模型反应,考察了不同条件下所制备的光催化剂的光催化活性,探讨了纳米粉体中Pt的掺杂量对其光催化活性的影响.实验结果表明,Pt质量分数为0.2%的纳米TiO2粉体的光催化活性最好,过低或者过高的掺Pt量无法提高TiO2的光催化活性,甚至会降低TiO2的光催化活性.  相似文献   

16.
为了研究障碍物条件下纳米SiO_2粉体对瓦斯爆炸的抑制特性,采用自行搭建的150 mm×150 mm×500 mm可视化瓦斯爆炸试验系统,分别对不同质量浓度和粒径的纳米SiO_2粉体抑爆特性进行了试验研究。结果表明:在障碍物条件下,纳米SiO_2粉体对瓦斯爆炸具有良好的抑制效果,0.10 g/L的30 nm SiO_2粉体可使9.5%瓦斯气体的最大火焰传播速度降低35%,爆炸超压降低34%;然而,纳米SiO_2粉体并非质量浓度越大抑爆效果越好,而是存在最佳抑爆质量浓度,即随纳米SiO_2粉体质量浓度上升,其抑爆性能先增大后减小,最佳抑爆质量浓度约为0.10 g/L;此外,纳米SiO_2粉体的抑爆性能与其粒径相关,且存在最佳抑爆粒径,相同质量浓度下30 nm SiO_2粉体比15nm和50 nm SiO_2粉体的抑爆效果好。  相似文献   

17.
二氧化钛/累托石制备及其光催化性能研究   总被引:3,自引:0,他引:3  
以累托石和四氯化钛为原料制备了二氧化钛/累托石复合材料,考察了各种制备条件如灼烧温度、复合反应温度、HCI/TiCl4等对光催化性能的影响。X射线衍射及红外光谱对材料的分析表明,反应中发生了聚合钛离子与累托石中阳离子的交换反应。酸性红B水溶液的脱色效率的结果表明,不同实验条件对复合材料的光催化性能都有不同程度的影响。初步探讨了影响光催化性能的机理及材料制备的最佳条件。  相似文献   

18.
The reaction between ethanol and water was studied in the temperature range of 400–600°C at atmospheric pressure over supported catalysts in a microchannel reactor. The supported catalysts prepared by washcoating and impregnation were active in the ethanol steam reforming but differ in their performance. The metal nature, metal loading and type of the carriers markedly influence the catalytic activity and selectivity of the catalysts. Among them Rh-based catalysts exhibited the highest catalytic activity, as compared to Co and Ni-based catalysts. Bimetallic Rh-Ni catalysts exhibit significant improvement in terms of ethanol conversion and hydrogen selectivity and the promoting role of the Ni and CeO2 addition is discussed. The bimetallic Rh-Ni catalyst promoted by CeO2 was stable for at least 100 h without any detectable degradation in performance.  相似文献   

19.
以天然海泡石为原料,对其进行酸改性并与活性氧化铝混合后作为催化剂载体,采用浸渍法制备了用于CO还原NO的Cu-Ag复合金属催化剂.对不同Ag负载量催化剂催化还原NO的活性进行了评价,考察了载体对催化剂催化活性的影响,用BET、XRD、SEM等对催化剂进行了表征.结果表明,当Ag负载量不超过5%时,复合金属催化剂性能好于单一金属催化剂;Ag负载量为2%时催化剂性能最好;采用海泡石-氧化铝混合物为载体的催化剂的孔径分布得到改善,对NO催化还原反应有更高的活性.  相似文献   

20.
为提升V-Mo/Ti催化剂的脱硝性能,在催化剂制备过程中调节浸渍工艺参数,制备了一系列不同浸渍液pH值的催化剂,采用XRD、N2-吸附脱附、拉曼光谱、UV-Vis、H2-TPR、NH3-TPD等手段对催化剂进行表征,考察了pH值的变化对催化剂物理化学性能的影响,采用固定床微型反应器对催化剂的脱硝性能进行评价。结果表明,降低浸渍液pH值,可以抑制催化剂上VOx物种的聚合,提升催化剂的还原性能,有利于提升催化剂的脱硝效率,降低脱硝反应过程中N2O生成量。同时,浸渍液pH值的变化,也会影响催化剂的酸性性能。当浸渍液pH值低于3.64时,催化剂酸性性能显著降低,造成催化剂脱硝性能降低;当浸渍液pH值控制在3.64时,催化剂的还原性能和酸性性能匹配较好,从而显示了较高的脱硝性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号