首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Meta-analysis was conducted to quantitatively assess the effects of rising ozone concentrations ([O3]) on yield and yield components of major food crops: potato, barley, wheat, rice, bean and soybean in 406 experimental observations. Yield loss of the crops under current and future [O3] was expressed relative to the yield under base [O3] (≤26 ppb). With potato, current [O3] (31–50 ppb) reduced the yield by 5.3%, and it reduced the yield of barley, wheat and rice by 8.9%, 9.7% and 17.5%, respectively. In bean and soybean, the yield losses were 19.0% and 7.7%, respectively. Compared with yield loss at current [O3], future [O3] (51–75 ppb) drove a further 10% loss in yield of soybean, wheat and rice, and 20% loss in bean. Mass of individual grain, seed, or tuber was often the major cause of the yield loss at current and future [O3], whereas other yield components also contributed to the yield loss in some cases. No significant difference was found between the responses in crops grown in pots and those in the ground for any yield parameters. The ameliorating effect of elevated [CO2] was significant in the yields of wheat and potato, and the individual grain weight in wheat exposed to future [O3]. These findings confirm the rising [O3] as a threat to food security for the growing global population in this century.  相似文献   

2.
Ambient ozone and crop loss: establishing a cause-effect relationship   总被引:6,自引:0,他引:6  
This paper provides the results of a retrospective mathematical analysis of the US NCLAN (National Crop Loss Assessment Network) open-top chamber data. Some 77% of the 73 crop harvests examined, showed no statistically significant yield differences between NF (non-filtered open-top chamber) and AA (chamberless, ambient air) treatments (no easily discernable chamber effects on yield). However, among these cases only seven acceptable examples showed statistically significant yield reductions in NF compared to the CF (charcoal filtered open-top chamber) treatment. An examination of the combined or cumulative hourly ambient O3 frequency distribution for cases with yield loss in NF compared to a similar match of cases without yield loss showed that the mean, median and the various percentiles were all higher (>/= 3 X) in the former in contrast to the latter scenario. The combined frequency distribution of hourly O3 concentrations for the cases with yield loss in NF were clearly separated from the corresponding distribution with no yield loss, at O3 concentrations > 49 ppb. Univariate linear regressions between various O3 exposure parameters and per cent yield losses in NF showed that the cumulative frequency of occurrence of O3 concentrations between 50 and 87 ppb was the best predictor (adjusted R2 = 0.712 and p = 0.011). This analysis also showed that the frequency distribution of hourly concentrations up to 87 ppb O3 represented a critical point, since the addition of the frequency distributions of > 87 ppb O3 did not improve the R2 values. In fact as the frequency of hourly O3 concentrations included in the regression approached 50-100 ppb, the R2 value decreased substantially and the p value increased inversely. Further, univariate linear regressions between the frequencies of occurrence of various O3 concentrations between 50 and 90 ppb and: (a) cases with no yield difference in NF and (b) cases with yield increase in NF compared to the CF treatment (positive effect) provided no meaningful statistical relationship (adjusted R2 = 0.000) in either category. These results support the basis that additional evaluation of the frequency of occurrence of hourly O3] concentrations between 50 and 87 ppb for cases with the yield reductions could provide a meaningful ambient O3 standard, objective or guideline for vegetation.  相似文献   

3.
Brookhaven National Laboratory has critically evaluated the structure and results of the Stanford Research Institute model (SRI model) for assessing national-level economic impacts of oxidants on plants. In response to inherent weaknesses in the SRI approach, a new model (DAMAGE) was constructed to estimate national-level damage from oxidants for alfalfa. DAMAGE uses actual oxidant measurements and the Oshima dose-response function for alfalfa to estimate effects on yield. Economic loss is then simply calculated by multiplying crop value by percent loss. Estimates of oxidant effects on alfalfa in 1974 were calculated with both DAMAGE and the SRI model. Results of the SRI model closely approach those of DAMAGE when the dose estimate is approximated by the seasonal total of the hourly averages. Other methods of estimating dose in DAMAGE give distinctly higher estimates of economic loss. The lower bound estimates suggest losses equal to $20 million or 4% of the total yield in the counties examined. Upper estimates suggest losses as high as $200 million or a 36% reduction in yield.  相似文献   

