首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.

The rise in global temperature is one of the main threats of extinction to many vulnerable species by the twenty-first century. The negative impacts of climate change on the northern highlands of Pakistan (NHP) could change the species composition. Range shifts and range reduction in the forested landscapes will dramatically affect the distribution of forest-dwelling species, including the Galliformes (ground birds). Three Galliformes (e.g., Lophophorus impejanus, Pucrasia macrolopha, and Tragopan melanocephalus) are indicator species of the environment and currently distributed in NHP. For this study, we used Maximum Entropy Model (MaxEnt) to simulate the current (average for 1960–1990) and future (in 2050 and 2070) distributions of the species using three General Circulation Models (GCMs) and two climate change scenarios, i.e., RCP4.5 (moderate carbon emission scenario) and RCP8.5 (peak carbon emission scenario). Our results indicated that (i) under all three climate scenarios, species distribution was predicted to both reduce and shift towards higher altitudes. (ii) Across the provinces in the NHP, the species were predicted to average lose around one-third (35%) in 2050 and one-half (47%) by 2070 of the current suitable habitat. (iii) The maximum area of climate refugia was projected between the altitudinal range of 2000 to 4000 m and predicted to shift towards higher altitudes primarily?>?3000 m in the future. Our results help inform management plans and conservation strategies for mitigating the impacts of climate change on three indicator Galliforms species in the NHP.

  相似文献   

2.
3.
Current observed as well as projected changes in biodiversity are the result of multiple interacting factors, with land use and climate change often marked as most important drivers. We aimed to disentangle the separate impacts of these two for sets of vascular plant, bird, butterfly and dragonfly species listed as characteristic for European dry grasslands and wetlands, two habitats of high and threatened biodiversity. We combined articulations of the four frequently used SRES climate scenarios and associated land use change projections for 2030, and assessed their impact on population trends in species (i.e. whether they would probably be declining, stable or increasing). We used the BIOSCORE database tool, which allows assessment of the effects of a range of environmental pressures including climate change as well as land use change. We updated the species lists included in this tool for our two habitat types. We projected species change for two spatial scales: the EU27 covering most of Europe, and the more restricted biogeographic region of ‘Continental Europe’. Other environmental pressures modelled for the four scenarios than land use and climate change generally did not explain a significant part of the variance in species richness change. Changes in characteristic bird and dragonfly species were least pronounced. Land use change was the most important driver for vascular plants in both habitats and spatial scales, leading to a decline in 50–100% of the species included, whereas climate change was more important for wetland dragonflies and birds (40–50 %). Patterns of species decline were similar in continental Europe and the EU27 for wetlands but differed for dry grasslands, where a substantially lower proportion of butterflies and birds declined in continental Europe, and 50 % of bird species increased, probably linked to a projected increase in semi-natural vegetation. In line with the literature using climate envelope models, we found little divergence among the four scenarios. Our findings suggest targeted policies depending on habitat and species group. These are, for dry grasslands, to reduce land use change or its effects and to enhance connectivity, and for wetlands to mitigate climate change effects.  相似文献   

4.
Climate change will impact the dynamics of invasive alien plant species (IAPS). However, the ability of IAPS under changing climate to invade mountain ecosystems, particularly the Himalayan region, is less known. This study investigates the current and future habitat of five IAPS of the Himalayan region using MaxEnt and two representative concentration pathways (RCPs). Two invasive species, Ageratum conyzoides and Parthenium hysterophorus, will lose overall suitable area by 2070, while Ageratina adenophora, Chromolaena odorata and Lantana camara will gain suitable areas and all of them will retain most of the current habitat as stable. The southern Himalayan foothills will mostly conserve species ecological niches, while suitability of all the five species will decrease with increasing elevation. Such invasion dynamics in the Himalayan region could have impacts on numerous ecosystems and their biota, ecosystem services and human well-being. Trans-boundary response strategies suitable to the local context of the region could buffer some of the likely invasion impacts.  相似文献   