4.
Spring wheat (Triticum aestivum L.) cv. Turbo was exposed to different levels of ozone and water supply in open-top chambers in 1991. The plants were grown either in charcoal filtered air (CF), not filtered air (NF), in charcoal filtered air with proportional addition of ambient ozone (CF1), or in charcoal filtered air with twice proportional addition of ambient ozone (CF2). The mean seasonal ozone concentrations (24 h mean) were 2.3, 20.6, 17.3, and 24.5 nl litre(-1) for CF, NF, CF1, and CF2 treatments, respectively. Ozone enhanced senescence and reduced growth and yield of the wheat plants. At final harvest, dry weight reductions were mainly due to reductions in ear weight. Grain yield loss by ozone mainly resulted from depressions of 1000 grain weight, whereas numbers of ears per plant and of grains per ear remained unchanged. Pollutants other than ozone did not alter the response to ozone, as was obvious from comparisons between CF1 and NF responses. Water stress alone did not enhance senescence, but also reduced growth and yield. However, yield loss mainly resulted from reductions in the number of ears per plant; 1000 grain weight was not influenced by water stress. No water supply by ozone treatment interactions were detected for any of the estimated parameters.  相似文献   

5.
In order to determine the influence of SO2 fumigation of soybean plants on yield, a three-year experiment was conducted on 485 plois of soybeans. Single fumigations of S02 were applied at 10 different stages of growth in 1968-69 and 7 stages of growth in 1970. A linear relationship was found to exist beiween the percent of leaf area destroyed and ihe percent crop loss with a significant regression coefficient of b = —0.659, or iwo-thirds of one percent crop loss for each percent of area destroyed. No definite significant stage-of-growth effect was found and no treatment effects were significant for the early stages of growth from the 3-leaf to the 15-leaf stage, nor was there any loss in yield without visible leaf injury.  相似文献   

6.
In this paper we evaluate the global impact of surface ozone on four types of agricultural crop. The study is based on modelled global hourly ozone fields for the year 2000 and 2030, using the global 1°×1° 2-way nested atmospheric chemical transport model (TM5). Projections for the year 2030 are based on the relatively optimistic “current legislation (CLE) scenario”, i.e. assuming that currently approved air quality legislation will be fully implemented by the year 2030, without a further development of new abatement policies. For both runs, the relative yield loss due to ozone damage is evaluated based on two different indices (accumulated concentration above a 40 ppbV threshold and seasonal mean daytime ozone concentration respectively) on a global, regional and national scale. The cumulative metric appears to be far less robust than the seasonal mean, while the seasonal mean shows satisfactory agreement with measurements in Europe, the US, China and Southern India and South-East Asia.Present day global relative yield losses are estimated to range between 7% and 12% for wheat, between 6% and 16% for soybean, between 3% and 4% for rice, and between 3% and 5% for maize (range resulting from different metrics used). Taking into account possible biases in our assessment, introduced through the global application of “western” crop exposure–response functions, and through model performance in reproducing ozone-exposure metrics, our estimates may be considered as being conservative.Under the 2030 CLE scenario, the global situation is expected to deteriorate mainly for wheat (additional 2–6% loss globally) and rice (additional 1–2% loss globally). India, for which no mitigation measures have been assumed by 2030, accounts for 50% of these global increase in crop yield loss. On a regional-scale, significant reductions in crop losses by CLE-2030 are only predicted in Europe (soybean) and China (wheat).Translating these assumed yield losses into total global economic damage for the four crops considered, using world market prices for the year 2000, we estimate an economic loss in the range $14–$26 billion. About 40% of this damage is occurring in China and India. Considering the recent upward trends in food prices, the ozone-induced damage to crops is expected to offset a significant portion of the GDP growth rate, especially in countries with an economy based on agricultural production.  相似文献   

7.
Two-year greenhouse cucumber experiments were conducted to investigate seasonal effects on fruit yield, dry matter allocation, and N uptake in a double-cropping system with different fertilizer management. Seasonal effects were much greater than fertilizer effects, and winter-spring (WS) cucumber attained higher fruit yields and N uptake than autumn-winter (AW) cucumber due to lower cumulative air temperatures during fruit maturation in the AW season. Fertilizer N application and apparent N loss under recommended N management (Nmr) decreased by 40-78% and 33-48% without yield loss compared to conventional N management (Nmt) over four growing seasons. However, there were no seasonal differences in N recommendations, taking into consideration seasonal differences in crop N demand, critical nutrient supply in the root zone and N mineralization rate.  相似文献   

8.
Ground level ozone concentrations, in combination with the prevailing climate, at the estate Ostads S?teri in southwestern Sweden were estimated to reduce the yield of wheat and potato ranging between 5% and 10%. Occasionally, in years with the highest ozone concentrations and/or climatic conditions favoring high rates of ozone uptake to the leaves, yield loss levels above 10% may occur. Based on simple extrapolation, these ozone-induced reductions of crop yields at Ostads S?teri represent a potential total annual yield loss in Sweden in the range of 24.5 million Euro for wheat and 7.3 million Euro for potato, respectively. A simulation of forest growth at Ostad S?teri predicted that prevailing mean ozone exposure during 1993-2003 had the potential to reduce forest growth by 2.2% and the economic return of forest production by 2.6%. Using this value for extrapolation to the national level, the potential annual economic loss for Sweden due to negative impacts of ozone on forest production would be in the range of 56 million Euro (2004 prices).  相似文献   

9.
Trace metal export by stormwater runoff from a major road and local street in urban Sydney, Australia, is compared using pollutant yield rating curves derived from intensive sampling data. The event loads of copper, lead and zinc are well approximated by logarithmic relationships with respect to total event discharge owing to the reliable appearance of a first flush in pollutant mass loading from urban roads. Comparisons of the yield rating curves for these three metals show that copper and zinc export rates from the local street are comparable with that of the major road, while lead export from the local street is much higher, despite a 45-fold difference in traffic volume. The yield rating curve approach allows problematic environmental data to be presented in a simple yet meaningful manner with less information loss.  相似文献   

10.
In this study, we estimate yield losses and economic damage of two major crops (winter wheat and rabi rice) due to surface ozone (O3) exposure using hourly O3 concentrations for the period 2002–2007 in India. This study estimates crop yield losses according to two indices of O3 exposure: 7-h seasonal daytime (0900–1600 hours) mean measured O3 concentration (M7) and AOT40 (accumulation exposure of O3 concentration over a threshold of 40 parts per billion by volume during daylight hours (0700–1800 hours), established by field studies. Our results indicate that relative yield loss from 5 to 11 % (6–30 %) for winter wheat and 3–6 % (9–16 %) for rabi rice using M7 (AOT40) index of the mean total winter wheat 81 million metric tons (Mt) and rabi rice 12 Mt production per year for the period 2002–2007. The estimated mean crop production loss (CPL) for winter wheat are from 9 to 29 Mt, account for economic cost loss was from 1,222 to 4,091 million US$ annually. Similarly, the mean CPL for rabi rice are from 0.64 to 2.1 Mt, worth 86–276 million US$. Our calculated winter wheat and rabi rice losses agree well with previous results, providing the further evidence that large crop yield losses occurring in India due to current O3 concentration and further elevated O3 concentration in future may pose threat to food security.  相似文献   