5.
Orchids are diverse, occur in a wide range of habitats and dominate threatened species lists, but which orchids are threatened, where and by what? Using the International Union for Conservation of Nature Red List, we assessed the range and diversity of threats to orchids globally including identifying four threat syndromes: (1) terrestrial orchids in forests that are endemic to a country and threatened by illegal collecting; (2) orchids threatened by climate change, pollution, transportation and disturbance/development for tourism, and recreation activities, often in East Asia; (3) epiphytic orchids in Sub-Saharan Africa including Madagascar with diverse threats; and (4) South and Southeast Asia orchids threatened by land clearing for shifting agriculture. Despite limitations in the Red List data, the results highlight how conservation efforts can focus on clusters of co-occurring threats in regions while remaining aware of the trifecta of broad threats from plant collecting, land clearing and climate change.  相似文献   

6.
In this United States-focused analysis we use outputs from two general circulation models (GCMs) driven by different greenhouse gas forcing scenarios as inputs to regional climate and chemical transport models to investigate potential changes in near-term U.S. air quality due to climate change. We conduct multiyear simulations to account for interannual variability and characterize the near-term influence of a changing climate on tropospheric ozone-related health impacts near the year 2030, which is a policy-relevant time frame that is subject to fewer uncertainties than other approaches employed in the literature. We adopt a 2030 emissions inventory that accounts for fully implementing anthropogenic emissions controls required by federal, state, and/or local policies, which is projected to strongly influence future ozone levels. We quantify a comprehensive suite of ozone-related mortality and morbidity impacts including emergency department visits, hospital admissions, acute respiratory symptoms, and lost school days, and estimate the economic value of these impacts. Both GCMs project average daily maximum temperature to increase by 1–4°C and 1–5 ppb increases in daily 8-hr maximum ozone at 2030, though each climate scenario produces ozone levels that vary greatly over space and time. We estimate tens to thousands of additional ozone-related premature deaths and illnesses per year for these two scenarios and calculate an economic burden of these health outcomes of hundreds of millions to tens of billions of U.S. dollars (2010$).

Implications:?Near-term changes to the climate have the potential to greatly affect ground-level ozone. Using a 2030 emission inventory with regional climate fields downscaled from two general circulation models, we project mean temperature increases of 1 to 4°C and climate-driven mean daily 8-hr maximum ozone increases of 1–5 ppb, though each climate scenario produces ozone levels that vary significantly over space and time. These increased ozone levels are estimated to result in tens to thousands of ozone-related premature deaths and illnesses per year and an economic burden of hundreds of millions to tens of billions of U.S. dollars (2010$).  相似文献   

7.
For many coastal areas including the Baltic Sea, ambitious nutrient abatement goals have been set to curb eutrophication, but benefits of such measures were normally not studied in light of anticipated climate change. To project the likely responses of nutrient abatement on eelgrass (Zostera marina), we coupled a species distribution model with a biogeochemical model, obtaining future water turbidity, and a wave model for predicting the future hydrodynamics in the coastal area. Using this, eelgrass distribution was modeled for different combinations of nutrient scenarios and future wind fields. We are the first to demonstrate that while under a business as usual scenario overall eelgrass area will not recover, nutrient reductions that fulfill the Helsinki Commission’s Baltic Sea Action Plan (BSAP) are likely to lead to a substantial areal expansion of eelgrass coverage, primarily at the current distribution’s lower depth limits, thereby overcompensating losses in shallow areas caused by a stormier climate.  相似文献   

8.

The core zone of the Yancheng National Natural Reserve (YNNR) in China is the largest wintering habitat of red-crowned cranes (cranes) in the world. However, the invasion of Spartina alterniflora (S. alterniflora) not only changed the original landscape structure of the wetlands but also impacted the cranes’ habitats in the YNNR. In this paper, field investigation data and landscape pattern indices were used to analyze the effects of the S. alterniflora invasion on the habitat quality of wintering cranes. The results indicate that the seep weed (Suaeda salsa) in the natural wetland and the common reed (Phragmites australis) in the managed wetland both provide suitable habitats for cranes. However, the cranes prefer the natural wetland more. The explosive growth of S. alterniflora in the natural area has led to a significant reduction of the cranes’ habitat. The area of crane habitat decreased from 52.07 km2 in 2000 to 22.36 km2 in 2015. As a result of the S. alterniflora invasion, the benthic biomass has declined, which has negatively impacted the quantity and structure of the food utilized by the cranes. This study has both theoretical and practical significance and provides a scientific basis for protecting the wintering habitat of the red-crowned cranes.