11.
Elevated concentrations of ground-level ozone (O3) are frequently measured over farmland regions in many parts of the world. While numerous experimental studies show that O3 can significantly decrease crop productivity, independent verifications of yield losses at current ambient O3 concentrations in rural locations are sparse. In this study, soybean crop yield data during a 5-year period over the Midwest of the United States were combined with ground and satellite O3 measurements to provide evidence that yield losses on the order of 10% could be estimated through the use of a multiple linear regression model. Yield loss trends based on both conventional ground-based instrumentation and satellite-derived tropospheric O3 measurements were statistically significant and were consistent with results obtained from open-top chamber experiments and an open-air experimental facility (SoyFACE, Soybean Free Air Concentration Enrichment) in central Illinois. Our analysis suggests that such losses are a relatively new phenomenon due to the increase in background tropospheric O3 levels over recent decades. Extrapolation of these findings supports previous studies that estimate the global economic loss to the farming community of more than $10 billion annually.  相似文献   

12.
Ozone dose-crop loss conversion functions for alfalfa (Medicago sativa, L. var. Moapa 69) yield reduction and defoliation were developed using standardized field plots within an ambient O3 gradient in the South Coast Air Basin. Seasonal yields and defoliation values were tested with O3 dose, average daily maximum temperature, average daily minimum temperature, and average daily relative humidity in regression analyses to determine significant functional relationships. Only the ambient O3 dose variable was found to have a significant effect on alfalfa yield or defoliation (yield, r = –0.827, t-slope = 3.900**; defoliation, r = –0.890, t-slope = 5.190**). The ozone dose-crop loss conversion functions were calculated by converting the dose-response functions to dose-percent reduction functions.  相似文献   

13.
Adani F  Ricca G 《Chemosphere》2004,56(1):13-22
Alkali soluble (humic acid-like material) (HA-like) (yield of 132 gkgdm(-1)) and the unhydrolized-alkali soluble (core-humic acid-like material) (core-HA-like) (yield of 33.4 gkgdm(-1)) fractions were extracted from maize plants and characterized by C and N determinations, DRIFT, and 1H and 13C-NMR spectroscopy. Fresh plants were subsequently incubated for 6 months in an artificial mineral soil, and the HA-like and core-HA-like trends were monitored quantitatively (C fraction content) and qualitatively (spectroscopic approach) in order to study their contribution to the formation of soil humic acid. During incubation the HAC-like partially degraded (loss of 320 gkgHAC(-1)) and partially formed new fulvic-like acids (160 gkgHAC(-1)). On the contrary, the stable fraction of HAC, the core-HAC-like, was maintained (loss of 153 kgcore-HAC(-1)), representing, after incubation, 846 gkg(-1) of the initial core-HAC-like content. The core-HA-like fraction is composed of lignin residues, polysaccharides, lipids and proteins, probably structured into a well-defined network, i.e. the plant cell wall.  相似文献   

14.
During three consecutive seasons (1987-1989), the effects of low-levels of O3, SO2 and NO2 singly and in all possible combinations (NO2 in 1988 and 1989 only) on growth and yield of potted plants of spring rape (Brassica napus L. var. napus, 'callypso') were investigated by means of factorial fumigation experiments in open-top chambers. Plants were exposed from the early vegetative stage of development until seed harvest, to charcoal-filtered air (CF; control) and CF which was supplemented for 8-h per day (8.00-16.00) with O3, for 16-h per day with NO2 (16.00-8.00) and continuously with SO2. Including the controls, the 24-h daily mean concentrations [microg m(-3)] ranged between 6-44 (O3), 9-88 (SO2) and 10-43 (NO2). The corresponding daily mean concentrations during the time of fumigation were 10-121 and 11-60 microg m(-3) for O3 and NO2, respectively. Single effects of O3 on growth and yield parameters were mostly negative and the magnitude of this effect was dependent on the season. O3 reduced plant dry weight by 11.3-18.6% and yield of seeds by 11.4-26.9%. While medium levels of SO2 stimulated the weight of pods up to 33%, higher concentrations (88 microg m(-3)) caused a decline of yield of 12.3%. From the significant interactive effects which were observed, it could be established that SO2 and NO2 alone mostly acted positively, but that their interaction with each other and especially with O3 was antagonistic, as some of the detrimental effects of O3 were mitigated by these pollutants. An important antagonistic effect between SO2 and O3 or NO2 was observed on yield. While 56 microg m(-3) SO2 increased yield by 9.9% compared to the control treatment, it aggravated the yield loss caused by O3 from -16.18% to -21.4%, and it reduced the yield stimulation caused by NO2 from +11.8% to +4.2%. Leaf area was the only parameter which was negatively affected by all pollutants, their joint action being synergistic.  相似文献   

15.
Brazilian off-season maize production is characterized by low yield due to several factors, such as climate variability and inadequate management practices, specifically weed management. Thus, the goal of this study was to determinate the critical period of weed competition in off-season maize (Zea mays L.) crop using thermal units or growing degree days (GDD) approach to characterize crop growth and development. The study was carried out in experimental area of the University of S?o Paulo, Brazil, with weed control (C), as well as seven coexistence periods, 2, 4, 6, 8, and 12 leaves, flowering, and all crop cycle; fourteen treatments were done. Climate data were obtained from a weather station located close to the experimental area. To determine the critical period for weed control (CPWC) logistic models were fitted to yield data obtained in both W and C, as a function of GDD. For an arbitrary maximum yield loss fixed in 2.5%, the CPWC was found between 301 and 484 GDD (7-8 leaves). Also, when the arbitrary loss yield was fixed in 5 and 10%, the period before interference (PBI) was higher than the critical weed-free period (CWFP), suggesting that the weeds control can be done with only one application, between 144 and 410 GDD and 131 and 444 GDD (3-8 leaves), respectively. The GDD approach to characterize crop growth and development was successfully used to determine the critical period of weeds control in maize sown off-season. Further works will be necessary to better characterize the interaction and complexity of maize sown off-season with weeds. However, these results are encouraging because the possibility of the results to be extrapolated and because the potential of the method on providing important results to researchers, specifically crop modelers.  相似文献   

16.
The information presented in this paper is concerned with the effects of ambient ozone on crop yield reduction and the resultant economic losses. Yield data for nine crops within the South Coast Air Basin (SCAB) of California were obtained for the 12-year period, 1964 through 1975. Ozone concentrations, temperature, precipitation, and relative humidity data were related to the yields by using regression models. Estimated yield reductions due to ozone for 1975, varied from zero to 57% depending on crop and location. Economic welfare losses calculated from the yield reductions were $57.3 and $45.7 million for producer’s and consumer’s surplus, respectively. The total loss from ozone to agriculture related economic sectors determined by input-output analysis was $276 million in the SCAB and $36.6 million in the remainder of the state.  相似文献   

17.
A field study was conducted to evaluate the impact of ambient ozone on mustard (Brassica campestris L. var. Kranti) plants grown under recommended and 1.5 times recommended NPK doses at a rural site of India using filtered (FCs) and non-filtered open top chambers (NFCs). Ambient mean O3 concentration varied from 41.65 to 54.2 ppb during the experiment. Plants growing in FCs showed higher photosynthetic rate at both NPK levels, but higher stomatal conductance only at recommended NPK. There were improvements in growth parameters and biomass of plants in FCs as compared to NFCs at both NPK levels with higher increments at 1.5 times recommended. Seed yield and harvest index decreased significantly only at recommended NPK in NFCs. Seed quality in terms of nutrients, protein and oil contents reduced in NFCs at recommended NPK. The application of 1.5 times recommended NPK provided protection against yield loss due to ambient O3.  相似文献   