  相似文献   

9.
Biogenic emissions and secondary organic aerosols (SOA) are strongly dependent on climatic conditions. To understand the SOA levels and their sensitivity to future climate change in the United States (U.S.), we present a modeling work with the consideration of SOA formation from the oxidation of biogenic emissions with atmospheric oxidants (e.g., OH, O3, and NO3). The model simulation for the present-day climate is evaluated against satellite and ground-based aerosol measurements. Although the model underestimates aerosol concentrations over the northwestern U.S. due to the lack of fire emissions in the model simulations, overall, the SOA results agree well with previous studies. Comparing with the available measurements of organic carbon (OC) concentrations, we found that the amount of SOA in OC is significant, with the ratio ranging from 0.1 to 0.5/0.6. The enhanced modeling system driven by global climate model output was also applied for two three-year one-month simulations (July, 2001–2003 and 2051–2053) to examine the sensitivity of SOA to future climate change. Under the future two emissions scenarios (A1B and A2), future temperature changes are predicted to increase everywhere in the U.S., but with different degrees of increase in different regions. As a result of climate change in the future, biogenic emissions are predicted to increase everywhere, with the largest increase (~20%) found in the southeastern and northwestern U.S. under the A1B scenario. Changes in SOA are not identical with those in biogenic emissions. Under the A1B scenario, the biggest increase in SOA is found over Texas, with isoprene emissions being the major contributor to SOA formation. The range of change varies from 5% over the southeast region to 26% over Texas. The changes in either biogenic emissions or SOA under the two climate scenarios are different due to the differences in climatic conditions. Our results also suggest that future SOA concentrations are also influenced by several other factors such as the partitioning coefficients, the atmospheric oxidative capability, primary organic carbon aerosols and anthropogenic emissions.  相似文献   

10.
An analytical approach to modelling the likely impact of climate change on the distribution and abundance of wildlife species is described using examples from Scotland. Data for present day distribution of wildlife and habitat are analysed using map data describing geographic variation in climatic factors. Climate data for the present day and under specified scenarios of change are themselves modelled within a GIS; climate modelling uses meteorological station data, climate change scenarios developed from GCMs and a variety of spatial interpolation techniques. The analytical procedure generates hypotheses defining ecological relationships between species distribution and climatic factors (monthly, seasonal and annual data). These relationships are then used to model the distribution of the species directly from climate and predict impacts of climate change. The analysis takes account of both direct impacts of climate on wildlife and indirect effects manifested through habitat response to climate change. The analytical procedure is implemented as a generic tool for inductive spatial analysis in GIS.  相似文献   

11.
Mediterranean mountain biomes are considered endangered due to climate change that affects directly or indirectly different key features (biodiversity, snow cover, glaciers, run-off processes, and water availability). Here, we provide an assessment of temperature, precipitation, and spring precipitation changes in Mediterranean mountains under different emission scenarios (Special Report on Emission Scenarios) and Atmosphere-Ocean-Coupled General Circulation Models for two periods: 2055 (2040-2069 period) and 2085 (2070-2099). Finally, the future climate trends projected for Mediterranean mountains are compared with those trends projected for non-Mediterranean European mountain ranges. The range of projected warming varies between +1.4 degrees C and 5.1 degrees C for 2055 (+1.6 degrees C and +8.3 degrees C for 2085). Climate models also project a reduction of precipitation, mainly during spring (-17% under Alfi and -4.8% under B1 for 2085). On the contrary, non-Mediterranean European mountains will not experience a reduction of annual and spring precipitation. Implications of predicted climate change for both human and physical features are coupled in an integrated framework to gain a broad perspective on future trends and their consequences.  相似文献   

12.
Limited toxicity data are available for estuarine and marine species and the widely used pyrethroid insecticide, permethrin. This study determined acute effects of permethrin on survival, lipid peroxidation, acetylcholinesterase activity, and splenocyte proliferation for two fish species found in South Carolina estuaries; juvenile red drum (Sciaenops ocellatus) and adult mummichog (Fundulus heteroclitus). Juvenile S. ocellatus were significantly more sensitive than adult F. heteroclitus to permethrin exposure, with a 96-h LC50 value of 8 μg/L determined for red drum compared to 23 μg/L for mummichog. Lipid peroxidation activity of the liver increased in permethrin-treated fish compared to control animals after 24 h and decreased after 96 h. Permethrin had no effect on acetylcholinesterase activity of the brain at the concentrations tested. Permethrin exposure significantly inhibited splenocyte proliferation, indicating an immunosuppressive effect. Most of the effects of permethrin on fish cellular stress enzymes and survival occurred at concentrations much higher than those typically measured in the environment. However, inhibition of splenocyte proliferation in juvenile red drum occurred at approximately twice that of measured permethrin concentrations in surface water. These findings may prove useful to the future management and regulation of pyrethroid insecticide use near estuarine habitats.  相似文献   

13.
Will species that are sensitive/tolerant to Zn pollution still have the same sensitivity/tolerance in a future climate? To answer this question we analysed the response of constructed grassland communities to five levels of zinc (Zn) supply, ranging from 0 to 354 mg Zn kg−1 dry soil, under a current climate and a future climate (elevated CO2 and warming). Zn concentrations increased in roots and shoots with Zn addition but this increase did not differ between climates. Light-saturated net CO2 assimilation rate (Asat) of the species, on the other hand, responded differently to Zn addition depending on climate. Still, current and future climate communities have comparable biomass responses to Zn, i.e., no change in root biomass and a 13% decrease of above-ground biomass. Provided that the different response of Asat in a future climate will not compromise productivity and survival on the long term, sensitivity is not altered by climate change.  相似文献   

14.
15.
Background  Exposure to harmful levels of ultraviolet-B radiation (UVB), a component of solar radiation, has been suggested as a potential cause of amphibian declines. Methods  We measured solar radiation (UVB, ultraviolet-A, and visible) wavebands in breeding ponds of Bufo boreas (boreal toad, a montane species that has undergone severe population declines) and Bufo woodhousii (Woodhouse’s toad, a plains toad that has not experienced declines) and examined tolerances of these species to simulated solar UVB exposures in the laboratory. Results  We found larvae of both species to be tolerant of simulated solar UVB in excess of solar UVB levels observed in their breeding ponds. B. boreas tadpoles were more tolerant of simulated solar UVB exposure than B. woodhousii tadpoles, possibly because of greater amounts of photoprotective melanin in B. boreas skin. Conclusions  UVB levels observed in B. boreas habitats do not currently appear to constitute a threat to the survival of these animals; however, long-term (>1 month) exposure to UVB levels comparable to levels associated with the water interface appears to reduce survival in B. woodhousii tadpoles. Therefore, future increases in surface and water column UVB radiation in bufonid habitats might pose significant survival risks to B. boreas or B. woodhousii populations.  相似文献   

16.
Climate change is likely to be one of the most important factors affecting our future food security. To mitigate negative impacts, we will require our crops to be more genetically diverse. Such diversity is available in crop wild relatives (CWRs), the wild taxa relatively closely related to crops and from which diverse traits can be transferred to the crop. Conservation of such genetic resources resides within the nation where they are found; therefore, national-level conservation recommendations are fundamental to global food security. We investigate the potential impact of climate change on CWR richness in Norway. The consequences of a 1.5 and 3.0 °C temperature rise were studied for the years 2030, 2050, 2070, 2080 and then compared to the present climate. The results indicate a pattern of shifting CWR richness from the south to the north, with increases in taxa turnover and in the numbers of threatened taxa. Recommendations for in situ and ex situ conservation actions over the short and long term for the priority CWRs in Norway are presented. The methods and recommendations developed here can be applied within other nations and at regional and global levels to improve the effectiveness of conservation actions and help ensure global food security.  相似文献   

17.
Slight changes in climate, such as the rise of temperature or alterations of precipitation and evaporation, will dramatically influence nearly all freshwater and climate-related hydrological behavior on a global scale. The hyporheic zone (HZ), where groundwater (GW) and surface waters (SW) interact, is characterized by permeable sediments, low flow velocities, and gradients of physical, chemical, and biological characteristics along the exchange flows. Hyporheic metabolism, that is biogeochemical reactions within the HZ as well as various processes that exchange substances and energy with adjoining systems, is correlated with hyporheic organisms, habitats, and the organic matter (OM) supplied from GW and SW, which will inevitably be influenced by climate-related variations. The characteristics of the HZ in acting as a transition zone and in filtering and purifying exchanged water will be lost, resulting in a weakening of the self-purification capacity of natural water bodies. Thus, as human disturbances intensify in the future, GW and SW pollution will become a greater challenge for mankind than ever before. Biogeochemical processes in the HZ may favor the release of carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4) under climate change scenarios. Future water resource management should consider the integrity of aquatic systems as a whole, including the HZ, rather than independently focusing on SW and GW.  相似文献   