18.
Plants of bean (Phaseolus vulgaris cv. Pros) were exposed to a range of O3 concentrations up to 70 nl litre(-1) for 9 h day(-1) in the presence (45 nl litre(-1)) and absence (21 nl litre(-1)) of enhanced NH3 in 12 open-top chambers. Treatment effects on visible injury, growth and yield were assessed after 49 (intermediate harvest) and 62 days of exposure (final harvest). The proportion of leaves with visible injury at final harvest increased with increasing concentrations of O3. Enhanced NH3 did not cause any symptoms and did not affect injury by O3. The estimated seasonal mean concentration corresponding with 5% injury was circa 23 nl litre(-1) O3. Biomass production and green pod yield decreased with increasing concentrations of O3 and were generally stimulated by enhanced NH3 at both harvests. Adverse effects of O3 on biomass and pod yield did not depend on the NH3 level. Relative yield response to increasing 9-h daily mean O3 concentrations was nonlinear and yield losses of 5 and 10% were calculated to occur at seasonal daytime mean concentrations of 27 and 33 nl litre(-1) O3, respectively. Linear regression showed that the Accumulated exposures Over a Threshold of 30 (AOT30) and 40 nl litre(-1) (AOT40) O3 performed equally well. The estimated accumulated O3 exposures corresponding with a yield loss of 5% were 1600 nl litre(-1) h for AOT30 and 400 nl litre(-1) h for AOT40. The results are discussed in relation to the long-term critical level that is used as a guideline to protect crops against adverse effects by O3.  相似文献   

19.
Applications of a parameterised Jarvis-type multiplicative stomatal conductance model with data collated from open-top chamber experiments on field grown wheat and potato were used to derive relationships between relative yield and stomatal ozone uptake. The relationships were based on thirteen experiments from four European countries for wheat and seven experiments from four European countries for potato. The parameterisation of the conductance model was based both on an extensive literature review and primary data. Application of the stomatal conductance models to the open-top chamber experiments resulted in improved linear regressions between relative yield and ozone uptake compared to earlier stomatal conductance models, both for wheat (r2=0.83) and potato (r2=0.76). The improvement was largest for potato. The relationships with the highest correlation were obtained using a stomatal ozone flux threshold. For both wheat and potato the best performing exposure index was AFst6 (accumulated stomatal flux of ozone above a flux rate threshold of 6 nmol ozone m−2 projected sunlit leaf area, based on hourly values of ozone flux). The results demonstrate that flux-based models are now sufficiently well calibrated to be used with confidence to predict the effects of ozone on yield loss of major arable crops across Europe. Further studies, using innovations in stomatal conductance modelling and plant exposure experimentation, are needed if these models are to be further improved.  相似文献   

20.
This paper examines the relation between the results of epidemiologic studies of air pollution mortality and impact indicators that can be informative for environmental policy decisions. Using models that are simple and transparent, yet contain the essential features, it is shown that (1) number of deaths is not meaningful for air pollution, whereas loss of life expectancy (LLE) is an appropriate impact indicator; (2) the usual short-term (time series) studies yield a change in daily number of deaths attributable to acute effects of pollution, without any information on the associated LLE (although some information on this has recently become available by extending the observation window of time series); and (3) long-term studies yield a change in age-specific mortality, which makes it possible to calculate the total population averaged LLE (acute and chronic effects) but not the total number of premature deaths attributable to air pollution. The latter is unobservable because one cannot distinguish whether few individuals suffer a large or many suffer a small LLE. The paper calculates the LLE from exposure to PM10, as implied by the long-term mortality studies of adults and infants; population LLE for infants turns out to be an order of magnitude smaller than for adults. The LLE implied by short-term studies is a small fraction of the total loss implied by long-term studies, even if one assumes a very high loss per death. Applied to environmental policy, taking a permanent 50-70% reduction of PM10 as a reasonable goal, one finds a corresponding increase of average life expectancy in urban areas of the European Union (EU) and the United States of approximately four months.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号