18.
This work evaluates the role of a plant community in mercury (Hg) stabilization and mobility in a contaminated Portuguese salt marsh. With this aim, the distribution of Hg in below and aboveground tissues, as well as the metal partitioning between cellular fractions (soluble and insoluble) in four different species (Triglochin maritima L., Juncus maritimus Lam, Sarcocornia perennis (Miller) A.J. Scott, and Halimione portulacoides (L.) Aellen) was assessed. Mercury accumulation, translocation and compartmentation between organs and cellular fractions were related to the plant species.Results showed that the degree of Hg absorption and retention was influenced both by environmental parameters and metal translocation/partitioning strategies. Different plant species presented different allocation patterns, with marked differences between monocots (T. maritima and J. maritimus) and dicots (S. perennis, H. portulacoides). Overall, the two monocots, in particular T. maritima showed higher Hg retention in the belowground organs whereas the dicots, particularly S. perennis presented a more pronounced translocation to the aboveground tissues. Considering cellular Hg partitioning, all species showed a higher Hg binding to cell walls and membranes rather than in the soluble fractions. This strategy can be related to the high degree of tolerance observed in the studied species. These results indicate that the composition of salt marsh plant communities can be very important in dictating the Hg mobility within the marsh ecosystem and in the rest of the aquatic system as well as providing important insights to future phytoremediation approaches in Hg contaminated salt marshes.  相似文献   

19.
Climate change scenarios concerning the Baltic Sea predict increase in surface water temperatures. Pikeperch (Sander lucioperca (L.)) inhabits the coastal areas of the northern Baltic Sea and is an important fish species for the Finnish fisheries. The year-class strength of pikeperch varies strongly between years and significantly depends on water temperature. We aimed to study the effects of changing temperature conditions on pikeperch fisheries and distribution based on commercial catch data from the period 1980–2008 in the Finnish coastal areas of the Baltic Sea. The results indicated that warmer summers will produce stronger pikeperch year-classes that consequently contribute significantly to the future catches. The average temperature in June–July explained 40% of the variation in the year-class catches in the Gulf of Finland and 73% in July–August in the Archipelago Sea. During the study period, the distribution of pikeperch catches expanded toward north along the coasts of the Bothnian Sea.  相似文献   

20.

Ecological assessment of freshwater ecosystems based on diatom metrics is an important issue for attaining environmental sustainability. The present study aimed to evaluate differences in the diatom–stressor relationship in relatively least disturbed streams in the Konya closed river basin using multivariate analyses and to bio-assess streams by the application of different ecoregional diatom indices. Cocconeis euglypta, Cymbella excisa, Cocconeis placentula, and Achnanthidium minutissimum are the most contributing species to the dissimilarity of sampling stations between rainy (spring) and dry (summer and fall) seasons and also between altitude (A2 800- < 1600 m and A3 ≥ 1600 m) groups. The first two axes of canonical correspondence analysis revealed a significant (82.8%) relationship between diatom species and stressors. Diatom species displayed distinct responses to environmental variables (electrical conductivity, Ni, Cu, B, and altitude) playing important roles on the distribution of species. Diatom indices indicate different ecological statuses of stations, from bad to high. European diatom indices except Duero Diatom Index (DDI) and Trophic Diatom Index (TDI) showed good responses to the eco-assessment of streams and indicated high ecological status for the least disturbed sampling stations symbolized as S16, S20, S24, S25, S27-29, S37, and S39. These results were also supported by abiotic evaluation. Although TIT was more competitive in the bio-assessment of streams among diatom indices, it is necessary to increase its species list by determining their trophic weights in future studies. Therefore, the use of ecoregion-specific diatom indices is suggested along with increasing the number of used species to correctly interpret the water quality.

Graphical Abstract
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号